1 /* 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. All advertising materials mentioning features or use of this software 17 * must display the following acknowledgement: 18 * This product includes software developed by the University of 19 * California, Berkeley and its contributors. 20 * 4. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * from: @(#)vm_kern.c 8.3 (Berkeley) 1/12/94 37 * 38 * 39 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 40 * All rights reserved. 41 * 42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 43 * 44 * Permission to use, copy, modify and distribute this software and 45 * its documentation is hereby granted, provided that both the copyright 46 * notice and this permission notice appear in all copies of the 47 * software, derivative works or modified versions, and any portions 48 * thereof, and that both notices appear in supporting documentation. 49 * 50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 51 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 53 * 54 * Carnegie Mellon requests users of this software to return to 55 * 56 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 57 * School of Computer Science 58 * Carnegie Mellon University 59 * Pittsburgh PA 15213-3890 60 * 61 * any improvements or extensions that they make and grant Carnegie the 62 * rights to redistribute these changes. 63 */ 64 65 /* 66 * Kernel memory management. 67 */ 68 69 #include <sys/cdefs.h> 70 __FBSDID("$FreeBSD$"); 71 72 #include <sys/param.h> 73 #include <sys/systm.h> 74 #include <sys/kernel.h> /* for ticks and hz */ 75 #include <sys/lock.h> 76 #include <sys/mutex.h> 77 #include <sys/proc.h> 78 #include <sys/malloc.h> 79 80 #include <vm/vm.h> 81 #include <vm/vm_param.h> 82 #include <vm/pmap.h> 83 #include <vm/vm_map.h> 84 #include <vm/vm_object.h> 85 #include <vm/vm_page.h> 86 #include <vm/vm_pageout.h> 87 #include <vm/vm_extern.h> 88 89 vm_map_t kernel_map=0; 90 vm_map_t kmem_map=0; 91 vm_map_t exec_map=0; 92 vm_map_t clean_map=0; 93 vm_map_t buffer_map=0; 94 95 /* 96 * kmem_alloc_pageable: 97 * 98 * Allocate pageable memory to the kernel's address map. 99 * "map" must be kernel_map or a submap of kernel_map. 100 */ 101 vm_offset_t 102 kmem_alloc_pageable(map, size) 103 vm_map_t map; 104 vm_size_t size; 105 { 106 vm_offset_t addr; 107 int result; 108 109 size = round_page(size); 110 addr = vm_map_min(map); 111 result = vm_map_find(map, NULL, 0, 112 &addr, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, 0); 113 if (result != KERN_SUCCESS) { 114 return (0); 115 } 116 return (addr); 117 } 118 119 /* 120 * kmem_alloc_nofault: 121 * 122 * Same as kmem_alloc_pageable, except that it create a nofault entry. 123 */ 124 vm_offset_t 125 kmem_alloc_nofault(map, size) 126 vm_map_t map; 127 vm_size_t size; 128 { 129 vm_offset_t addr; 130 int result; 131 132 size = round_page(size); 133 addr = vm_map_min(map); 134 result = vm_map_find(map, NULL, 0, 135 &addr, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT); 136 if (result != KERN_SUCCESS) { 137 return (0); 138 } 139 return (addr); 140 } 141 142 /* 143 * Allocate wired-down memory in the kernel's address map 144 * or a submap. 145 */ 146 vm_offset_t 147 kmem_alloc(map, size) 148 vm_map_t map; 149 vm_size_t size; 150 { 151 vm_offset_t addr; 152 vm_offset_t offset; 153 vm_offset_t i; 154 155 GIANT_REQUIRED; 156 157 size = round_page(size); 158 159 /* 160 * Use the kernel object for wired-down kernel pages. Assume that no 161 * region of the kernel object is referenced more than once. 162 */ 163 164 /* 165 * Locate sufficient space in the map. This will give us the final 166 * virtual address for the new memory, and thus will tell us the 167 * offset within the kernel map. 168 */ 169 vm_map_lock(map); 170 if (vm_map_findspace(map, vm_map_min(map), size, &addr)) { 171 vm_map_unlock(map); 172 return (0); 173 } 174 offset = addr - VM_MIN_KERNEL_ADDRESS; 175 vm_object_reference(kernel_object); 176 vm_map_insert(map, kernel_object, offset, addr, addr + size, 177 VM_PROT_ALL, VM_PROT_ALL, 0); 178 vm_map_unlock(map); 179 180 /* 181 * Guarantee that there are pages already in this object before 182 * calling vm_map_pageable. This is to prevent the following 183 * scenario: 184 * 185 * 1) Threads have swapped out, so that there is a pager for the 186 * kernel_object. 2) The kmsg zone is empty, and so we are 187 * kmem_allocing a new page for it. 3) vm_map_pageable calls vm_fault; 188 * there is no page, but there is a pager, so we call 189 * pager_data_request. But the kmsg zone is empty, so we must 190 * kmem_alloc. 4) goto 1 5) Even if the kmsg zone is not empty: when 191 * we get the data back from the pager, it will be (very stale) 192 * non-zero data. kmem_alloc is defined to return zero-filled memory. 193 * 194 * We're intentionally not activating the pages we allocate to prevent a 195 * race with page-out. vm_map_pageable will wire the pages. 196 */ 197 for (i = 0; i < size; i += PAGE_SIZE) { 198 vm_page_t mem; 199 200 VM_OBJECT_LOCK(kernel_object); 201 mem = vm_page_grab(kernel_object, OFF_TO_IDX(offset + i), 202 VM_ALLOC_ZERO | VM_ALLOC_RETRY); 203 VM_OBJECT_UNLOCK(kernel_object); 204 if ((mem->flags & PG_ZERO) == 0) 205 pmap_zero_page(mem); 206 vm_page_lock_queues(); 207 mem->valid = VM_PAGE_BITS_ALL; 208 vm_page_flag_clear(mem, PG_ZERO); 209 vm_page_wakeup(mem); 210 vm_page_unlock_queues(); 211 } 212 213 /* 214 * And finally, mark the data as non-pageable. 215 */ 216 (void) vm_map_wire(map, addr, addr + size, FALSE); 217 218 return (addr); 219 } 220 221 /* 222 * kmem_free: 223 * 224 * Release a region of kernel virtual memory allocated 225 * with kmem_alloc, and return the physical pages 226 * associated with that region. 227 * 228 * This routine may not block on kernel maps. 229 */ 230 void 231 kmem_free(map, addr, size) 232 vm_map_t map; 233 vm_offset_t addr; 234 vm_size_t size; 235 { 236 237 (void) vm_map_remove(map, trunc_page(addr), round_page(addr + size)); 238 } 239 240 /* 241 * kmem_suballoc: 242 * 243 * Allocates a map to manage a subrange 244 * of the kernel virtual address space. 245 * 246 * Arguments are as follows: 247 * 248 * parent Map to take range from 249 * min, max Returned endpoints of map 250 * size Size of range to find 251 */ 252 vm_map_t 253 kmem_suballoc(parent, min, max, size) 254 vm_map_t parent; 255 vm_offset_t *min, *max; 256 vm_size_t size; 257 { 258 int ret; 259 vm_map_t result; 260 261 GIANT_REQUIRED; 262 263 size = round_page(size); 264 265 *min = (vm_offset_t) vm_map_min(parent); 266 ret = vm_map_find(parent, NULL, (vm_offset_t) 0, 267 min, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, 0); 268 if (ret != KERN_SUCCESS) { 269 printf("kmem_suballoc: bad status return of %d.\n", ret); 270 panic("kmem_suballoc"); 271 } 272 *max = *min + size; 273 result = vm_map_create(vm_map_pmap(parent), *min, *max); 274 if (result == NULL) 275 panic("kmem_suballoc: cannot create submap"); 276 if (vm_map_submap(parent, *min, *max, result) != KERN_SUCCESS) 277 panic("kmem_suballoc: unable to change range to submap"); 278 return (result); 279 } 280 281 /* 282 * kmem_malloc: 283 * 284 * Allocate wired-down memory in the kernel's address map for the higher 285 * level kernel memory allocator (kern/kern_malloc.c). We cannot use 286 * kmem_alloc() because we may need to allocate memory at interrupt 287 * level where we cannot block (canwait == FALSE). 288 * 289 * This routine has its own private kernel submap (kmem_map) and object 290 * (kmem_object). This, combined with the fact that only malloc uses 291 * this routine, ensures that we will never block in map or object waits. 292 * 293 * Note that this still only works in a uni-processor environment and 294 * when called at splhigh(). 295 * 296 * We don't worry about expanding the map (adding entries) since entries 297 * for wired maps are statically allocated. 298 * 299 * NOTE: This routine is not supposed to block if M_NOWAIT is set, but 300 * I have not verified that it actually does not block. 301 * 302 * `map' is ONLY allowed to be kmem_map or one of the mbuf submaps to 303 * which we never free. 304 */ 305 vm_offset_t 306 kmem_malloc(map, size, flags) 307 vm_map_t map; 308 vm_size_t size; 309 int flags; 310 { 311 vm_offset_t offset, i; 312 vm_map_entry_t entry; 313 vm_offset_t addr; 314 vm_page_t m; 315 int pflags; 316 317 size = round_page(size); 318 addr = vm_map_min(map); 319 320 /* 321 * Locate sufficient space in the map. This will give us the final 322 * virtual address for the new memory, and thus will tell us the 323 * offset within the kernel map. 324 */ 325 vm_map_lock(map); 326 if (vm_map_findspace(map, vm_map_min(map), size, &addr)) { 327 vm_map_unlock(map); 328 if (map != kmem_map) { 329 static int last_report; /* when we did it (in ticks) */ 330 if (ticks < last_report || 331 (ticks - last_report) >= hz) { 332 last_report = ticks; 333 printf("Out of mbuf address space!\n"); 334 printf("Consider increasing NMBCLUSTERS\n"); 335 } 336 return (0); 337 } 338 if ((flags & M_NOWAIT) == 0) 339 panic("kmem_malloc(%ld): kmem_map too small: %ld total allocated", 340 (long)size, (long)map->size); 341 return (0); 342 } 343 offset = addr - VM_MIN_KERNEL_ADDRESS; 344 vm_object_reference(kmem_object); 345 vm_map_insert(map, kmem_object, offset, addr, addr + size, 346 VM_PROT_ALL, VM_PROT_ALL, 0); 347 348 /* 349 * Note: if M_NOWAIT specified alone, allocate from 350 * interrupt-safe queues only (just the free list). If 351 * M_USE_RESERVE is also specified, we can also 352 * allocate from the cache. Neither of the latter two 353 * flags may be specified from an interrupt since interrupts 354 * are not allowed to mess with the cache queue. 355 */ 356 357 if ((flags & (M_NOWAIT|M_USE_RESERVE)) == M_NOWAIT) 358 pflags = VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED; 359 else 360 pflags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED; 361 362 if (flags & M_ZERO) 363 pflags |= VM_ALLOC_ZERO; 364 365 VM_OBJECT_LOCK(kmem_object); 366 for (i = 0; i < size; i += PAGE_SIZE) { 367 retry: 368 m = vm_page_alloc(kmem_object, OFF_TO_IDX(offset + i), pflags); 369 370 /* 371 * Ran out of space, free everything up and return. Don't need 372 * to lock page queues here as we know that the pages we got 373 * aren't on any queues. 374 */ 375 if (m == NULL) { 376 if ((flags & M_NOWAIT) == 0) { 377 VM_OBJECT_UNLOCK(kmem_object); 378 vm_map_unlock(map); 379 VM_WAIT; 380 vm_map_lock(map); 381 VM_OBJECT_LOCK(kmem_object); 382 goto retry; 383 } 384 /* 385 * Free the pages before removing the map entry. 386 * They are already marked busy. Calling 387 * vm_map_delete before the pages has been freed or 388 * unbusied will cause a deadlock. 389 */ 390 while (i != 0) { 391 i -= PAGE_SIZE; 392 m = vm_page_lookup(kmem_object, 393 OFF_TO_IDX(offset + i)); 394 vm_page_lock_queues(); 395 vm_page_unwire(m, 0); 396 vm_page_free(m); 397 vm_page_unlock_queues(); 398 } 399 VM_OBJECT_UNLOCK(kmem_object); 400 vm_map_delete(map, addr, addr + size); 401 vm_map_unlock(map); 402 return (0); 403 } 404 if (flags & M_ZERO && (m->flags & PG_ZERO) == 0) 405 pmap_zero_page(m); 406 vm_page_lock_queues(); 407 vm_page_flag_clear(m, PG_ZERO); 408 m->valid = VM_PAGE_BITS_ALL; 409 vm_page_unlock_queues(); 410 } 411 VM_OBJECT_UNLOCK(kmem_object); 412 413 /* 414 * Mark map entry as non-pageable. Assert: vm_map_insert() will never 415 * be able to extend the previous entry so there will be a new entry 416 * exactly corresponding to this address range and it will have 417 * wired_count == 0. 418 */ 419 if (!vm_map_lookup_entry(map, addr, &entry) || 420 entry->start != addr || entry->end != addr + size || 421 entry->wired_count != 0) 422 panic("kmem_malloc: entry not found or misaligned"); 423 entry->wired_count = 1; 424 425 vm_map_simplify_entry(map, entry); 426 427 /* 428 * Loop thru pages, entering them in the pmap. (We cannot add them to 429 * the wired count without wrapping the vm_page_queue_lock in 430 * splimp...) 431 */ 432 for (i = 0; i < size; i += PAGE_SIZE) { 433 VM_OBJECT_LOCK(kmem_object); 434 m = vm_page_lookup(kmem_object, OFF_TO_IDX(offset + i)); 435 VM_OBJECT_UNLOCK(kmem_object); 436 /* 437 * Because this is kernel_pmap, this call will not block. 438 */ 439 pmap_enter(kernel_pmap, addr + i, m, VM_PROT_ALL, 1); 440 vm_page_lock_queues(); 441 vm_page_flag_set(m, PG_WRITEABLE | PG_REFERENCED); 442 vm_page_wakeup(m); 443 vm_page_unlock_queues(); 444 } 445 vm_map_unlock(map); 446 447 return (addr); 448 } 449 450 /* 451 * kmem_alloc_wait: 452 * 453 * Allocates pageable memory from a sub-map of the kernel. If the submap 454 * has no room, the caller sleeps waiting for more memory in the submap. 455 * 456 * This routine may block. 457 */ 458 vm_offset_t 459 kmem_alloc_wait(map, size) 460 vm_map_t map; 461 vm_size_t size; 462 { 463 vm_offset_t addr; 464 465 size = round_page(size); 466 467 for (;;) { 468 /* 469 * To make this work for more than one map, use the map's lock 470 * to lock out sleepers/wakers. 471 */ 472 vm_map_lock(map); 473 if (vm_map_findspace(map, vm_map_min(map), size, &addr) == 0) 474 break; 475 /* no space now; see if we can ever get space */ 476 if (vm_map_max(map) - vm_map_min(map) < size) { 477 vm_map_unlock(map); 478 return (0); 479 } 480 map->needs_wakeup = TRUE; 481 vm_map_unlock_and_wait(map, FALSE); 482 } 483 vm_map_insert(map, NULL, 0, addr, addr + size, VM_PROT_ALL, VM_PROT_ALL, 0); 484 vm_map_unlock(map); 485 return (addr); 486 } 487 488 /* 489 * kmem_free_wakeup: 490 * 491 * Returns memory to a submap of the kernel, and wakes up any processes 492 * waiting for memory in that map. 493 */ 494 void 495 kmem_free_wakeup(map, addr, size) 496 vm_map_t map; 497 vm_offset_t addr; 498 vm_size_t size; 499 { 500 501 vm_map_lock(map); 502 (void) vm_map_delete(map, trunc_page(addr), round_page(addr + size)); 503 if (map->needs_wakeup) { 504 map->needs_wakeup = FALSE; 505 vm_map_wakeup(map); 506 } 507 vm_map_unlock(map); 508 } 509 510 /* 511 * kmem_init: 512 * 513 * Create the kernel map; insert a mapping covering kernel text, 514 * data, bss, and all space allocated thus far (`boostrap' data). The 515 * new map will thus map the range between VM_MIN_KERNEL_ADDRESS and 516 * `start' as allocated, and the range between `start' and `end' as free. 517 */ 518 void 519 kmem_init(start, end) 520 vm_offset_t start, end; 521 { 522 vm_map_t m; 523 524 m = vm_map_create(kernel_pmap, VM_MIN_KERNEL_ADDRESS, end); 525 m->system_map = 1; 526 vm_map_lock(m); 527 /* N.B.: cannot use kgdb to debug, starting with this assignment ... */ 528 kernel_map = m; 529 (void) vm_map_insert(m, NULL, (vm_ooffset_t) 0, 530 VM_MIN_KERNEL_ADDRESS, start, VM_PROT_ALL, VM_PROT_ALL, 0); 531 /* ... and ending with the completion of the above `insert' */ 532 vm_map_unlock(m); 533 } 534