1 /* 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. All advertising materials mentioning features or use of this software 17 * must display the following acknowledgement: 18 * This product includes software developed by the University of 19 * California, Berkeley and its contributors. 20 * 4. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * from: @(#)vm_kern.c 8.3 (Berkeley) 1/12/94 37 * 38 * 39 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 40 * All rights reserved. 41 * 42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 43 * 44 * Permission to use, copy, modify and distribute this software and 45 * its documentation is hereby granted, provided that both the copyright 46 * notice and this permission notice appear in all copies of the 47 * software, derivative works or modified versions, and any portions 48 * thereof, and that both notices appear in supporting documentation. 49 * 50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 51 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 53 * 54 * Carnegie Mellon requests users of this software to return to 55 * 56 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 57 * School of Computer Science 58 * Carnegie Mellon University 59 * Pittsburgh PA 15213-3890 60 * 61 * any improvements or extensions that they make and grant Carnegie the 62 * rights to redistribute these changes. 63 * 64 * $FreeBSD$ 65 */ 66 67 /* 68 * Kernel memory management. 69 */ 70 71 #include <sys/param.h> 72 #include <sys/systm.h> 73 #include <sys/proc.h> 74 #include <sys/malloc.h> 75 76 #include <vm/vm.h> 77 #include <vm/vm_param.h> 78 #include <vm/vm_prot.h> 79 #include <sys/lock.h> 80 #include <vm/pmap.h> 81 #include <vm/vm_map.h> 82 #include <vm/vm_object.h> 83 #include <vm/vm_page.h> 84 #include <vm/vm_pageout.h> 85 #include <vm/vm_extern.h> 86 87 vm_map_t kernel_map=0; 88 vm_map_t kmem_map=0; 89 vm_map_t exec_map=0; 90 vm_map_t clean_map=0; 91 vm_map_t buffer_map=0; 92 vm_map_t mb_map=0; 93 int mb_map_full=0; 94 vm_map_t phys_map=0; 95 96 /* 97 * kmem_alloc_pageable: 98 * 99 * Allocate pageable memory to the kernel's address map. 100 * "map" must be kernel_map or a submap of kernel_map. 101 */ 102 103 vm_offset_t 104 kmem_alloc_pageable(map, size) 105 vm_map_t map; 106 register vm_size_t size; 107 { 108 vm_offset_t addr; 109 register int result; 110 111 size = round_page(size); 112 addr = vm_map_min(map); 113 result = vm_map_find(map, NULL, (vm_offset_t) 0, 114 &addr, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, 0); 115 if (result != KERN_SUCCESS) { 116 return (0); 117 } 118 return (addr); 119 } 120 121 /* 122 * kmem_alloc_nofault: 123 * 124 * Same as kmem_alloc_pageable, except that it create a nofault entry. 125 */ 126 127 vm_offset_t 128 kmem_alloc_nofault(map, size) 129 vm_map_t map; 130 register vm_size_t size; 131 { 132 vm_offset_t addr; 133 register int result; 134 135 size = round_page(size); 136 addr = vm_map_min(map); 137 result = vm_map_find(map, NULL, (vm_offset_t) 0, 138 &addr, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT); 139 if (result != KERN_SUCCESS) { 140 return (0); 141 } 142 return (addr); 143 } 144 145 /* 146 * Allocate wired-down memory in the kernel's address map 147 * or a submap. 148 */ 149 vm_offset_t 150 kmem_alloc(map, size) 151 register vm_map_t map; 152 register vm_size_t size; 153 { 154 vm_offset_t addr; 155 register vm_offset_t offset; 156 vm_offset_t i; 157 158 size = round_page(size); 159 160 /* 161 * Use the kernel object for wired-down kernel pages. Assume that no 162 * region of the kernel object is referenced more than once. 163 */ 164 165 /* 166 * Locate sufficient space in the map. This will give us the final 167 * virtual address for the new memory, and thus will tell us the 168 * offset within the kernel map. 169 */ 170 vm_map_lock(map); 171 if (vm_map_findspace(map, vm_map_min(map), size, &addr)) { 172 vm_map_unlock(map); 173 return (0); 174 } 175 offset = addr - VM_MIN_KERNEL_ADDRESS; 176 vm_object_reference(kernel_object); 177 vm_map_insert(map, kernel_object, offset, addr, addr + size, 178 VM_PROT_ALL, VM_PROT_ALL, 0); 179 vm_map_unlock(map); 180 181 /* 182 * Guarantee that there are pages already in this object before 183 * calling vm_map_pageable. This is to prevent the following 184 * scenario: 185 * 186 * 1) Threads have swapped out, so that there is a pager for the 187 * kernel_object. 2) The kmsg zone is empty, and so we are 188 * kmem_allocing a new page for it. 3) vm_map_pageable calls vm_fault; 189 * there is no page, but there is a pager, so we call 190 * pager_data_request. But the kmsg zone is empty, so we must 191 * kmem_alloc. 4) goto 1 5) Even if the kmsg zone is not empty: when 192 * we get the data back from the pager, it will be (very stale) 193 * non-zero data. kmem_alloc is defined to return zero-filled memory. 194 * 195 * We're intentionally not activating the pages we allocate to prevent a 196 * race with page-out. vm_map_pageable will wire the pages. 197 */ 198 199 for (i = 0; i < size; i += PAGE_SIZE) { 200 vm_page_t mem; 201 202 mem = vm_page_grab(kernel_object, OFF_TO_IDX(offset + i), 203 VM_ALLOC_ZERO | VM_ALLOC_RETRY); 204 if ((mem->flags & PG_ZERO) == 0) 205 vm_page_zero_fill(mem); 206 mem->valid = VM_PAGE_BITS_ALL; 207 vm_page_flag_clear(mem, PG_ZERO); 208 vm_page_wakeup(mem); 209 } 210 211 /* 212 * And finally, mark the data as non-pageable. 213 */ 214 215 (void) vm_map_pageable(map, (vm_offset_t) addr, addr + size, FALSE); 216 217 return (addr); 218 } 219 220 /* 221 * kmem_free: 222 * 223 * Release a region of kernel virtual memory allocated 224 * with kmem_alloc, and return the physical pages 225 * associated with that region. 226 * 227 * This routine may not block on kernel maps. 228 */ 229 void 230 kmem_free(map, addr, size) 231 vm_map_t map; 232 register vm_offset_t addr; 233 vm_size_t size; 234 { 235 (void) vm_map_remove(map, trunc_page(addr), round_page(addr + size)); 236 } 237 238 /* 239 * kmem_suballoc: 240 * 241 * Allocates a map to manage a subrange 242 * of the kernel virtual address space. 243 * 244 * Arguments are as follows: 245 * 246 * parent Map to take range from 247 * size Size of range to find 248 * min, max Returned endpoints of map 249 * pageable Can the region be paged 250 */ 251 vm_map_t 252 kmem_suballoc(parent, min, max, size) 253 register vm_map_t parent; 254 vm_offset_t *min, *max; 255 register vm_size_t size; 256 { 257 register int ret; 258 vm_map_t result; 259 260 size = round_page(size); 261 262 *min = (vm_offset_t) vm_map_min(parent); 263 ret = vm_map_find(parent, NULL, (vm_offset_t) 0, 264 min, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, 0); 265 if (ret != KERN_SUCCESS) { 266 printf("kmem_suballoc: bad status return of %d.\n", ret); 267 panic("kmem_suballoc"); 268 } 269 *max = *min + size; 270 pmap_reference(vm_map_pmap(parent)); 271 result = vm_map_create(vm_map_pmap(parent), *min, *max); 272 if (result == NULL) 273 panic("kmem_suballoc: cannot create submap"); 274 if ((ret = vm_map_submap(parent, *min, *max, result)) != KERN_SUCCESS) 275 panic("kmem_suballoc: unable to change range to submap"); 276 return (result); 277 } 278 279 /* 280 * kmem_malloc: 281 * 282 * Allocate wired-down memory in the kernel's address map for the higher 283 * level kernel memory allocator (kern/kern_malloc.c). We cannot use 284 * kmem_alloc() because we may need to allocate memory at interrupt 285 * level where we cannot block (canwait == FALSE). 286 * 287 * This routine has its own private kernel submap (kmem_map) and object 288 * (kmem_object). This, combined with the fact that only malloc uses 289 * this routine, ensures that we will never block in map or object waits. 290 * 291 * Note that this still only works in a uni-processor environment and 292 * when called at splhigh(). 293 * 294 * We don't worry about expanding the map (adding entries) since entries 295 * for wired maps are statically allocated. 296 * 297 * NOTE: This routine is not supposed to block if M_NOWAIT is set, but 298 * I have not verified that it actually does not block. 299 */ 300 vm_offset_t 301 kmem_malloc(map, size, flags) 302 register vm_map_t map; 303 register vm_size_t size; 304 int flags; 305 { 306 register vm_offset_t offset, i; 307 vm_map_entry_t entry; 308 vm_offset_t addr; 309 vm_page_t m; 310 311 if (map != kmem_map && map != mb_map) 312 panic("kmem_malloc: map != {kmem,mb}_map"); 313 314 size = round_page(size); 315 addr = vm_map_min(map); 316 317 /* 318 * Locate sufficient space in the map. This will give us the final 319 * virtual address for the new memory, and thus will tell us the 320 * offset within the kernel map. 321 */ 322 vm_map_lock(map); 323 if (vm_map_findspace(map, vm_map_min(map), size, &addr)) { 324 vm_map_unlock(map); 325 if (map == mb_map) { 326 mb_map_full = TRUE; 327 printf("Out of mbuf clusters - adjust NMBCLUSTERS or increase maxusers!\n"); 328 return (0); 329 } 330 if ((flags & M_NOWAIT) == 0) 331 panic("kmem_malloc(%ld): kmem_map too small: %ld total allocated", 332 (long)size, (long)map->size); 333 return (0); 334 } 335 offset = addr - VM_MIN_KERNEL_ADDRESS; 336 vm_object_reference(kmem_object); 337 vm_map_insert(map, kmem_object, offset, addr, addr + size, 338 VM_PROT_ALL, VM_PROT_ALL, 0); 339 340 for (i = 0; i < size; i += PAGE_SIZE) { 341 /* 342 * Note: if M_NOWAIT specified alone, allocate from 343 * interrupt-safe queues only (just the free list). If 344 * M_ASLEEP or M_USE_RESERVE is also specified, we can also 345 * allocate from the cache. Neither of the latter two 346 * flags may be specified from an interrupt since interrupts 347 * are not allowed to mess with the cache queue. 348 */ 349 retry: 350 m = vm_page_alloc(kmem_object, OFF_TO_IDX(offset + i), 351 ((flags & (M_NOWAIT|M_ASLEEP|M_USE_RESERVE)) == M_NOWAIT) ? 352 VM_ALLOC_INTERRUPT : 353 VM_ALLOC_SYSTEM); 354 355 /* 356 * Ran out of space, free everything up and return. Don't need 357 * to lock page queues here as we know that the pages we got 358 * aren't on any queues. 359 */ 360 if (m == NULL) { 361 if ((flags & M_NOWAIT) == 0) { 362 vm_map_unlock(map); 363 VM_WAIT; 364 vm_map_lock(map); 365 goto retry; 366 } 367 vm_map_delete(map, addr, addr + size); 368 vm_map_unlock(map); 369 if (flags & M_ASLEEP) { 370 VM_AWAIT; 371 } 372 return (0); 373 } 374 vm_page_flag_clear(m, PG_ZERO); 375 m->valid = VM_PAGE_BITS_ALL; 376 } 377 378 /* 379 * Mark map entry as non-pageable. Assert: vm_map_insert() will never 380 * be able to extend the previous entry so there will be a new entry 381 * exactly corresponding to this address range and it will have 382 * wired_count == 0. 383 */ 384 if (!vm_map_lookup_entry(map, addr, &entry) || 385 entry->start != addr || entry->end != addr + size || 386 entry->wired_count != 0) 387 panic("kmem_malloc: entry not found or misaligned"); 388 entry->wired_count = 1; 389 390 vm_map_simplify_entry(map, entry); 391 392 /* 393 * Loop thru pages, entering them in the pmap. (We cannot add them to 394 * the wired count without wrapping the vm_page_queue_lock in 395 * splimp...) 396 */ 397 for (i = 0; i < size; i += PAGE_SIZE) { 398 m = vm_page_lookup(kmem_object, OFF_TO_IDX(offset + i)); 399 vm_page_wire(m); 400 vm_page_wakeup(m); 401 /* 402 * Because this is kernel_pmap, this call will not block. 403 */ 404 pmap_enter(kernel_pmap, addr + i, VM_PAGE_TO_PHYS(m), 405 VM_PROT_ALL, 1); 406 vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE | PG_REFERENCED); 407 } 408 vm_map_unlock(map); 409 410 return (addr); 411 } 412 413 /* 414 * kmem_alloc_wait: 415 * 416 * Allocates pageable memory from a sub-map of the kernel. If the submap 417 * has no room, the caller sleeps waiting for more memory in the submap. 418 * 419 * This routine may block. 420 */ 421 422 vm_offset_t 423 kmem_alloc_wait(map, size) 424 vm_map_t map; 425 vm_size_t size; 426 { 427 vm_offset_t addr; 428 429 size = round_page(size); 430 431 for (;;) { 432 /* 433 * To make this work for more than one map, use the map's lock 434 * to lock out sleepers/wakers. 435 */ 436 vm_map_lock(map); 437 if (vm_map_findspace(map, vm_map_min(map), size, &addr) == 0) 438 break; 439 /* no space now; see if we can ever get space */ 440 if (vm_map_max(map) - vm_map_min(map) < size) { 441 vm_map_unlock(map); 442 return (0); 443 } 444 vm_map_unlock(map); 445 tsleep(map, PVM, "kmaw", 0); 446 } 447 vm_map_insert(map, NULL, (vm_offset_t) 0, addr, addr + size, VM_PROT_ALL, VM_PROT_ALL, 0); 448 vm_map_unlock(map); 449 return (addr); 450 } 451 452 /* 453 * kmem_free_wakeup: 454 * 455 * Returns memory to a submap of the kernel, and wakes up any processes 456 * waiting for memory in that map. 457 */ 458 void 459 kmem_free_wakeup(map, addr, size) 460 vm_map_t map; 461 vm_offset_t addr; 462 vm_size_t size; 463 { 464 vm_map_lock(map); 465 (void) vm_map_delete(map, trunc_page(addr), round_page(addr + size)); 466 wakeup(map); 467 vm_map_unlock(map); 468 } 469 470 /* 471 * kmem_init: 472 * 473 * Create the kernel map; insert a mapping covering kernel text, 474 * data, bss, and all space allocated thus far (`boostrap' data). The 475 * new map will thus map the range between VM_MIN_KERNEL_ADDRESS and 476 * `start' as allocated, and the range between `start' and `end' as free. 477 */ 478 479 void 480 kmem_init(start, end) 481 vm_offset_t start, end; 482 { 483 register vm_map_t m; 484 485 m = vm_map_create(kernel_pmap, VM_MIN_KERNEL_ADDRESS, end); 486 vm_map_lock(m); 487 /* N.B.: cannot use kgdb to debug, starting with this assignment ... */ 488 kernel_map = m; 489 kernel_map->system_map = 1; 490 (void) vm_map_insert(m, NULL, (vm_offset_t) 0, 491 VM_MIN_KERNEL_ADDRESS, start, VM_PROT_ALL, VM_PROT_ALL, 0); 492 /* ... and ending with the completion of the above `insert' */ 493 vm_map_unlock(m); 494 } 495 496