xref: /freebsd/sys/vm/vm_kern.c (revision 39beb93c3f8bdbf72a61fda42300b5ebed7390c8)
1 /*-
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)vm_kern.c	8.3 (Berkeley) 1/12/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60 
61 /*
62  *	Kernel memory management.
63  */
64 
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67 
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/kernel.h>		/* for ticks and hz */
71 #include <sys/eventhandler.h>
72 #include <sys/lock.h>
73 #include <sys/mutex.h>
74 #include <sys/proc.h>
75 #include <sys/malloc.h>
76 #include <sys/sysctl.h>
77 
78 #include <vm/vm.h>
79 #include <vm/vm_param.h>
80 #include <vm/pmap.h>
81 #include <vm/vm_map.h>
82 #include <vm/vm_object.h>
83 #include <vm/vm_page.h>
84 #include <vm/vm_pageout.h>
85 #include <vm/vm_extern.h>
86 #include <vm/uma.h>
87 
88 vm_map_t kernel_map=0;
89 vm_map_t kmem_map=0;
90 vm_map_t exec_map=0;
91 vm_map_t pipe_map;
92 vm_map_t buffer_map=0;
93 
94 /*
95  *	kmem_alloc_nofault:
96  *
97  *	Allocate a virtual address range with no underlying object and
98  *	no initial mapping to physical memory.  Any mapping from this
99  *	range to physical memory must be explicitly created prior to
100  *	its use, typically with pmap_qenter().  Any attempt to create
101  *	a mapping on demand through vm_fault() will result in a panic.
102  */
103 vm_offset_t
104 kmem_alloc_nofault(map, size)
105 	vm_map_t map;
106 	vm_size_t size;
107 {
108 	vm_offset_t addr;
109 	int result;
110 
111 	size = round_page(size);
112 	addr = vm_map_min(map);
113 	result = vm_map_find(map, NULL, 0, &addr, size, VMFS_ANY_SPACE,
114 	    VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
115 	if (result != KERN_SUCCESS) {
116 		return (0);
117 	}
118 	return (addr);
119 }
120 
121 /*
122  *	Allocate wired-down memory in the kernel's address map
123  *	or a submap.
124  */
125 vm_offset_t
126 kmem_alloc(map, size)
127 	vm_map_t map;
128 	vm_size_t size;
129 {
130 	vm_offset_t addr;
131 	vm_offset_t offset;
132 	vm_offset_t i;
133 
134 	size = round_page(size);
135 
136 	/*
137 	 * Use the kernel object for wired-down kernel pages. Assume that no
138 	 * region of the kernel object is referenced more than once.
139 	 */
140 
141 	/*
142 	 * Locate sufficient space in the map.  This will give us the final
143 	 * virtual address for the new memory, and thus will tell us the
144 	 * offset within the kernel map.
145 	 */
146 	vm_map_lock(map);
147 	if (vm_map_findspace(map, vm_map_min(map), size, &addr)) {
148 		vm_map_unlock(map);
149 		return (0);
150 	}
151 	offset = addr - VM_MIN_KERNEL_ADDRESS;
152 	vm_object_reference(kernel_object);
153 	vm_map_insert(map, kernel_object, offset, addr, addr + size,
154 		VM_PROT_ALL, VM_PROT_ALL, 0);
155 	vm_map_unlock(map);
156 
157 	/*
158 	 * Guarantee that there are pages already in this object before
159 	 * calling vm_map_wire.  This is to prevent the following
160 	 * scenario:
161 	 *
162 	 * 1) Threads have swapped out, so that there is a pager for the
163 	 * kernel_object. 2) The kmsg zone is empty, and so we are
164 	 * kmem_allocing a new page for it. 3) vm_map_wire calls vm_fault;
165 	 * there is no page, but there is a pager, so we call
166 	 * pager_data_request.  But the kmsg zone is empty, so we must
167 	 * kmem_alloc. 4) goto 1 5) Even if the kmsg zone is not empty: when
168 	 * we get the data back from the pager, it will be (very stale)
169 	 * non-zero data.  kmem_alloc is defined to return zero-filled memory.
170 	 *
171 	 * We're intentionally not activating the pages we allocate to prevent a
172 	 * race with page-out.  vm_map_wire will wire the pages.
173 	 */
174 	VM_OBJECT_LOCK(kernel_object);
175 	for (i = 0; i < size; i += PAGE_SIZE) {
176 		vm_page_t mem;
177 
178 		mem = vm_page_grab(kernel_object, OFF_TO_IDX(offset + i),
179 		    VM_ALLOC_NOBUSY | VM_ALLOC_ZERO | VM_ALLOC_RETRY);
180 		mem->valid = VM_PAGE_BITS_ALL;
181 		KASSERT((mem->flags & PG_UNMANAGED) != 0,
182 		    ("kmem_alloc: page %p is managed", mem));
183 	}
184 	VM_OBJECT_UNLOCK(kernel_object);
185 
186 	/*
187 	 * And finally, mark the data as non-pageable.
188 	 */
189 	(void) vm_map_wire(map, addr, addr + size,
190 	    VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES);
191 
192 	return (addr);
193 }
194 
195 /*
196  *	kmem_free:
197  *
198  *	Release a region of kernel virtual memory allocated
199  *	with kmem_alloc, and return the physical pages
200  *	associated with that region.
201  *
202  *	This routine may not block on kernel maps.
203  */
204 void
205 kmem_free(map, addr, size)
206 	vm_map_t map;
207 	vm_offset_t addr;
208 	vm_size_t size;
209 {
210 
211 	(void) vm_map_remove(map, trunc_page(addr), round_page(addr + size));
212 }
213 
214 /*
215  *	kmem_suballoc:
216  *
217  *	Allocates a map to manage a subrange
218  *	of the kernel virtual address space.
219  *
220  *	Arguments are as follows:
221  *
222  *	parent		Map to take range from
223  *	min, max	Returned endpoints of map
224  *	size		Size of range to find
225  *	superpage_align	Request that min is superpage aligned
226  */
227 vm_map_t
228 kmem_suballoc(vm_map_t parent, vm_offset_t *min, vm_offset_t *max,
229     vm_size_t size, boolean_t superpage_align)
230 {
231 	int ret;
232 	vm_map_t result;
233 
234 	size = round_page(size);
235 
236 	*min = vm_map_min(parent);
237 	ret = vm_map_find(parent, NULL, 0, min, size, superpage_align ?
238 	    VMFS_ALIGNED_SPACE : VMFS_ANY_SPACE, VM_PROT_ALL, VM_PROT_ALL, 0);
239 	if (ret != KERN_SUCCESS)
240 		panic("kmem_suballoc: bad status return of %d", ret);
241 	*max = *min + size;
242 	result = vm_map_create(vm_map_pmap(parent), *min, *max);
243 	if (result == NULL)
244 		panic("kmem_suballoc: cannot create submap");
245 	if (vm_map_submap(parent, *min, *max, result) != KERN_SUCCESS)
246 		panic("kmem_suballoc: unable to change range to submap");
247 	return (result);
248 }
249 
250 /*
251  *	kmem_malloc:
252  *
253  * 	Allocate wired-down memory in the kernel's address map for the higher
254  * 	level kernel memory allocator (kern/kern_malloc.c).  We cannot use
255  * 	kmem_alloc() because we may need to allocate memory at interrupt
256  * 	level where we cannot block (canwait == FALSE).
257  *
258  * 	This routine has its own private kernel submap (kmem_map) and object
259  * 	(kmem_object).  This, combined with the fact that only malloc uses
260  * 	this routine, ensures that we will never block in map or object waits.
261  *
262  * 	We don't worry about expanding the map (adding entries) since entries
263  * 	for wired maps are statically allocated.
264  *
265  *	`map' is ONLY allowed to be kmem_map or one of the mbuf submaps to
266  *	which we never free.
267  */
268 vm_offset_t
269 kmem_malloc(map, size, flags)
270 	vm_map_t map;
271 	vm_size_t size;
272 	int flags;
273 {
274 	vm_offset_t offset, i;
275 	vm_map_entry_t entry;
276 	vm_offset_t addr;
277 	vm_page_t m;
278 	int pflags;
279 
280 	size = round_page(size);
281 	addr = vm_map_min(map);
282 
283 	/*
284 	 * Locate sufficient space in the map.  This will give us the final
285 	 * virtual address for the new memory, and thus will tell us the
286 	 * offset within the kernel map.
287 	 */
288 	vm_map_lock(map);
289 	if (vm_map_findspace(map, vm_map_min(map), size, &addr)) {
290 		vm_map_unlock(map);
291                 if ((flags & M_NOWAIT) == 0) {
292 			for (i = 0; i < 8; i++) {
293 				EVENTHANDLER_INVOKE(vm_lowmem, 0);
294 				uma_reclaim();
295 				vm_map_lock(map);
296 				if (vm_map_findspace(map, vm_map_min(map),
297 				    size, &addr) == 0) {
298 					break;
299 				}
300 				vm_map_unlock(map);
301 				tsleep(&i, 0, "nokva", (hz / 4) * (i + 1));
302 			}
303 			if (i == 8) {
304 				panic("kmem_malloc(%ld): kmem_map too small: %ld total allocated",
305 				    (long)size, (long)map->size);
306 			}
307 		} else {
308 			return (0);
309 		}
310 	}
311 	offset = addr - VM_MIN_KERNEL_ADDRESS;
312 	vm_object_reference(kmem_object);
313 	vm_map_insert(map, kmem_object, offset, addr, addr + size,
314 		VM_PROT_ALL, VM_PROT_ALL, 0);
315 
316 	if ((flags & (M_NOWAIT|M_USE_RESERVE)) == M_NOWAIT)
317 		pflags = VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED;
318 	else
319 		pflags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED;
320 
321 	if (flags & M_ZERO)
322 		pflags |= VM_ALLOC_ZERO;
323 
324 	VM_OBJECT_LOCK(kmem_object);
325 	for (i = 0; i < size; i += PAGE_SIZE) {
326 retry:
327 		m = vm_page_alloc(kmem_object, OFF_TO_IDX(offset + i), pflags);
328 
329 		/*
330 		 * Ran out of space, free everything up and return. Don't need
331 		 * to lock page queues here as we know that the pages we got
332 		 * aren't on any queues.
333 		 */
334 		if (m == NULL) {
335 			if ((flags & M_NOWAIT) == 0) {
336 				VM_OBJECT_UNLOCK(kmem_object);
337 				vm_map_unlock(map);
338 				VM_WAIT;
339 				vm_map_lock(map);
340 				VM_OBJECT_LOCK(kmem_object);
341 				goto retry;
342 			}
343 			/*
344 			 * Free the pages before removing the map entry.
345 			 * They are already marked busy.  Calling
346 			 * vm_map_delete before the pages has been freed or
347 			 * unbusied will cause a deadlock.
348 			 */
349 			while (i != 0) {
350 				i -= PAGE_SIZE;
351 				m = vm_page_lookup(kmem_object,
352 						   OFF_TO_IDX(offset + i));
353 				vm_page_lock_queues();
354 				vm_page_unwire(m, 0);
355 				vm_page_free(m);
356 				vm_page_unlock_queues();
357 			}
358 			VM_OBJECT_UNLOCK(kmem_object);
359 			vm_map_delete(map, addr, addr + size);
360 			vm_map_unlock(map);
361 			return (0);
362 		}
363 		if (flags & M_ZERO && (m->flags & PG_ZERO) == 0)
364 			pmap_zero_page(m);
365 		m->valid = VM_PAGE_BITS_ALL;
366 		KASSERT((m->flags & PG_UNMANAGED) != 0,
367 		    ("kmem_malloc: page %p is managed", m));
368 	}
369 	VM_OBJECT_UNLOCK(kmem_object);
370 
371 	/*
372 	 * Mark map entry as non-pageable. Assert: vm_map_insert() will never
373 	 * be able to extend the previous entry so there will be a new entry
374 	 * exactly corresponding to this address range and it will have
375 	 * wired_count == 0.
376 	 */
377 	if (!vm_map_lookup_entry(map, addr, &entry) ||
378 	    entry->start != addr || entry->end != addr + size ||
379 	    entry->wired_count != 0)
380 		panic("kmem_malloc: entry not found or misaligned");
381 	entry->wired_count = 1;
382 
383 	/*
384 	 * At this point, the kmem_object must be unlocked because
385 	 * vm_map_simplify_entry() calls vm_object_deallocate(), which
386 	 * locks the kmem_object.
387 	 */
388 	vm_map_simplify_entry(map, entry);
389 
390 	/*
391 	 * Loop thru pages, entering them in the pmap.
392 	 */
393 	VM_OBJECT_LOCK(kmem_object);
394 	for (i = 0; i < size; i += PAGE_SIZE) {
395 		m = vm_page_lookup(kmem_object, OFF_TO_IDX(offset + i));
396 		/*
397 		 * Because this is kernel_pmap, this call will not block.
398 		 */
399 		pmap_enter(kernel_pmap, addr + i, VM_PROT_ALL, m, VM_PROT_ALL,
400 		    TRUE);
401 		vm_page_wakeup(m);
402 	}
403 	VM_OBJECT_UNLOCK(kmem_object);
404 	vm_map_unlock(map);
405 
406 	return (addr);
407 }
408 
409 /*
410  *	kmem_alloc_wait:
411  *
412  *	Allocates pageable memory from a sub-map of the kernel.  If the submap
413  *	has no room, the caller sleeps waiting for more memory in the submap.
414  *
415  *	This routine may block.
416  */
417 vm_offset_t
418 kmem_alloc_wait(map, size)
419 	vm_map_t map;
420 	vm_size_t size;
421 {
422 	vm_offset_t addr;
423 
424 	size = round_page(size);
425 
426 	for (;;) {
427 		/*
428 		 * To make this work for more than one map, use the map's lock
429 		 * to lock out sleepers/wakers.
430 		 */
431 		vm_map_lock(map);
432 		if (vm_map_findspace(map, vm_map_min(map), size, &addr) == 0)
433 			break;
434 		/* no space now; see if we can ever get space */
435 		if (vm_map_max(map) - vm_map_min(map) < size) {
436 			vm_map_unlock(map);
437 			return (0);
438 		}
439 		map->needs_wakeup = TRUE;
440 		vm_map_unlock_and_wait(map, 0);
441 	}
442 	vm_map_insert(map, NULL, 0, addr, addr + size, VM_PROT_ALL, VM_PROT_ALL, 0);
443 	vm_map_unlock(map);
444 	return (addr);
445 }
446 
447 /*
448  *	kmem_free_wakeup:
449  *
450  *	Returns memory to a submap of the kernel, and wakes up any processes
451  *	waiting for memory in that map.
452  */
453 void
454 kmem_free_wakeup(map, addr, size)
455 	vm_map_t map;
456 	vm_offset_t addr;
457 	vm_size_t size;
458 {
459 
460 	vm_map_lock(map);
461 	(void) vm_map_delete(map, trunc_page(addr), round_page(addr + size));
462 	if (map->needs_wakeup) {
463 		map->needs_wakeup = FALSE;
464 		vm_map_wakeup(map);
465 	}
466 	vm_map_unlock(map);
467 }
468 
469 /*
470  * 	kmem_init:
471  *
472  *	Create the kernel map; insert a mapping covering kernel text,
473  *	data, bss, and all space allocated thus far (`boostrap' data).  The
474  *	new map will thus map the range between VM_MIN_KERNEL_ADDRESS and
475  *	`start' as allocated, and the range between `start' and `end' as free.
476  */
477 void
478 kmem_init(start, end)
479 	vm_offset_t start, end;
480 {
481 	vm_map_t m;
482 
483 	m = vm_map_create(kernel_pmap, VM_MIN_KERNEL_ADDRESS, end);
484 	m->system_map = 1;
485 	vm_map_lock(m);
486 	/* N.B.: cannot use kgdb to debug, starting with this assignment ... */
487 	kernel_map = m;
488 	(void) vm_map_insert(m, NULL, (vm_ooffset_t) 0,
489 #ifdef __amd64__
490 	    KERNBASE,
491 #else
492 	    VM_MIN_KERNEL_ADDRESS,
493 #endif
494 	    start, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
495 	/* ... and ending with the completion of the above `insert' */
496 	vm_map_unlock(m);
497 }
498 
499 #ifdef DIAGNOSTIC
500 /*
501  * Allow userspace to directly trigger the VM drain routine for testing
502  * purposes.
503  */
504 static int
505 debug_vm_lowmem(SYSCTL_HANDLER_ARGS)
506 {
507 	int error, i;
508 
509 	i = 0;
510 	error = sysctl_handle_int(oidp, &i, 0, req);
511 	if (error)
512 		return (error);
513 	if (i)
514 		EVENTHANDLER_INVOKE(vm_lowmem, 0);
515 	return (0);
516 }
517 
518 SYSCTL_PROC(_debug, OID_AUTO, vm_lowmem, CTLTYPE_INT | CTLFLAG_RW, 0, 0,
519     debug_vm_lowmem, "I", "set to trigger vm_lowmem event");
520 #endif
521