xref: /freebsd/sys/vm/vm_kern.c (revision 4e1ef62a367de01ccb7156bfe6ec2d613d6eb860)
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	from: @(#)vm_kern.c	8.3 (Berkeley) 1/12/94
35  *
36  *
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62 
63 /*
64  *	Kernel memory management.
65  */
66 
67 #include <sys/cdefs.h>
68 __FBSDID("$FreeBSD$");
69 
70 #include "opt_vm.h"
71 
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/kernel.h>		/* for ticks and hz */
75 #include <sys/domainset.h>
76 #include <sys/eventhandler.h>
77 #include <sys/lock.h>
78 #include <sys/proc.h>
79 #include <sys/malloc.h>
80 #include <sys/rwlock.h>
81 #include <sys/sysctl.h>
82 #include <sys/vmem.h>
83 #include <sys/vmmeter.h>
84 
85 #include <vm/vm.h>
86 #include <vm/vm_param.h>
87 #include <vm/vm_domainset.h>
88 #include <vm/vm_kern.h>
89 #include <vm/pmap.h>
90 #include <vm/vm_map.h>
91 #include <vm/vm_object.h>
92 #include <vm/vm_page.h>
93 #include <vm/vm_pageout.h>
94 #include <vm/vm_phys.h>
95 #include <vm/vm_pagequeue.h>
96 #include <vm/vm_radix.h>
97 #include <vm/vm_extern.h>
98 #include <vm/uma.h>
99 
100 vm_map_t kernel_map;
101 vm_map_t exec_map;
102 vm_map_t pipe_map;
103 
104 const void *zero_region;
105 CTASSERT((ZERO_REGION_SIZE & PAGE_MASK) == 0);
106 
107 /* NB: Used by kernel debuggers. */
108 const u_long vm_maxuser_address = VM_MAXUSER_ADDRESS;
109 
110 u_int exec_map_entry_size;
111 u_int exec_map_entries;
112 
113 SYSCTL_ULONG(_vm, OID_AUTO, min_kernel_address, CTLFLAG_RD,
114     SYSCTL_NULL_ULONG_PTR, VM_MIN_KERNEL_ADDRESS, "Min kernel address");
115 
116 SYSCTL_ULONG(_vm, OID_AUTO, max_kernel_address, CTLFLAG_RD,
117 #if defined(__arm__) || defined(__sparc64__)
118     &vm_max_kernel_address, 0,
119 #else
120     SYSCTL_NULL_ULONG_PTR, VM_MAX_KERNEL_ADDRESS,
121 #endif
122     "Max kernel address");
123 
124 /*
125  *	kva_alloc:
126  *
127  *	Allocate a virtual address range with no underlying object and
128  *	no initial mapping to physical memory.  Any mapping from this
129  *	range to physical memory must be explicitly created prior to
130  *	its use, typically with pmap_qenter().  Any attempt to create
131  *	a mapping on demand through vm_fault() will result in a panic.
132  */
133 vm_offset_t
134 kva_alloc(vm_size_t size)
135 {
136 	vm_offset_t addr;
137 
138 	size = round_page(size);
139 	if (vmem_alloc(kernel_arena, size, M_BESTFIT | M_NOWAIT, &addr))
140 		return (0);
141 
142 	return (addr);
143 }
144 
145 /*
146  *	kva_free:
147  *
148  *	Release a region of kernel virtual memory allocated
149  *	with kva_alloc, and return the physical pages
150  *	associated with that region.
151  *
152  *	This routine may not block on kernel maps.
153  */
154 void
155 kva_free(vm_offset_t addr, vm_size_t size)
156 {
157 
158 	size = round_page(size);
159 	vmem_free(kernel_arena, addr, size);
160 }
161 
162 /*
163  *	Allocates a region from the kernel address map and physical pages
164  *	within the specified address range to the kernel object.  Creates a
165  *	wired mapping from this region to these pages, and returns the
166  *	region's starting virtual address.  The allocated pages are not
167  *	necessarily physically contiguous.  If M_ZERO is specified through the
168  *	given flags, then the pages are zeroed before they are mapped.
169  */
170 vm_offset_t
171 kmem_alloc_attr_domain(int domain, vm_size_t size, int flags, vm_paddr_t low,
172     vm_paddr_t high, vm_memattr_t memattr)
173 {
174 	vmem_t *vmem;
175 	vm_object_t object = kernel_object;
176 	vm_offset_t addr, i, offset;
177 	vm_page_t m;
178 	int pflags, tries;
179 
180 	size = round_page(size);
181 	vmem = vm_dom[domain].vmd_kernel_arena;
182 	if (vmem_alloc(vmem, size, M_BESTFIT | flags, &addr))
183 		return (0);
184 	offset = addr - VM_MIN_KERNEL_ADDRESS;
185 	pflags = malloc2vm_flags(flags) | VM_ALLOC_NOBUSY | VM_ALLOC_WIRED;
186 	pflags &= ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL);
187 	pflags |= VM_ALLOC_NOWAIT;
188 	VM_OBJECT_WLOCK(object);
189 	for (i = 0; i < size; i += PAGE_SIZE) {
190 		tries = 0;
191 retry:
192 		m = vm_page_alloc_contig_domain(object, atop(offset + i),
193 		    domain, pflags, 1, low, high, PAGE_SIZE, 0, memattr);
194 		if (m == NULL) {
195 			VM_OBJECT_WUNLOCK(object);
196 			if (tries < ((flags & M_NOWAIT) != 0 ? 1 : 3)) {
197 				if (!vm_page_reclaim_contig_domain(domain,
198 				    pflags, 1, low, high, PAGE_SIZE, 0) &&
199 				    (flags & M_WAITOK) != 0)
200 					vm_wait_domain(domain);
201 				VM_OBJECT_WLOCK(object);
202 				tries++;
203 				goto retry;
204 			}
205 			kmem_unback(object, addr, i);
206 			vmem_free(vmem, addr, size);
207 			return (0);
208 		}
209 		KASSERT(vm_phys_domain(m) == domain,
210 		    ("kmem_alloc_attr_domain: Domain mismatch %d != %d",
211 		    vm_phys_domain(m), domain));
212 		if ((flags & M_ZERO) && (m->flags & PG_ZERO) == 0)
213 			pmap_zero_page(m);
214 		m->valid = VM_PAGE_BITS_ALL;
215 		pmap_enter(kernel_pmap, addr + i, m, VM_PROT_RW,
216 		    VM_PROT_RW | PMAP_ENTER_WIRED, 0);
217 	}
218 	VM_OBJECT_WUNLOCK(object);
219 	return (addr);
220 }
221 
222 vm_offset_t
223 kmem_alloc_attr(vm_size_t size, int flags, vm_paddr_t low, vm_paddr_t high,
224     vm_memattr_t memattr)
225 {
226 	struct vm_domainset_iter di;
227 	vm_offset_t addr;
228 	int domain;
229 
230 	vm_domainset_iter_malloc_init(&di, kernel_object, &domain, &flags);
231 	do {
232 		addr = kmem_alloc_attr_domain(domain, size, flags, low, high,
233 		    memattr);
234 		if (addr != 0)
235 			break;
236 	} while (vm_domainset_iter_malloc(&di, &domain, &flags) == 0);
237 
238 	return (addr);
239 }
240 
241 /*
242  *	Allocates a region from the kernel address map and physically
243  *	contiguous pages within the specified address range to the kernel
244  *	object.  Creates a wired mapping from this region to these pages, and
245  *	returns the region's starting virtual address.  If M_ZERO is specified
246  *	through the given flags, then the pages are zeroed before they are
247  *	mapped.
248  */
249 vm_offset_t
250 kmem_alloc_contig_domain(int domain, vm_size_t size, int flags, vm_paddr_t low,
251     vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
252     vm_memattr_t memattr)
253 {
254 	vmem_t *vmem;
255 	vm_object_t object = kernel_object;
256 	vm_offset_t addr, offset, tmp;
257 	vm_page_t end_m, m;
258 	u_long npages;
259 	int pflags, tries;
260 
261 	size = round_page(size);
262 	vmem = vm_dom[domain].vmd_kernel_arena;
263 	if (vmem_alloc(vmem, size, flags | M_BESTFIT, &addr))
264 		return (0);
265 	offset = addr - VM_MIN_KERNEL_ADDRESS;
266 	pflags = malloc2vm_flags(flags) | VM_ALLOC_NOBUSY | VM_ALLOC_WIRED;
267 	pflags &= ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL);
268 	pflags |= VM_ALLOC_NOWAIT;
269 	npages = atop(size);
270 	VM_OBJECT_WLOCK(object);
271 	tries = 0;
272 retry:
273 	m = vm_page_alloc_contig_domain(object, atop(offset), domain, pflags,
274 	    npages, low, high, alignment, boundary, memattr);
275 	if (m == NULL) {
276 		VM_OBJECT_WUNLOCK(object);
277 		if (tries < ((flags & M_NOWAIT) != 0 ? 1 : 3)) {
278 			if (!vm_page_reclaim_contig_domain(domain, pflags,
279 			    npages, low, high, alignment, boundary) &&
280 			    (flags & M_WAITOK) != 0)
281 				vm_wait_domain(domain);
282 			VM_OBJECT_WLOCK(object);
283 			tries++;
284 			goto retry;
285 		}
286 		vmem_free(vmem, addr, size);
287 		return (0);
288 	}
289 	KASSERT(vm_phys_domain(m) == domain,
290 	    ("kmem_alloc_contig_domain: Domain mismatch %d != %d",
291 	    vm_phys_domain(m), domain));
292 	end_m = m + npages;
293 	tmp = addr;
294 	for (; m < end_m; m++) {
295 		if ((flags & M_ZERO) && (m->flags & PG_ZERO) == 0)
296 			pmap_zero_page(m);
297 		m->valid = VM_PAGE_BITS_ALL;
298 		pmap_enter(kernel_pmap, tmp, m, VM_PROT_RW,
299 		    VM_PROT_RW | PMAP_ENTER_WIRED, 0);
300 		tmp += PAGE_SIZE;
301 	}
302 	VM_OBJECT_WUNLOCK(object);
303 	return (addr);
304 }
305 
306 vm_offset_t
307 kmem_alloc_contig(vm_size_t size, int flags, vm_paddr_t low, vm_paddr_t high,
308     u_long alignment, vm_paddr_t boundary, vm_memattr_t memattr)
309 {
310 	struct vm_domainset_iter di;
311 	vm_offset_t addr;
312 	int domain;
313 
314 	vm_domainset_iter_malloc_init(&di, kernel_object, &domain, &flags);
315 	do {
316 		addr = kmem_alloc_contig_domain(domain, size, flags, low, high,
317 		    alignment, boundary, memattr);
318 		if (addr != 0)
319 			break;
320 	} while (vm_domainset_iter_malloc(&di, &domain, &flags) == 0);
321 
322 	return (addr);
323 }
324 
325 /*
326  *	kmem_suballoc:
327  *
328  *	Allocates a map to manage a subrange
329  *	of the kernel virtual address space.
330  *
331  *	Arguments are as follows:
332  *
333  *	parent		Map to take range from
334  *	min, max	Returned endpoints of map
335  *	size		Size of range to find
336  *	superpage_align	Request that min is superpage aligned
337  */
338 vm_map_t
339 kmem_suballoc(vm_map_t parent, vm_offset_t *min, vm_offset_t *max,
340     vm_size_t size, boolean_t superpage_align)
341 {
342 	int ret;
343 	vm_map_t result;
344 
345 	size = round_page(size);
346 
347 	*min = vm_map_min(parent);
348 	ret = vm_map_find(parent, NULL, 0, min, size, 0, superpage_align ?
349 	    VMFS_SUPER_SPACE : VMFS_ANY_SPACE, VM_PROT_ALL, VM_PROT_ALL,
350 	    MAP_ACC_NO_CHARGE);
351 	if (ret != KERN_SUCCESS)
352 		panic("kmem_suballoc: bad status return of %d", ret);
353 	*max = *min + size;
354 	result = vm_map_create(vm_map_pmap(parent), *min, *max);
355 	if (result == NULL)
356 		panic("kmem_suballoc: cannot create submap");
357 	if (vm_map_submap(parent, *min, *max, result) != KERN_SUCCESS)
358 		panic("kmem_suballoc: unable to change range to submap");
359 	return (result);
360 }
361 
362 /*
363  *	kmem_malloc:
364  *
365  *	Allocate wired-down pages in the kernel's address space.
366  */
367 vm_offset_t
368 kmem_malloc_domain(int domain, vm_size_t size, int flags)
369 {
370 	vmem_t *arena;
371 	vm_offset_t addr;
372 	int rv;
373 
374 #if VM_NRESERVLEVEL > 0
375 	if (__predict_true((flags & M_EXEC) == 0))
376 		arena = vm_dom[domain].vmd_kernel_arena;
377 	else
378 		arena = vm_dom[domain].vmd_kernel_rwx_arena;
379 #else
380 	arena = vm_dom[domain].vmd_kernel_arena;
381 #endif
382 	size = round_page(size);
383 	if (vmem_alloc(arena, size, flags | M_BESTFIT, &addr))
384 		return (0);
385 
386 	rv = kmem_back_domain(domain, kernel_object, addr, size, flags);
387 	if (rv != KERN_SUCCESS) {
388 		vmem_free(arena, addr, size);
389 		return (0);
390 	}
391 	return (addr);
392 }
393 
394 vm_offset_t
395 kmem_malloc(struct vmem *vmem __unused, vm_size_t size, int flags)
396 {
397 	struct vm_domainset_iter di;
398 	vm_offset_t addr;
399 	int domain;
400 
401 	vm_domainset_iter_malloc_init(&di, kernel_object, &domain, &flags);
402 	do {
403 		addr = kmem_malloc_domain(domain, size, flags);
404 		if (addr != 0)
405 			break;
406 	} while (vm_domainset_iter_malloc(&di, &domain, &flags) == 0);
407 
408 	return (addr);
409 }
410 
411 /*
412  *	kmem_back:
413  *
414  *	Allocate physical pages for the specified virtual address range.
415  */
416 int
417 kmem_back_domain(int domain, vm_object_t object, vm_offset_t addr,
418     vm_size_t size, int flags)
419 {
420 	vm_offset_t offset, i;
421 	vm_page_t m, mpred;
422 	vm_prot_t prot;
423 	int pflags;
424 
425 	KASSERT(object == kernel_object,
426 	    ("kmem_back_domain: only supports kernel object."));
427 
428 	offset = addr - VM_MIN_KERNEL_ADDRESS;
429 	pflags = malloc2vm_flags(flags) | VM_ALLOC_NOBUSY | VM_ALLOC_WIRED;
430 	pflags &= ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL);
431 	if (flags & M_WAITOK)
432 		pflags |= VM_ALLOC_WAITFAIL;
433 	prot = (flags & M_EXEC) != 0 ? VM_PROT_ALL : VM_PROT_RW;
434 
435 	i = 0;
436 	VM_OBJECT_WLOCK(object);
437 retry:
438 	mpred = vm_radix_lookup_le(&object->rtree, atop(offset + i));
439 	for (; i < size; i += PAGE_SIZE, mpred = m) {
440 		m = vm_page_alloc_domain_after(object, atop(offset + i),
441 		    domain, pflags, mpred);
442 
443 		/*
444 		 * Ran out of space, free everything up and return. Don't need
445 		 * to lock page queues here as we know that the pages we got
446 		 * aren't on any queues.
447 		 */
448 		if (m == NULL) {
449 			if ((flags & M_NOWAIT) == 0)
450 				goto retry;
451 			VM_OBJECT_WUNLOCK(object);
452 			kmem_unback(object, addr, i);
453 			return (KERN_NO_SPACE);
454 		}
455 		KASSERT(vm_phys_domain(m) == domain,
456 		    ("kmem_back_domain: Domain mismatch %d != %d",
457 		    vm_phys_domain(m), domain));
458 		if (flags & M_ZERO && (m->flags & PG_ZERO) == 0)
459 			pmap_zero_page(m);
460 		KASSERT((m->oflags & VPO_UNMANAGED) != 0,
461 		    ("kmem_malloc: page %p is managed", m));
462 		m->valid = VM_PAGE_BITS_ALL;
463 		pmap_enter(kernel_pmap, addr + i, m, prot,
464 		    prot | PMAP_ENTER_WIRED, 0);
465 	}
466 	VM_OBJECT_WUNLOCK(object);
467 
468 	return (KERN_SUCCESS);
469 }
470 
471 int
472 kmem_back(vm_object_t object, vm_offset_t addr, vm_size_t size, int flags)
473 {
474 	struct vm_domainset_iter di;
475 	int domain;
476 	int ret;
477 
478 	KASSERT(object == kernel_object,
479 	    ("kmem_back: only supports kernel object."));
480 
481 	vm_domainset_iter_malloc_init(&di, kernel_object, &domain, &flags);
482 	do {
483 		ret = kmem_back_domain(domain, object, addr, size, flags);
484 		if (ret == KERN_SUCCESS)
485 			break;
486 	} while (vm_domainset_iter_malloc(&di, &domain, &flags) == 0);
487 
488 	return (ret);
489 }
490 
491 /*
492  *	kmem_unback:
493  *
494  *	Unmap and free the physical pages underlying the specified virtual
495  *	address range.
496  *
497  *	A physical page must exist within the specified object at each index
498  *	that is being unmapped.
499  */
500 static int
501 _kmem_unback(vm_object_t object, vm_offset_t addr, vm_size_t size)
502 {
503 	vm_page_t m, next;
504 	vm_offset_t end, offset;
505 	int domain;
506 
507 	KASSERT(object == kernel_object,
508 	    ("kmem_unback: only supports kernel object."));
509 
510 	if (size == 0)
511 		return (0);
512 	pmap_remove(kernel_pmap, addr, addr + size);
513 	offset = addr - VM_MIN_KERNEL_ADDRESS;
514 	end = offset + size;
515 	VM_OBJECT_WLOCK(object);
516 	m = vm_page_lookup(object, atop(offset));
517 	domain = vm_phys_domain(m);
518 	for (; offset < end; offset += PAGE_SIZE, m = next) {
519 		next = vm_page_next(m);
520 		vm_page_unwire(m, PQ_NONE);
521 		vm_page_free(m);
522 	}
523 	VM_OBJECT_WUNLOCK(object);
524 
525 	return (domain);
526 }
527 
528 void
529 kmem_unback(vm_object_t object, vm_offset_t addr, vm_size_t size)
530 {
531 
532 	_kmem_unback(object, addr, size);
533 }
534 
535 /*
536  *	kmem_free:
537  *
538  *	Free memory allocated with kmem_malloc.  The size must match the
539  *	original allocation.
540  */
541 void
542 kmem_free(struct vmem *vmem, vm_offset_t addr, vm_size_t size)
543 {
544 	struct vmem *arena;
545 	int domain;
546 
547 #if VM_NRESERVLEVEL > 0
548 	KASSERT(vmem == kernel_arena || vmem == kernel_rwx_arena,
549 	    ("kmem_free: Only kernel_arena or kernel_rwx_arena are supported."));
550 #else
551 	KASSERT(vmem == kernel_arena,
552 	    ("kmem_free: Only kernel_arena is supported."));
553 #endif
554 
555 	size = round_page(size);
556 	domain = _kmem_unback(kernel_object, addr, size);
557 #if VM_NRESERVLEVEL > 0
558 	if (__predict_true(vmem == kernel_arena))
559 		arena = vm_dom[domain].vmd_kernel_arena;
560 	else
561 		arena = vm_dom[domain].vmd_kernel_rwx_arena;
562 #else
563 	arena = vm_dom[domain].vmd_kernel_arena;
564 #endif
565 	vmem_free(arena, addr, size);
566 }
567 
568 /*
569  *	kmap_alloc_wait:
570  *
571  *	Allocates pageable memory from a sub-map of the kernel.  If the submap
572  *	has no room, the caller sleeps waiting for more memory in the submap.
573  *
574  *	This routine may block.
575  */
576 vm_offset_t
577 kmap_alloc_wait(vm_map_t map, vm_size_t size)
578 {
579 	vm_offset_t addr;
580 
581 	size = round_page(size);
582 	if (!swap_reserve(size))
583 		return (0);
584 
585 	for (;;) {
586 		/*
587 		 * To make this work for more than one map, use the map's lock
588 		 * to lock out sleepers/wakers.
589 		 */
590 		vm_map_lock(map);
591 		if (vm_map_findspace(map, vm_map_min(map), size, &addr) == 0)
592 			break;
593 		/* no space now; see if we can ever get space */
594 		if (vm_map_max(map) - vm_map_min(map) < size) {
595 			vm_map_unlock(map);
596 			swap_release(size);
597 			return (0);
598 		}
599 		map->needs_wakeup = TRUE;
600 		vm_map_unlock_and_wait(map, 0);
601 	}
602 	vm_map_insert(map, NULL, 0, addr, addr + size, VM_PROT_ALL,
603 	    VM_PROT_ALL, MAP_ACC_CHARGED);
604 	vm_map_unlock(map);
605 	return (addr);
606 }
607 
608 /*
609  *	kmap_free_wakeup:
610  *
611  *	Returns memory to a submap of the kernel, and wakes up any processes
612  *	waiting for memory in that map.
613  */
614 void
615 kmap_free_wakeup(vm_map_t map, vm_offset_t addr, vm_size_t size)
616 {
617 
618 	vm_map_lock(map);
619 	(void) vm_map_delete(map, trunc_page(addr), round_page(addr + size));
620 	if (map->needs_wakeup) {
621 		map->needs_wakeup = FALSE;
622 		vm_map_wakeup(map);
623 	}
624 	vm_map_unlock(map);
625 }
626 
627 void
628 kmem_init_zero_region(void)
629 {
630 	vm_offset_t addr, i;
631 	vm_page_t m;
632 
633 	/*
634 	 * Map a single physical page of zeros to a larger virtual range.
635 	 * This requires less looping in places that want large amounts of
636 	 * zeros, while not using much more physical resources.
637 	 */
638 	addr = kva_alloc(ZERO_REGION_SIZE);
639 	m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL |
640 	    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED | VM_ALLOC_ZERO);
641 	if ((m->flags & PG_ZERO) == 0)
642 		pmap_zero_page(m);
643 	for (i = 0; i < ZERO_REGION_SIZE; i += PAGE_SIZE)
644 		pmap_qenter(addr + i, &m, 1);
645 	pmap_protect(kernel_pmap, addr, addr + ZERO_REGION_SIZE, VM_PROT_READ);
646 
647 	zero_region = (const void *)addr;
648 }
649 
650 /*
651  * 	kmem_init:
652  *
653  *	Create the kernel map; insert a mapping covering kernel text,
654  *	data, bss, and all space allocated thus far (`boostrap' data).  The
655  *	new map will thus map the range between VM_MIN_KERNEL_ADDRESS and
656  *	`start' as allocated, and the range between `start' and `end' as free.
657  */
658 void
659 kmem_init(vm_offset_t start, vm_offset_t end)
660 {
661 	vm_map_t m;
662 
663 	m = vm_map_create(kernel_pmap, VM_MIN_KERNEL_ADDRESS, end);
664 	m->system_map = 1;
665 	vm_map_lock(m);
666 	/* N.B.: cannot use kgdb to debug, starting with this assignment ... */
667 	kernel_map = m;
668 	(void) vm_map_insert(m, NULL, (vm_ooffset_t) 0,
669 #ifdef __amd64__
670 	    KERNBASE,
671 #else
672 	    VM_MIN_KERNEL_ADDRESS,
673 #endif
674 	    start, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
675 	/* ... and ending with the completion of the above `insert' */
676 	vm_map_unlock(m);
677 }
678 
679 /*
680  *	kmem_bootstrap_free:
681  *
682  *	Free pages backing preloaded data (e.g., kernel modules) to the
683  *	system.  Currently only supported on platforms that create a
684  *	vm_phys segment for preloaded data.
685  */
686 void
687 kmem_bootstrap_free(vm_offset_t start, vm_size_t size)
688 {
689 #if defined(__i386__) || defined(__amd64__)
690 	struct vm_domain *vmd;
691 	vm_offset_t end, va;
692 	vm_paddr_t pa;
693 	vm_page_t m;
694 
695 	end = trunc_page(start + size);
696 	start = round_page(start);
697 
698 	for (va = start; va < end; va += PAGE_SIZE) {
699 		pa = pmap_kextract(va);
700 		m = PHYS_TO_VM_PAGE(pa);
701 
702 		vmd = vm_pagequeue_domain(m);
703 		vm_domain_free_lock(vmd);
704 		vm_phys_free_pages(m, 0);
705 		vmd->vmd_page_count++;
706 		vm_domain_free_unlock(vmd);
707 
708 		vm_domain_freecnt_inc(vmd, 1);
709 		vm_cnt.v_page_count++;
710 	}
711 	pmap_remove(kernel_pmap, start, end);
712 	(void)vmem_add(kernel_arena, start, end - start, M_WAITOK);
713 #endif
714 }
715 
716 #ifdef DIAGNOSTIC
717 /*
718  * Allow userspace to directly trigger the VM drain routine for testing
719  * purposes.
720  */
721 static int
722 debug_vm_lowmem(SYSCTL_HANDLER_ARGS)
723 {
724 	int error, i;
725 
726 	i = 0;
727 	error = sysctl_handle_int(oidp, &i, 0, req);
728 	if (error)
729 		return (error);
730 	if ((i & ~(VM_LOW_KMEM | VM_LOW_PAGES)) != 0)
731 		return (EINVAL);
732 	if (i != 0)
733 		EVENTHANDLER_INVOKE(vm_lowmem, i);
734 	return (0);
735 }
736 
737 SYSCTL_PROC(_debug, OID_AUTO, vm_lowmem, CTLTYPE_INT | CTLFLAG_RW, 0, 0,
738     debug_vm_lowmem, "I", "set to trigger vm_lowmem event with given flags");
739 #endif
740