xref: /freebsd/sys/vm/vm_kern.c (revision 2e1417489338b971e5fd599ff48b5f65df9e8d3b)
1 /*-
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)vm_kern.c	8.3 (Berkeley) 1/12/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60 
61 /*
62  *	Kernel memory management.
63  */
64 
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67 
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/kernel.h>		/* for ticks and hz */
71 #include <sys/eventhandler.h>
72 #include <sys/lock.h>
73 #include <sys/mutex.h>
74 #include <sys/proc.h>
75 #include <sys/malloc.h>
76 #include <sys/sysctl.h>
77 
78 #include <vm/vm.h>
79 #include <vm/vm_param.h>
80 #include <vm/pmap.h>
81 #include <vm/vm_map.h>
82 #include <vm/vm_object.h>
83 #include <vm/vm_page.h>
84 #include <vm/vm_pageout.h>
85 #include <vm/vm_extern.h>
86 #include <vm/uma.h>
87 
88 vm_map_t kernel_map=0;
89 vm_map_t kmem_map=0;
90 vm_map_t exec_map=0;
91 vm_map_t pipe_map;
92 vm_map_t buffer_map=0;
93 
94 const void *zero_region;
95 CTASSERT((ZERO_REGION_SIZE & PAGE_MASK) == 0);
96 
97 /*
98  *	kmem_alloc_nofault:
99  *
100  *	Allocate a virtual address range with no underlying object and
101  *	no initial mapping to physical memory.  Any mapping from this
102  *	range to physical memory must be explicitly created prior to
103  *	its use, typically with pmap_qenter().  Any attempt to create
104  *	a mapping on demand through vm_fault() will result in a panic.
105  */
106 vm_offset_t
107 kmem_alloc_nofault(map, size)
108 	vm_map_t map;
109 	vm_size_t size;
110 {
111 	vm_offset_t addr;
112 	int result;
113 
114 	size = round_page(size);
115 	addr = vm_map_min(map);
116 	result = vm_map_find(map, NULL, 0, &addr, size, VMFS_ANY_SPACE,
117 	    VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
118 	if (result != KERN_SUCCESS) {
119 		return (0);
120 	}
121 	return (addr);
122 }
123 
124 /*
125  *	kmem_alloc_nofault_space:
126  *
127  *	Allocate a virtual address range with no underlying object and
128  *	no initial mapping to physical memory within the specified
129  *	address space.  Any mapping from this range to physical memory
130  *	must be explicitly created prior to its use, typically with
131  *	pmap_qenter().  Any attempt to create a mapping on demand
132  *	through vm_fault() will result in a panic.
133  */
134 vm_offset_t
135 kmem_alloc_nofault_space(map, size, find_space)
136 	vm_map_t map;
137 	vm_size_t size;
138 	int find_space;
139 {
140 	vm_offset_t addr;
141 	int result;
142 
143 	size = round_page(size);
144 	addr = vm_map_min(map);
145 	result = vm_map_find(map, NULL, 0, &addr, size, find_space,
146 	    VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
147 	if (result != KERN_SUCCESS) {
148 		return (0);
149 	}
150 	return (addr);
151 }
152 
153 /*
154  *	Allocate wired-down memory in the kernel's address map
155  *	or a submap.
156  */
157 vm_offset_t
158 kmem_alloc(map, size)
159 	vm_map_t map;
160 	vm_size_t size;
161 {
162 	vm_offset_t addr;
163 	vm_offset_t offset;
164 	vm_offset_t i;
165 
166 	size = round_page(size);
167 
168 	/*
169 	 * Use the kernel object for wired-down kernel pages. Assume that no
170 	 * region of the kernel object is referenced more than once.
171 	 */
172 
173 	/*
174 	 * Locate sufficient space in the map.  This will give us the final
175 	 * virtual address for the new memory, and thus will tell us the
176 	 * offset within the kernel map.
177 	 */
178 	vm_map_lock(map);
179 	if (vm_map_findspace(map, vm_map_min(map), size, &addr)) {
180 		vm_map_unlock(map);
181 		return (0);
182 	}
183 	offset = addr - VM_MIN_KERNEL_ADDRESS;
184 	vm_object_reference(kernel_object);
185 	vm_map_insert(map, kernel_object, offset, addr, addr + size,
186 		VM_PROT_ALL, VM_PROT_ALL, 0);
187 	vm_map_unlock(map);
188 
189 	/*
190 	 * Guarantee that there are pages already in this object before
191 	 * calling vm_map_wire.  This is to prevent the following
192 	 * scenario:
193 	 *
194 	 * 1) Threads have swapped out, so that there is a pager for the
195 	 * kernel_object. 2) The kmsg zone is empty, and so we are
196 	 * kmem_allocing a new page for it. 3) vm_map_wire calls vm_fault;
197 	 * there is no page, but there is a pager, so we call
198 	 * pager_data_request.  But the kmsg zone is empty, so we must
199 	 * kmem_alloc. 4) goto 1 5) Even if the kmsg zone is not empty: when
200 	 * we get the data back from the pager, it will be (very stale)
201 	 * non-zero data.  kmem_alloc is defined to return zero-filled memory.
202 	 *
203 	 * We're intentionally not activating the pages we allocate to prevent a
204 	 * race with page-out.  vm_map_wire will wire the pages.
205 	 */
206 	VM_OBJECT_LOCK(kernel_object);
207 	for (i = 0; i < size; i += PAGE_SIZE) {
208 		vm_page_t mem;
209 
210 		mem = vm_page_grab(kernel_object, OFF_TO_IDX(offset + i),
211 		    VM_ALLOC_NOBUSY | VM_ALLOC_ZERO | VM_ALLOC_RETRY);
212 		mem->valid = VM_PAGE_BITS_ALL;
213 		KASSERT((mem->oflags & VPO_UNMANAGED) != 0,
214 		    ("kmem_alloc: page %p is managed", mem));
215 	}
216 	VM_OBJECT_UNLOCK(kernel_object);
217 
218 	/*
219 	 * And finally, mark the data as non-pageable.
220 	 */
221 	(void) vm_map_wire(map, addr, addr + size,
222 	    VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES);
223 
224 	return (addr);
225 }
226 
227 /*
228  *	kmem_free:
229  *
230  *	Release a region of kernel virtual memory allocated
231  *	with kmem_alloc, and return the physical pages
232  *	associated with that region.
233  *
234  *	This routine may not block on kernel maps.
235  */
236 void
237 kmem_free(map, addr, size)
238 	vm_map_t map;
239 	vm_offset_t addr;
240 	vm_size_t size;
241 {
242 
243 	(void) vm_map_remove(map, trunc_page(addr), round_page(addr + size));
244 }
245 
246 /*
247  *	kmem_suballoc:
248  *
249  *	Allocates a map to manage a subrange
250  *	of the kernel virtual address space.
251  *
252  *	Arguments are as follows:
253  *
254  *	parent		Map to take range from
255  *	min, max	Returned endpoints of map
256  *	size		Size of range to find
257  *	superpage_align	Request that min is superpage aligned
258  */
259 vm_map_t
260 kmem_suballoc(vm_map_t parent, vm_offset_t *min, vm_offset_t *max,
261     vm_size_t size, boolean_t superpage_align)
262 {
263 	int ret;
264 	vm_map_t result;
265 
266 	size = round_page(size);
267 
268 	*min = vm_map_min(parent);
269 	ret = vm_map_find(parent, NULL, 0, min, size, superpage_align ?
270 	    VMFS_ALIGNED_SPACE : VMFS_ANY_SPACE, VM_PROT_ALL, VM_PROT_ALL,
271 	    MAP_ACC_NO_CHARGE);
272 	if (ret != KERN_SUCCESS)
273 		panic("kmem_suballoc: bad status return of %d", ret);
274 	*max = *min + size;
275 	result = vm_map_create(vm_map_pmap(parent), *min, *max);
276 	if (result == NULL)
277 		panic("kmem_suballoc: cannot create submap");
278 	if (vm_map_submap(parent, *min, *max, result) != KERN_SUCCESS)
279 		panic("kmem_suballoc: unable to change range to submap");
280 	return (result);
281 }
282 
283 /*
284  *	kmem_malloc:
285  *
286  * 	Allocate wired-down memory in the kernel's address map for the higher
287  * 	level kernel memory allocator (kern/kern_malloc.c).  We cannot use
288  * 	kmem_alloc() because we may need to allocate memory at interrupt
289  * 	level where we cannot block (canwait == FALSE).
290  *
291  * 	This routine has its own private kernel submap (kmem_map) and object
292  * 	(kmem_object).  This, combined with the fact that only malloc uses
293  * 	this routine, ensures that we will never block in map or object waits.
294  *
295  * 	We don't worry about expanding the map (adding entries) since entries
296  * 	for wired maps are statically allocated.
297  *
298  *	`map' is ONLY allowed to be kmem_map or one of the mbuf submaps to
299  *	which we never free.
300  */
301 vm_offset_t
302 kmem_malloc(map, size, flags)
303 	vm_map_t map;
304 	vm_size_t size;
305 	int flags;
306 {
307 	vm_offset_t addr;
308 	int i, rv;
309 
310 	size = round_page(size);
311 	addr = vm_map_min(map);
312 
313 	/*
314 	 * Locate sufficient space in the map.  This will give us the final
315 	 * virtual address for the new memory, and thus will tell us the
316 	 * offset within the kernel map.
317 	 */
318 	vm_map_lock(map);
319 	if (vm_map_findspace(map, vm_map_min(map), size, &addr)) {
320 		vm_map_unlock(map);
321                 if ((flags & M_NOWAIT) == 0) {
322 			for (i = 0; i < 8; i++) {
323 				EVENTHANDLER_INVOKE(vm_lowmem, 0);
324 				uma_reclaim();
325 				vm_map_lock(map);
326 				if (vm_map_findspace(map, vm_map_min(map),
327 				    size, &addr) == 0) {
328 					break;
329 				}
330 				vm_map_unlock(map);
331 				tsleep(&i, 0, "nokva", (hz / 4) * (i + 1));
332 			}
333 			if (i == 8) {
334 				panic("kmem_malloc(%ld): kmem_map too small: %ld total allocated",
335 				    (long)size, (long)map->size);
336 			}
337 		} else {
338 			return (0);
339 		}
340 	}
341 
342 	rv = kmem_back(map, addr, size, flags);
343 	vm_map_unlock(map);
344 	return (rv == KERN_SUCCESS ? addr : 0);
345 }
346 
347 /*
348  *	kmem_back:
349  *
350  *	Allocate physical pages for the specified virtual address range.
351  */
352 int
353 kmem_back(vm_map_t map, vm_offset_t addr, vm_size_t size, int flags)
354 {
355 	vm_offset_t offset, i;
356 	vm_map_entry_t entry;
357 	vm_page_t m;
358 	int pflags;
359 	boolean_t found;
360 
361 	KASSERT(vm_map_locked(map), ("kmem_back: map %p is not locked", map));
362 	offset = addr - VM_MIN_KERNEL_ADDRESS;
363 	vm_object_reference(kmem_object);
364 	vm_map_insert(map, kmem_object, offset, addr, addr + size,
365 	    VM_PROT_ALL, VM_PROT_ALL, 0);
366 
367 	/*
368 	 * Assert: vm_map_insert() will never be able to extend the
369 	 * previous entry so vm_map_lookup_entry() will find a new
370 	 * entry exactly corresponding to this address range and it
371 	 * will have wired_count == 0.
372 	 */
373 	found = vm_map_lookup_entry(map, addr, &entry);
374 	KASSERT(found && entry->start == addr && entry->end == addr + size &&
375 	    entry->wired_count == 0 && (entry->eflags & MAP_ENTRY_IN_TRANSITION)
376 	    == 0, ("kmem_back: entry not found or misaligned"));
377 
378 	if ((flags & (M_NOWAIT|M_USE_RESERVE)) == M_NOWAIT)
379 		pflags = VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED;
380 	else
381 		pflags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED;
382 
383 	if (flags & M_ZERO)
384 		pflags |= VM_ALLOC_ZERO;
385 
386 	VM_OBJECT_LOCK(kmem_object);
387 	for (i = 0; i < size; i += PAGE_SIZE) {
388 retry:
389 		m = vm_page_alloc(kmem_object, OFF_TO_IDX(offset + i), pflags);
390 
391 		/*
392 		 * Ran out of space, free everything up and return. Don't need
393 		 * to lock page queues here as we know that the pages we got
394 		 * aren't on any queues.
395 		 */
396 		if (m == NULL) {
397 			if ((flags & M_NOWAIT) == 0) {
398 				VM_OBJECT_UNLOCK(kmem_object);
399 				entry->eflags |= MAP_ENTRY_IN_TRANSITION;
400 				vm_map_unlock(map);
401 				VM_WAIT;
402 				vm_map_lock(map);
403 				KASSERT(
404 (entry->eflags & (MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_NEEDS_WAKEUP)) ==
405 				    MAP_ENTRY_IN_TRANSITION,
406 				    ("kmem_back: volatile entry"));
407 				entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
408 				VM_OBJECT_LOCK(kmem_object);
409 				goto retry;
410 			}
411 			/*
412 			 * Free the pages before removing the map entry.
413 			 * They are already marked busy.  Calling
414 			 * vm_map_delete before the pages has been freed or
415 			 * unbusied will cause a deadlock.
416 			 */
417 			while (i != 0) {
418 				i -= PAGE_SIZE;
419 				m = vm_page_lookup(kmem_object,
420 						   OFF_TO_IDX(offset + i));
421 				vm_page_unwire(m, 0);
422 				vm_page_free(m);
423 			}
424 			VM_OBJECT_UNLOCK(kmem_object);
425 			vm_map_delete(map, addr, addr + size);
426 			return (KERN_NO_SPACE);
427 		}
428 		if (flags & M_ZERO && (m->flags & PG_ZERO) == 0)
429 			pmap_zero_page(m);
430 		m->valid = VM_PAGE_BITS_ALL;
431 		KASSERT((m->oflags & VPO_UNMANAGED) != 0,
432 		    ("kmem_malloc: page %p is managed", m));
433 	}
434 	VM_OBJECT_UNLOCK(kmem_object);
435 
436 	/*
437 	 * Mark map entry as non-pageable.  Repeat the assert.
438 	 */
439 	KASSERT(entry->start == addr && entry->end == addr + size &&
440 	    entry->wired_count == 0,
441 	    ("kmem_back: entry not found or misaligned after allocation"));
442 	entry->wired_count = 1;
443 
444 	/*
445 	 * At this point, the kmem_object must be unlocked because
446 	 * vm_map_simplify_entry() calls vm_object_deallocate(), which
447 	 * locks the kmem_object.
448 	 */
449 	vm_map_simplify_entry(map, entry);
450 
451 	/*
452 	 * Loop thru pages, entering them in the pmap.
453 	 */
454 	VM_OBJECT_LOCK(kmem_object);
455 	for (i = 0; i < size; i += PAGE_SIZE) {
456 		m = vm_page_lookup(kmem_object, OFF_TO_IDX(offset + i));
457 		/*
458 		 * Because this is kernel_pmap, this call will not block.
459 		 */
460 		pmap_enter(kernel_pmap, addr + i, VM_PROT_ALL, m, VM_PROT_ALL,
461 		    TRUE);
462 		vm_page_wakeup(m);
463 	}
464 	VM_OBJECT_UNLOCK(kmem_object);
465 
466 	return (KERN_SUCCESS);
467 }
468 
469 /*
470  *	kmem_alloc_wait:
471  *
472  *	Allocates pageable memory from a sub-map of the kernel.  If the submap
473  *	has no room, the caller sleeps waiting for more memory in the submap.
474  *
475  *	This routine may block.
476  */
477 vm_offset_t
478 kmem_alloc_wait(map, size)
479 	vm_map_t map;
480 	vm_size_t size;
481 {
482 	vm_offset_t addr;
483 
484 	size = round_page(size);
485 	if (!swap_reserve(size))
486 		return (0);
487 
488 	for (;;) {
489 		/*
490 		 * To make this work for more than one map, use the map's lock
491 		 * to lock out sleepers/wakers.
492 		 */
493 		vm_map_lock(map);
494 		if (vm_map_findspace(map, vm_map_min(map), size, &addr) == 0)
495 			break;
496 		/* no space now; see if we can ever get space */
497 		if (vm_map_max(map) - vm_map_min(map) < size) {
498 			vm_map_unlock(map);
499 			swap_release(size);
500 			return (0);
501 		}
502 		map->needs_wakeup = TRUE;
503 		vm_map_unlock_and_wait(map, 0);
504 	}
505 	vm_map_insert(map, NULL, 0, addr, addr + size, VM_PROT_ALL,
506 	    VM_PROT_ALL, MAP_ACC_CHARGED);
507 	vm_map_unlock(map);
508 	return (addr);
509 }
510 
511 /*
512  *	kmem_free_wakeup:
513  *
514  *	Returns memory to a submap of the kernel, and wakes up any processes
515  *	waiting for memory in that map.
516  */
517 void
518 kmem_free_wakeup(map, addr, size)
519 	vm_map_t map;
520 	vm_offset_t addr;
521 	vm_size_t size;
522 {
523 
524 	vm_map_lock(map);
525 	(void) vm_map_delete(map, trunc_page(addr), round_page(addr + size));
526 	if (map->needs_wakeup) {
527 		map->needs_wakeup = FALSE;
528 		vm_map_wakeup(map);
529 	}
530 	vm_map_unlock(map);
531 }
532 
533 static void
534 kmem_init_zero_region(void)
535 {
536 	vm_offset_t addr, i;
537 	vm_page_t m;
538 	int error;
539 
540 	/*
541 	 * Map a single physical page of zeros to a larger virtual range.
542 	 * This requires less looping in places that want large amounts of
543 	 * zeros, while not using much more physical resources.
544 	 */
545 	addr = kmem_alloc_nofault(kernel_map, ZERO_REGION_SIZE);
546 	m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL |
547 	    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED | VM_ALLOC_ZERO);
548 	if ((m->flags & PG_ZERO) == 0)
549 		pmap_zero_page(m);
550 	for (i = 0; i < ZERO_REGION_SIZE; i += PAGE_SIZE)
551 		pmap_qenter(addr + i, &m, 1);
552 	error = vm_map_protect(kernel_map, addr, addr + ZERO_REGION_SIZE,
553 	    VM_PROT_READ, TRUE);
554 	KASSERT(error == 0, ("error=%d", error));
555 
556 	zero_region = (const void *)addr;
557 }
558 
559 /*
560  * 	kmem_init:
561  *
562  *	Create the kernel map; insert a mapping covering kernel text,
563  *	data, bss, and all space allocated thus far (`boostrap' data).  The
564  *	new map will thus map the range between VM_MIN_KERNEL_ADDRESS and
565  *	`start' as allocated, and the range between `start' and `end' as free.
566  */
567 void
568 kmem_init(start, end)
569 	vm_offset_t start, end;
570 {
571 	vm_map_t m;
572 
573 	m = vm_map_create(kernel_pmap, VM_MIN_KERNEL_ADDRESS, end);
574 	m->system_map = 1;
575 	vm_map_lock(m);
576 	/* N.B.: cannot use kgdb to debug, starting with this assignment ... */
577 	kernel_map = m;
578 	(void) vm_map_insert(m, NULL, (vm_ooffset_t) 0,
579 #ifdef __amd64__
580 	    KERNBASE,
581 #else
582 	    VM_MIN_KERNEL_ADDRESS,
583 #endif
584 	    start, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
585 	/* ... and ending with the completion of the above `insert' */
586 	vm_map_unlock(m);
587 
588 	kmem_init_zero_region();
589 }
590 
591 #ifdef DIAGNOSTIC
592 /*
593  * Allow userspace to directly trigger the VM drain routine for testing
594  * purposes.
595  */
596 static int
597 debug_vm_lowmem(SYSCTL_HANDLER_ARGS)
598 {
599 	int error, i;
600 
601 	i = 0;
602 	error = sysctl_handle_int(oidp, &i, 0, req);
603 	if (error)
604 		return (error);
605 	if (i)
606 		EVENTHANDLER_INVOKE(vm_lowmem, 0);
607 	return (0);
608 }
609 
610 SYSCTL_PROC(_debug, OID_AUTO, vm_lowmem, CTLTYPE_INT | CTLFLAG_RW, 0, 0,
611     debug_vm_lowmem, "I", "set to trigger vm_lowmem event");
612 #endif
613