xref: /freebsd/sys/vm/vm_kern.c (revision 417ed37975261df51f61d13e179ad04d8f4839c7)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_kern.c	8.3 (Berkeley) 1/12/94
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  *
64  * $Id: vm_kern.c,v 1.7 1994/08/18 22:36:02 wollman Exp $
65  */
66 
67 /*
68  *	Kernel memory management.
69  */
70 
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/kernel.h>
74 #include <sys/proc.h>
75 
76 #include <vm/vm.h>
77 #include <vm/vm_page.h>
78 #include <vm/vm_pageout.h>
79 #include <vm/vm_kern.h>
80 
81 vm_map_t buffer_map;
82 vm_map_t kernel_map;
83 vm_map_t kmem_map;
84 vm_map_t mb_map;
85 vm_map_t io_map;
86 vm_map_t clean_map;
87 vm_map_t pager_map;
88 vm_map_t phys_map;
89 vm_map_t exec_map;
90 vm_map_t u_map;
91 
92 /*
93  *	kmem_alloc_pageable:
94  *
95  *	Allocate pageable memory to the kernel's address map.
96  *	map must be "kernel_map" below.
97  */
98 
99 vm_offset_t
100 kmem_alloc_pageable(map, size)
101 	vm_map_t map;
102 	register vm_size_t size;
103 {
104 	vm_offset_t addr;
105 	register int result;
106 
107 #if	0
108 	if (map != kernel_map)
109 		panic("kmem_alloc_pageable: not called with kernel_map");
110 #endif
111 
112 	size = round_page(size);
113 
114 	addr = vm_map_min(map);
115 	result = vm_map_find(map, NULL, (vm_offset_t) 0,
116 	    &addr, size, TRUE);
117 	if (result != KERN_SUCCESS) {
118 		return (0);
119 	}
120 	return (addr);
121 }
122 
123 /*
124  *	Allocate wired-down memory in the kernel's address map
125  *	or a submap.
126  */
127 vm_offset_t
128 kmem_alloc(map, size)
129 	register vm_map_t map;
130 	register vm_size_t size;
131 {
132 	vm_offset_t addr;
133 	register vm_offset_t offset;
134 	vm_offset_t i;
135 
136 	size = round_page(size);
137 
138 	/*
139 	 * Use the kernel object for wired-down kernel pages. Assume that no
140 	 * region of the kernel object is referenced more than once.
141 	 */
142 
143 	/*
144 	 * Locate sufficient space in the map.  This will give us the final
145 	 * virtual address for the new memory, and thus will tell us the
146 	 * offset within the kernel map.
147 	 */
148 	vm_map_lock(map);
149 	if (vm_map_findspace(map, 0, size, &addr)) {
150 		vm_map_unlock(map);
151 		return (0);
152 	}
153 	offset = addr - VM_MIN_KERNEL_ADDRESS;
154 	vm_object_reference(kernel_object);
155 	vm_map_insert(map, kernel_object, offset, addr, addr + size);
156 	vm_map_unlock(map);
157 
158 	/*
159 	 * Guarantee that there are pages already in this object before
160 	 * calling vm_map_pageable.  This is to prevent the following
161 	 * scenario:
162 	 *
163 	 * 1) Threads have swapped out, so that there is a pager for the
164 	 * kernel_object. 2) The kmsg zone is empty, and so we are
165 	 * kmem_allocing a new page for it. 3) vm_map_pageable calls vm_fault;
166 	 * there is no page, but there is a pager, so we call
167 	 * pager_data_request.  But the kmsg zone is empty, so we must
168 	 * kmem_alloc. 4) goto 1 5) Even if the kmsg zone is not empty: when
169 	 * we get the data back from the pager, it will be (very stale)
170 	 * non-zero data.  kmem_alloc is defined to return zero-filled memory.
171 	 *
172 	 * We're intentionally not activating the pages we allocate to prevent a
173 	 * race with page-out.  vm_map_pageable will wire the pages.
174 	 */
175 
176 	vm_object_lock(kernel_object);
177 	for (i = 0; i < size; i += PAGE_SIZE) {
178 		vm_page_t mem;
179 
180 		while ((mem = vm_page_alloc(kernel_object, offset + i, 0)) == NULL) {
181 			vm_object_unlock(kernel_object);
182 			VM_WAIT;
183 			vm_object_lock(kernel_object);
184 		}
185 		vm_page_zero_fill(mem);
186 		mem->flags &= ~PG_BUSY;
187 		mem->valid |= VM_PAGE_BITS_ALL;
188 	}
189 	vm_object_unlock(kernel_object);
190 
191 	/*
192 	 * And finally, mark the data as non-pageable.
193 	 */
194 
195 	(void) vm_map_pageable(map, (vm_offset_t) addr, addr + size, FALSE);
196 
197 	/*
198 	 * Try to coalesce the map
199 	 */
200 	vm_map_simplify(map, addr);
201 
202 	return (addr);
203 }
204 
205 /*
206  *	kmem_free:
207  *
208  *	Release a region of kernel virtual memory allocated
209  *	with kmem_alloc, and return the physical pages
210  *	associated with that region.
211  */
212 void
213 kmem_free(map, addr, size)
214 	vm_map_t map;
215 	register vm_offset_t addr;
216 	vm_size_t size;
217 {
218 	(void) vm_map_remove(map, trunc_page(addr), round_page(addr + size));
219 }
220 
221 /*
222  *	kmem_suballoc:
223  *
224  *	Allocates a map to manage a subrange
225  *	of the kernel virtual address space.
226  *
227  *	Arguments are as follows:
228  *
229  *	parent		Map to take range from
230  *	size		Size of range to find
231  *	min, max	Returned endpoints of map
232  *	pageable	Can the region be paged
233  */
234 vm_map_t
235 kmem_suballoc(parent, min, max, size, pageable)
236 	register vm_map_t parent;
237 	vm_offset_t *min, *max;
238 	register vm_size_t size;
239 	boolean_t pageable;
240 {
241 	register int ret;
242 	vm_map_t result;
243 
244 	size = round_page(size);
245 
246 	*min = (vm_offset_t) vm_map_min(parent);
247 	ret = vm_map_find(parent, NULL, (vm_offset_t) 0,
248 	    min, size, TRUE);
249 	if (ret != KERN_SUCCESS) {
250 		printf("kmem_suballoc: bad status return of %d.\n", ret);
251 		panic("kmem_suballoc");
252 	}
253 	*max = *min + size;
254 	pmap_reference(vm_map_pmap(parent));
255 	result = vm_map_create(vm_map_pmap(parent), *min, *max, pageable);
256 	if (result == NULL)
257 		panic("kmem_suballoc: cannot create submap");
258 	if ((ret = vm_map_submap(parent, *min, *max, result)) != KERN_SUCCESS)
259 		panic("kmem_suballoc: unable to change range to submap");
260 	return (result);
261 }
262 
263 /*
264  * Allocate wired-down memory in the kernel's address map for the higher
265  * level kernel memory allocator (kern/kern_malloc.c).  We cannot use
266  * kmem_alloc() because we may need to allocate memory at interrupt
267  * level where we cannot block (canwait == FALSE).
268  *
269  * This routine has its own private kernel submap (kmem_map) and object
270  * (kmem_object).  This, combined with the fact that only malloc uses
271  * this routine, ensures that we will never block in map or object waits.
272  *
273  * Note that this still only works in a uni-processor environment and
274  * when called at splhigh().
275  *
276  * We don't worry about expanding the map (adding entries) since entries
277  * for wired maps are statically allocated.
278  */
279 vm_offset_t
280 kmem_malloc(map, size, canwait)
281 	register vm_map_t map;
282 	register vm_size_t size;
283 	boolean_t canwait;
284 {
285 	register vm_offset_t offset, i;
286 	vm_map_entry_t entry;
287 	vm_offset_t addr;
288 	vm_page_t m;
289 
290 	if (map != kmem_map && map != mb_map)
291 		panic("kern_malloc_alloc: map != {kmem,mb}_map");
292 
293 	size = round_page(size);
294 	addr = vm_map_min(map);
295 
296 	/*
297 	 * Locate sufficient space in the map.  This will give us the final
298 	 * virtual address for the new memory, and thus will tell us the
299 	 * offset within the kernel map.
300 	 */
301 	vm_map_lock(map);
302 	if (vm_map_findspace(map, 0, size, &addr)) {
303 		vm_map_unlock(map);
304 #if 0
305 		if (canwait)	/* XXX  should wait */
306 			panic("kmem_malloc: %s too small",
307 			    map == kmem_map ? "kmem_map" : "mb_map");
308 #endif
309 		if (canwait)
310 			panic("kmem_malloc: map too small");
311 		return (0);
312 	}
313 	offset = addr - vm_map_min(kmem_map);
314 	vm_object_reference(kmem_object);
315 	vm_map_insert(map, kmem_object, offset, addr, addr + size);
316 
317 	/*
318 	 * If we can wait, just mark the range as wired (will fault pages as
319 	 * necessary).
320 	 */
321 	if (canwait) {
322 		vm_map_unlock(map);
323 		(void) vm_map_pageable(map, (vm_offset_t) addr, addr + size,
324 		    FALSE);
325 		vm_map_simplify(map, addr);
326 		return (addr);
327 	}
328 	/*
329 	 * If we cannot wait then we must allocate all memory up front,
330 	 * pulling it off the active queue to prevent pageout.
331 	 */
332 	vm_object_lock(kmem_object);
333 	for (i = 0; i < size; i += PAGE_SIZE) {
334 		m = vm_page_alloc(kmem_object, offset + i, 1);
335 
336 		/*
337 		 * Ran out of space, free everything up and return. Don't need
338 		 * to lock page queues here as we know that the pages we got
339 		 * aren't on any queues.
340 		 */
341 		if (m == NULL) {
342 			while (i != 0) {
343 				i -= PAGE_SIZE;
344 				m = vm_page_lookup(kmem_object, offset + i);
345 				vm_page_free(m);
346 			}
347 			vm_object_unlock(kmem_object);
348 			vm_map_delete(map, addr, addr + size);
349 			vm_map_unlock(map);
350 			return (0);
351 		}
352 #if 0
353 		vm_page_zero_fill(m);
354 #endif
355 		m->flags &= ~PG_BUSY;
356 		m->valid |= VM_PAGE_BITS_ALL;
357 	}
358 	vm_object_unlock(kmem_object);
359 
360 	/*
361 	 * Mark map entry as non-pageable. Assert: vm_map_insert() will never
362 	 * be able to extend the previous entry so there will be a new entry
363 	 * exactly corresponding to this address range and it will have
364 	 * wired_count == 0.
365 	 */
366 	if (!vm_map_lookup_entry(map, addr, &entry) ||
367 	    entry->start != addr || entry->end != addr + size ||
368 	    entry->wired_count)
369 		panic("kmem_malloc: entry not found or misaligned");
370 	entry->wired_count++;
371 
372 	/*
373 	 * Loop thru pages, entering them in the pmap. (We cannot add them to
374 	 * the wired count without wrapping the vm_page_queue_lock in
375 	 * splimp...)
376 	 */
377 	for (i = 0; i < size; i += PAGE_SIZE) {
378 		vm_object_lock(kmem_object);
379 		m = vm_page_lookup(kmem_object, offset + i);
380 		vm_object_unlock(kmem_object);
381 		pmap_kenter(addr + i, VM_PAGE_TO_PHYS(m));
382 	}
383 	vm_map_unlock(map);
384 
385 	vm_map_simplify(map, addr);
386 	return (addr);
387 }
388 
389 /*
390  *	kmem_alloc_wait
391  *
392  *	Allocates pageable memory from a sub-map of the kernel.  If the submap
393  *	has no room, the caller sleeps waiting for more memory in the submap.
394  *
395  */
396 vm_offset_t
397 kmem_alloc_wait(map, size)
398 	vm_map_t map;
399 	vm_size_t size;
400 {
401 	vm_offset_t addr;
402 
403 	size = round_page(size);
404 
405 	for (;;) {
406 		/*
407 		 * To make this work for more than one map, use the map's lock
408 		 * to lock out sleepers/wakers.
409 		 */
410 		vm_map_lock(map);
411 		if (vm_map_findspace(map, 0, size, &addr) == 0)
412 			break;
413 		/* no space now; see if we can ever get space */
414 		if (vm_map_max(map) - vm_map_min(map) < size) {
415 			vm_map_unlock(map);
416 			return (0);
417 		}
418 		assert_wait((int) map, TRUE);
419 		vm_map_unlock(map);
420 		thread_block("kmaw");
421 	}
422 	vm_map_insert(map, NULL, (vm_offset_t) 0, addr, addr + size);
423 	vm_map_unlock(map);
424 	return (addr);
425 }
426 
427 /*
428  *	kmem_free_wakeup
429  *
430  *	Returns memory to a submap of the kernel, and wakes up any threads
431  *	waiting for memory in that map.
432  */
433 void
434 kmem_free_wakeup(map, addr, size)
435 	vm_map_t map;
436 	vm_offset_t addr;
437 	vm_size_t size;
438 {
439 	vm_map_lock(map);
440 	(void) vm_map_delete(map, trunc_page(addr), round_page(addr + size));
441 	thread_wakeup((int) map);
442 	vm_map_unlock(map);
443 }
444 
445 /*
446  * Create the kernel map; insert a mapping covering kernel text, data, bss,
447  * and all space allocated thus far (`boostrap' data).  The new map will thus
448  * map the range between VM_MIN_KERNEL_ADDRESS and `start' as allocated, and
449  * the range between `start' and `end' as free.
450  */
451 void
452 kmem_init(start, end)
453 	vm_offset_t start, end;
454 {
455 	register vm_map_t m;
456 
457 	m = vm_map_create(kernel_pmap, VM_MIN_KERNEL_ADDRESS, end, FALSE);
458 	vm_map_lock(m);
459 	/* N.B.: cannot use kgdb to debug, starting with this assignment ... */
460 	kernel_map = m;
461 	(void) vm_map_insert(m, NULL, (vm_offset_t) 0,
462 	    VM_MIN_KERNEL_ADDRESS, start);
463 	/* ... and ending with the completion of the above `insert' */
464 	vm_map_unlock(m);
465 }
466