1 /*- 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * from: @(#)vm_kern.c 8.3 (Berkeley) 1/12/94 33 * 34 * 35 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 36 * All rights reserved. 37 * 38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 39 * 40 * Permission to use, copy, modify and distribute this software and 41 * its documentation is hereby granted, provided that both the copyright 42 * notice and this permission notice appear in all copies of the 43 * software, derivative works or modified versions, and any portions 44 * thereof, and that both notices appear in supporting documentation. 45 * 46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 47 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 49 * 50 * Carnegie Mellon requests users of this software to return to 51 * 52 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 53 * School of Computer Science 54 * Carnegie Mellon University 55 * Pittsburgh PA 15213-3890 56 * 57 * any improvements or extensions that they make and grant Carnegie the 58 * rights to redistribute these changes. 59 */ 60 61 /* 62 * Kernel memory management. 63 */ 64 65 #include <sys/cdefs.h> 66 __FBSDID("$FreeBSD$"); 67 68 #include <sys/param.h> 69 #include <sys/systm.h> 70 #include <sys/kernel.h> /* for ticks and hz */ 71 #include <sys/eventhandler.h> 72 #include <sys/lock.h> 73 #include <sys/mutex.h> 74 #include <sys/proc.h> 75 #include <sys/malloc.h> 76 #include <sys/sysctl.h> 77 78 #include <vm/vm.h> 79 #include <vm/vm_param.h> 80 #include <vm/pmap.h> 81 #include <vm/vm_map.h> 82 #include <vm/vm_object.h> 83 #include <vm/vm_page.h> 84 #include <vm/vm_pageout.h> 85 #include <vm/vm_extern.h> 86 #include <vm/uma.h> 87 88 vm_map_t kernel_map=0; 89 vm_map_t kmem_map=0; 90 vm_map_t exec_map=0; 91 vm_map_t pipe_map; 92 vm_map_t buffer_map=0; 93 94 /* 95 * kmem_alloc_nofault: 96 * 97 * Allocate a virtual address range with no underlying object and 98 * no initial mapping to physical memory. Any mapping from this 99 * range to physical memory must be explicitly created prior to 100 * its use, typically with pmap_qenter(). Any attempt to create 101 * a mapping on demand through vm_fault() will result in a panic. 102 */ 103 vm_offset_t 104 kmem_alloc_nofault(map, size) 105 vm_map_t map; 106 vm_size_t size; 107 { 108 vm_offset_t addr; 109 int result; 110 111 size = round_page(size); 112 addr = vm_map_min(map); 113 result = vm_map_find(map, NULL, 0, &addr, size, VMFS_ANY_SPACE, 114 VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT); 115 if (result != KERN_SUCCESS) { 116 return (0); 117 } 118 return (addr); 119 } 120 121 /* 122 * Allocate wired-down memory in the kernel's address map 123 * or a submap. 124 */ 125 vm_offset_t 126 kmem_alloc(map, size) 127 vm_map_t map; 128 vm_size_t size; 129 { 130 vm_offset_t addr; 131 vm_offset_t offset; 132 vm_offset_t i; 133 134 size = round_page(size); 135 136 /* 137 * Use the kernel object for wired-down kernel pages. Assume that no 138 * region of the kernel object is referenced more than once. 139 */ 140 141 /* 142 * Locate sufficient space in the map. This will give us the final 143 * virtual address for the new memory, and thus will tell us the 144 * offset within the kernel map. 145 */ 146 vm_map_lock(map); 147 if (vm_map_findspace(map, vm_map_min(map), size, &addr)) { 148 vm_map_unlock(map); 149 return (0); 150 } 151 offset = addr - VM_MIN_KERNEL_ADDRESS; 152 vm_object_reference(kernel_object); 153 vm_map_insert(map, kernel_object, offset, addr, addr + size, 154 VM_PROT_ALL, VM_PROT_ALL, 0); 155 vm_map_unlock(map); 156 157 /* 158 * Guarantee that there are pages already in this object before 159 * calling vm_map_wire. This is to prevent the following 160 * scenario: 161 * 162 * 1) Threads have swapped out, so that there is a pager for the 163 * kernel_object. 2) The kmsg zone is empty, and so we are 164 * kmem_allocing a new page for it. 3) vm_map_wire calls vm_fault; 165 * there is no page, but there is a pager, so we call 166 * pager_data_request. But the kmsg zone is empty, so we must 167 * kmem_alloc. 4) goto 1 5) Even if the kmsg zone is not empty: when 168 * we get the data back from the pager, it will be (very stale) 169 * non-zero data. kmem_alloc is defined to return zero-filled memory. 170 * 171 * We're intentionally not activating the pages we allocate to prevent a 172 * race with page-out. vm_map_wire will wire the pages. 173 */ 174 VM_OBJECT_LOCK(kernel_object); 175 for (i = 0; i < size; i += PAGE_SIZE) { 176 vm_page_t mem; 177 178 mem = vm_page_grab(kernel_object, OFF_TO_IDX(offset + i), 179 VM_ALLOC_NOBUSY | VM_ALLOC_ZERO | VM_ALLOC_RETRY); 180 mem->valid = VM_PAGE_BITS_ALL; 181 KASSERT((mem->flags & PG_UNMANAGED) != 0, 182 ("kmem_alloc: page %p is managed", mem)); 183 } 184 VM_OBJECT_UNLOCK(kernel_object); 185 186 /* 187 * And finally, mark the data as non-pageable. 188 */ 189 (void) vm_map_wire(map, addr, addr + size, 190 VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES); 191 192 return (addr); 193 } 194 195 /* 196 * kmem_free: 197 * 198 * Release a region of kernel virtual memory allocated 199 * with kmem_alloc, and return the physical pages 200 * associated with that region. 201 * 202 * This routine may not block on kernel maps. 203 */ 204 void 205 kmem_free(map, addr, size) 206 vm_map_t map; 207 vm_offset_t addr; 208 vm_size_t size; 209 { 210 211 (void) vm_map_remove(map, trunc_page(addr), round_page(addr + size)); 212 } 213 214 /* 215 * kmem_suballoc: 216 * 217 * Allocates a map to manage a subrange 218 * of the kernel virtual address space. 219 * 220 * Arguments are as follows: 221 * 222 * parent Map to take range from 223 * min, max Returned endpoints of map 224 * size Size of range to find 225 * superpage_align Request that min is superpage aligned 226 */ 227 vm_map_t 228 kmem_suballoc(vm_map_t parent, vm_offset_t *min, vm_offset_t *max, 229 vm_size_t size, boolean_t superpage_align) 230 { 231 int ret; 232 vm_map_t result; 233 234 size = round_page(size); 235 236 *min = vm_map_min(parent); 237 ret = vm_map_find(parent, NULL, 0, min, size, superpage_align ? 238 VMFS_ALIGNED_SPACE : VMFS_ANY_SPACE, VM_PROT_ALL, VM_PROT_ALL, 0); 239 if (ret != KERN_SUCCESS) 240 panic("kmem_suballoc: bad status return of %d", ret); 241 *max = *min + size; 242 result = vm_map_create(vm_map_pmap(parent), *min, *max); 243 if (result == NULL) 244 panic("kmem_suballoc: cannot create submap"); 245 if (vm_map_submap(parent, *min, *max, result) != KERN_SUCCESS) 246 panic("kmem_suballoc: unable to change range to submap"); 247 return (result); 248 } 249 250 /* 251 * kmem_malloc: 252 * 253 * Allocate wired-down memory in the kernel's address map for the higher 254 * level kernel memory allocator (kern/kern_malloc.c). We cannot use 255 * kmem_alloc() because we may need to allocate memory at interrupt 256 * level where we cannot block (canwait == FALSE). 257 * 258 * This routine has its own private kernel submap (kmem_map) and object 259 * (kmem_object). This, combined with the fact that only malloc uses 260 * this routine, ensures that we will never block in map or object waits. 261 * 262 * We don't worry about expanding the map (adding entries) since entries 263 * for wired maps are statically allocated. 264 * 265 * `map' is ONLY allowed to be kmem_map or one of the mbuf submaps to 266 * which we never free. 267 */ 268 vm_offset_t 269 kmem_malloc(map, size, flags) 270 vm_map_t map; 271 vm_size_t size; 272 int flags; 273 { 274 vm_offset_t offset, i; 275 vm_map_entry_t entry; 276 vm_offset_t addr; 277 vm_page_t m; 278 int pflags; 279 280 size = round_page(size); 281 addr = vm_map_min(map); 282 283 /* 284 * Locate sufficient space in the map. This will give us the final 285 * virtual address for the new memory, and thus will tell us the 286 * offset within the kernel map. 287 */ 288 vm_map_lock(map); 289 if (vm_map_findspace(map, vm_map_min(map), size, &addr)) { 290 vm_map_unlock(map); 291 if ((flags & M_NOWAIT) == 0) { 292 for (i = 0; i < 8; i++) { 293 EVENTHANDLER_INVOKE(vm_lowmem, 0); 294 uma_reclaim(); 295 vm_map_lock(map); 296 if (vm_map_findspace(map, vm_map_min(map), 297 size, &addr) == 0) { 298 break; 299 } 300 vm_map_unlock(map); 301 tsleep(&i, 0, "nokva", (hz / 4) * (i + 1)); 302 } 303 if (i == 8) { 304 panic("kmem_malloc(%ld): kmem_map too small: %ld total allocated", 305 (long)size, (long)map->size); 306 } 307 } else { 308 return (0); 309 } 310 } 311 offset = addr - VM_MIN_KERNEL_ADDRESS; 312 vm_object_reference(kmem_object); 313 vm_map_insert(map, kmem_object, offset, addr, addr + size, 314 VM_PROT_ALL, VM_PROT_ALL, 0); 315 316 if ((flags & (M_NOWAIT|M_USE_RESERVE)) == M_NOWAIT) 317 pflags = VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED; 318 else 319 pflags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED; 320 321 if (flags & M_ZERO) 322 pflags |= VM_ALLOC_ZERO; 323 324 VM_OBJECT_LOCK(kmem_object); 325 for (i = 0; i < size; i += PAGE_SIZE) { 326 retry: 327 m = vm_page_alloc(kmem_object, OFF_TO_IDX(offset + i), pflags); 328 329 /* 330 * Ran out of space, free everything up and return. Don't need 331 * to lock page queues here as we know that the pages we got 332 * aren't on any queues. 333 */ 334 if (m == NULL) { 335 if ((flags & M_NOWAIT) == 0) { 336 VM_OBJECT_UNLOCK(kmem_object); 337 vm_map_unlock(map); 338 VM_WAIT; 339 vm_map_lock(map); 340 VM_OBJECT_LOCK(kmem_object); 341 goto retry; 342 } 343 /* 344 * Free the pages before removing the map entry. 345 * They are already marked busy. Calling 346 * vm_map_delete before the pages has been freed or 347 * unbusied will cause a deadlock. 348 */ 349 while (i != 0) { 350 i -= PAGE_SIZE; 351 m = vm_page_lookup(kmem_object, 352 OFF_TO_IDX(offset + i)); 353 vm_page_lock_queues(); 354 vm_page_unwire(m, 0); 355 vm_page_free(m); 356 vm_page_unlock_queues(); 357 } 358 VM_OBJECT_UNLOCK(kmem_object); 359 vm_map_delete(map, addr, addr + size); 360 vm_map_unlock(map); 361 return (0); 362 } 363 if (flags & M_ZERO && (m->flags & PG_ZERO) == 0) 364 pmap_zero_page(m); 365 m->valid = VM_PAGE_BITS_ALL; 366 KASSERT((m->flags & PG_UNMANAGED) != 0, 367 ("kmem_malloc: page %p is managed", m)); 368 } 369 VM_OBJECT_UNLOCK(kmem_object); 370 371 /* 372 * Mark map entry as non-pageable. Assert: vm_map_insert() will never 373 * be able to extend the previous entry so there will be a new entry 374 * exactly corresponding to this address range and it will have 375 * wired_count == 0. 376 */ 377 if (!vm_map_lookup_entry(map, addr, &entry) || 378 entry->start != addr || entry->end != addr + size || 379 entry->wired_count != 0) 380 panic("kmem_malloc: entry not found or misaligned"); 381 entry->wired_count = 1; 382 383 /* 384 * At this point, the kmem_object must be unlocked because 385 * vm_map_simplify_entry() calls vm_object_deallocate(), which 386 * locks the kmem_object. 387 */ 388 vm_map_simplify_entry(map, entry); 389 390 /* 391 * Loop thru pages, entering them in the pmap. 392 */ 393 VM_OBJECT_LOCK(kmem_object); 394 for (i = 0; i < size; i += PAGE_SIZE) { 395 m = vm_page_lookup(kmem_object, OFF_TO_IDX(offset + i)); 396 /* 397 * Because this is kernel_pmap, this call will not block. 398 */ 399 pmap_enter(kernel_pmap, addr + i, VM_PROT_ALL, m, VM_PROT_ALL, 400 TRUE); 401 vm_page_wakeup(m); 402 } 403 VM_OBJECT_UNLOCK(kmem_object); 404 vm_map_unlock(map); 405 406 return (addr); 407 } 408 409 /* 410 * kmem_alloc_wait: 411 * 412 * Allocates pageable memory from a sub-map of the kernel. If the submap 413 * has no room, the caller sleeps waiting for more memory in the submap. 414 * 415 * This routine may block. 416 */ 417 vm_offset_t 418 kmem_alloc_wait(map, size) 419 vm_map_t map; 420 vm_size_t size; 421 { 422 vm_offset_t addr; 423 424 size = round_page(size); 425 426 for (;;) { 427 /* 428 * To make this work for more than one map, use the map's lock 429 * to lock out sleepers/wakers. 430 */ 431 vm_map_lock(map); 432 if (vm_map_findspace(map, vm_map_min(map), size, &addr) == 0) 433 break; 434 /* no space now; see if we can ever get space */ 435 if (vm_map_max(map) - vm_map_min(map) < size) { 436 vm_map_unlock(map); 437 return (0); 438 } 439 map->needs_wakeup = TRUE; 440 vm_map_unlock_and_wait(map, 0); 441 } 442 vm_map_insert(map, NULL, 0, addr, addr + size, VM_PROT_ALL, VM_PROT_ALL, 0); 443 vm_map_unlock(map); 444 return (addr); 445 } 446 447 /* 448 * kmem_free_wakeup: 449 * 450 * Returns memory to a submap of the kernel, and wakes up any processes 451 * waiting for memory in that map. 452 */ 453 void 454 kmem_free_wakeup(map, addr, size) 455 vm_map_t map; 456 vm_offset_t addr; 457 vm_size_t size; 458 { 459 460 vm_map_lock(map); 461 (void) vm_map_delete(map, trunc_page(addr), round_page(addr + size)); 462 if (map->needs_wakeup) { 463 map->needs_wakeup = FALSE; 464 vm_map_wakeup(map); 465 } 466 vm_map_unlock(map); 467 } 468 469 /* 470 * kmem_init: 471 * 472 * Create the kernel map; insert a mapping covering kernel text, 473 * data, bss, and all space allocated thus far (`boostrap' data). The 474 * new map will thus map the range between VM_MIN_KERNEL_ADDRESS and 475 * `start' as allocated, and the range between `start' and `end' as free. 476 */ 477 void 478 kmem_init(start, end) 479 vm_offset_t start, end; 480 { 481 vm_map_t m; 482 483 m = vm_map_create(kernel_pmap, VM_MIN_KERNEL_ADDRESS, end); 484 m->system_map = 1; 485 vm_map_lock(m); 486 /* N.B.: cannot use kgdb to debug, starting with this assignment ... */ 487 kernel_map = m; 488 (void) vm_map_insert(m, NULL, (vm_ooffset_t) 0, 489 #ifdef __amd64__ 490 KERNBASE, 491 #else 492 VM_MIN_KERNEL_ADDRESS, 493 #endif 494 start, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT); 495 /* ... and ending with the completion of the above `insert' */ 496 vm_map_unlock(m); 497 } 498 499 #ifdef DIAGNOSTIC 500 /* 501 * Allow userspace to directly trigger the VM drain routine for testing 502 * purposes. 503 */ 504 static int 505 debug_vm_lowmem(SYSCTL_HANDLER_ARGS) 506 { 507 int error, i; 508 509 i = 0; 510 error = sysctl_handle_int(oidp, &i, 0, req); 511 if (error) 512 return (error); 513 if (i) 514 EVENTHANDLER_INVOKE(vm_lowmem, 0); 515 return (0); 516 } 517 518 SYSCTL_PROC(_debug, OID_AUTO, vm_lowmem, CTLTYPE_INT | CTLFLAG_RW, 0, 0, 519 debug_vm_lowmem, "I", "set to trigger vm_lowmem event"); 520 #endif 521