1 /*- 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * from: @(#)vm_kern.c 8.3 (Berkeley) 1/12/94 33 * 34 * 35 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 36 * All rights reserved. 37 * 38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 39 * 40 * Permission to use, copy, modify and distribute this software and 41 * its documentation is hereby granted, provided that both the copyright 42 * notice and this permission notice appear in all copies of the 43 * software, derivative works or modified versions, and any portions 44 * thereof, and that both notices appear in supporting documentation. 45 * 46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 47 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 49 * 50 * Carnegie Mellon requests users of this software to return to 51 * 52 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 53 * School of Computer Science 54 * Carnegie Mellon University 55 * Pittsburgh PA 15213-3890 56 * 57 * any improvements or extensions that they make and grant Carnegie the 58 * rights to redistribute these changes. 59 */ 60 61 /* 62 * Kernel memory management. 63 */ 64 65 #include <sys/cdefs.h> 66 __FBSDID("$FreeBSD$"); 67 68 #include <sys/param.h> 69 #include <sys/systm.h> 70 #include <sys/kernel.h> /* for ticks and hz */ 71 #include <sys/lock.h> 72 #include <sys/mutex.h> 73 #include <sys/proc.h> 74 #include <sys/malloc.h> 75 76 #include <vm/vm.h> 77 #include <vm/vm_param.h> 78 #include <vm/pmap.h> 79 #include <vm/vm_map.h> 80 #include <vm/vm_object.h> 81 #include <vm/vm_page.h> 82 #include <vm/vm_pageout.h> 83 #include <vm/vm_extern.h> 84 85 vm_map_t kernel_map=0; 86 vm_map_t kmem_map=0; 87 vm_map_t exec_map=0; 88 vm_map_t pipe_map; 89 vm_map_t buffer_map=0; 90 91 /* 92 * kmem_alloc_nofault: 93 * 94 * Allocate a virtual address range with no underlying object and 95 * no initial mapping to physical memory. Any mapping from this 96 * range to physical memory must be explicitly created prior to 97 * its use, typically with pmap_qenter(). Any attempt to create 98 * a mapping on demand through vm_fault() will result in a panic. 99 */ 100 vm_offset_t 101 kmem_alloc_nofault(map, size) 102 vm_map_t map; 103 vm_size_t size; 104 { 105 vm_offset_t addr; 106 int result; 107 108 size = round_page(size); 109 addr = vm_map_min(map); 110 result = vm_map_find(map, NULL, 0, 111 &addr, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT); 112 if (result != KERN_SUCCESS) { 113 return (0); 114 } 115 return (addr); 116 } 117 118 /* 119 * Allocate wired-down memory in the kernel's address map 120 * or a submap. 121 */ 122 vm_offset_t 123 kmem_alloc(map, size) 124 vm_map_t map; 125 vm_size_t size; 126 { 127 vm_offset_t addr; 128 vm_offset_t offset; 129 vm_offset_t i; 130 131 size = round_page(size); 132 133 /* 134 * Use the kernel object for wired-down kernel pages. Assume that no 135 * region of the kernel object is referenced more than once. 136 */ 137 138 /* 139 * Locate sufficient space in the map. This will give us the final 140 * virtual address for the new memory, and thus will tell us the 141 * offset within the kernel map. 142 */ 143 vm_map_lock(map); 144 if (vm_map_findspace(map, vm_map_min(map), size, &addr)) { 145 vm_map_unlock(map); 146 return (0); 147 } 148 offset = addr - VM_MIN_KERNEL_ADDRESS; 149 vm_object_reference(kernel_object); 150 vm_map_insert(map, kernel_object, offset, addr, addr + size, 151 VM_PROT_ALL, VM_PROT_ALL, 0); 152 vm_map_unlock(map); 153 154 /* 155 * Guarantee that there are pages already in this object before 156 * calling vm_map_wire. This is to prevent the following 157 * scenario: 158 * 159 * 1) Threads have swapped out, so that there is a pager for the 160 * kernel_object. 2) The kmsg zone is empty, and so we are 161 * kmem_allocing a new page for it. 3) vm_map_wire calls vm_fault; 162 * there is no page, but there is a pager, so we call 163 * pager_data_request. But the kmsg zone is empty, so we must 164 * kmem_alloc. 4) goto 1 5) Even if the kmsg zone is not empty: when 165 * we get the data back from the pager, it will be (very stale) 166 * non-zero data. kmem_alloc is defined to return zero-filled memory. 167 * 168 * We're intentionally not activating the pages we allocate to prevent a 169 * race with page-out. vm_map_wire will wire the pages. 170 */ 171 VM_OBJECT_LOCK(kernel_object); 172 for (i = 0; i < size; i += PAGE_SIZE) { 173 vm_page_t mem; 174 175 mem = vm_page_grab(kernel_object, OFF_TO_IDX(offset + i), 176 VM_ALLOC_NOBUSY | VM_ALLOC_ZERO | VM_ALLOC_RETRY); 177 mem->valid = VM_PAGE_BITS_ALL; 178 KASSERT((mem->flags & PG_UNMANAGED) != 0, 179 ("kmem_alloc: page %p is managed", mem)); 180 } 181 VM_OBJECT_UNLOCK(kernel_object); 182 183 /* 184 * And finally, mark the data as non-pageable. 185 */ 186 (void) vm_map_wire(map, addr, addr + size, 187 VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES); 188 189 return (addr); 190 } 191 192 /* 193 * kmem_free: 194 * 195 * Release a region of kernel virtual memory allocated 196 * with kmem_alloc, and return the physical pages 197 * associated with that region. 198 * 199 * This routine may not block on kernel maps. 200 */ 201 void 202 kmem_free(map, addr, size) 203 vm_map_t map; 204 vm_offset_t addr; 205 vm_size_t size; 206 { 207 208 (void) vm_map_remove(map, trunc_page(addr), round_page(addr + size)); 209 } 210 211 /* 212 * kmem_suballoc: 213 * 214 * Allocates a map to manage a subrange 215 * of the kernel virtual address space. 216 * 217 * Arguments are as follows: 218 * 219 * parent Map to take range from 220 * min, max Returned endpoints of map 221 * size Size of range to find 222 */ 223 vm_map_t 224 kmem_suballoc(parent, min, max, size) 225 vm_map_t parent; 226 vm_offset_t *min, *max; 227 vm_size_t size; 228 { 229 int ret; 230 vm_map_t result; 231 232 size = round_page(size); 233 234 *min = (vm_offset_t) vm_map_min(parent); 235 ret = vm_map_find(parent, NULL, (vm_offset_t) 0, 236 min, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, 0); 237 if (ret != KERN_SUCCESS) { 238 printf("kmem_suballoc: bad status return of %d.\n", ret); 239 panic("kmem_suballoc"); 240 } 241 *max = *min + size; 242 result = vm_map_create(vm_map_pmap(parent), *min, *max); 243 if (result == NULL) 244 panic("kmem_suballoc: cannot create submap"); 245 if (vm_map_submap(parent, *min, *max, result) != KERN_SUCCESS) 246 panic("kmem_suballoc: unable to change range to submap"); 247 return (result); 248 } 249 250 /* 251 * kmem_malloc: 252 * 253 * Allocate wired-down memory in the kernel's address map for the higher 254 * level kernel memory allocator (kern/kern_malloc.c). We cannot use 255 * kmem_alloc() because we may need to allocate memory at interrupt 256 * level where we cannot block (canwait == FALSE). 257 * 258 * This routine has its own private kernel submap (kmem_map) and object 259 * (kmem_object). This, combined with the fact that only malloc uses 260 * this routine, ensures that we will never block in map or object waits. 261 * 262 * Note that this still only works in a uni-processor environment and 263 * when called at splhigh(). 264 * 265 * We don't worry about expanding the map (adding entries) since entries 266 * for wired maps are statically allocated. 267 * 268 * NOTE: This routine is not supposed to block if M_NOWAIT is set, but 269 * I have not verified that it actually does not block. 270 * 271 * `map' is ONLY allowed to be kmem_map or one of the mbuf submaps to 272 * which we never free. 273 */ 274 vm_offset_t 275 kmem_malloc(map, size, flags) 276 vm_map_t map; 277 vm_size_t size; 278 int flags; 279 { 280 vm_offset_t offset, i; 281 vm_map_entry_t entry; 282 vm_offset_t addr; 283 vm_page_t m; 284 int pflags; 285 286 size = round_page(size); 287 addr = vm_map_min(map); 288 289 /* 290 * Locate sufficient space in the map. This will give us the final 291 * virtual address for the new memory, and thus will tell us the 292 * offset within the kernel map. 293 */ 294 vm_map_lock(map); 295 if (vm_map_findspace(map, vm_map_min(map), size, &addr)) { 296 vm_map_unlock(map); 297 if ((flags & M_NOWAIT) == 0) 298 panic("kmem_malloc(%ld): kmem_map too small: %ld total allocated", 299 (long)size, (long)map->size); 300 return (0); 301 } 302 offset = addr - VM_MIN_KERNEL_ADDRESS; 303 vm_object_reference(kmem_object); 304 vm_map_insert(map, kmem_object, offset, addr, addr + size, 305 VM_PROT_ALL, VM_PROT_ALL, 0); 306 307 /* 308 * Note: if M_NOWAIT specified alone, allocate from 309 * interrupt-safe queues only (just the free list). If 310 * M_USE_RESERVE is also specified, we can also 311 * allocate from the cache. Neither of the latter two 312 * flags may be specified from an interrupt since interrupts 313 * are not allowed to mess with the cache queue. 314 */ 315 316 if ((flags & (M_NOWAIT|M_USE_RESERVE)) == M_NOWAIT) 317 pflags = VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED; 318 else 319 pflags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED; 320 321 if (flags & M_ZERO) 322 pflags |= VM_ALLOC_ZERO; 323 324 VM_OBJECT_LOCK(kmem_object); 325 for (i = 0; i < size; i += PAGE_SIZE) { 326 retry: 327 m = vm_page_alloc(kmem_object, OFF_TO_IDX(offset + i), pflags); 328 329 /* 330 * Ran out of space, free everything up and return. Don't need 331 * to lock page queues here as we know that the pages we got 332 * aren't on any queues. 333 */ 334 if (m == NULL) { 335 if ((flags & M_NOWAIT) == 0) { 336 VM_OBJECT_UNLOCK(kmem_object); 337 vm_map_unlock(map); 338 VM_WAIT; 339 vm_map_lock(map); 340 VM_OBJECT_LOCK(kmem_object); 341 goto retry; 342 } 343 /* 344 * Free the pages before removing the map entry. 345 * They are already marked busy. Calling 346 * vm_map_delete before the pages has been freed or 347 * unbusied will cause a deadlock. 348 */ 349 while (i != 0) { 350 i -= PAGE_SIZE; 351 m = vm_page_lookup(kmem_object, 352 OFF_TO_IDX(offset + i)); 353 vm_page_lock_queues(); 354 vm_page_unwire(m, 0); 355 vm_page_free(m); 356 vm_page_unlock_queues(); 357 } 358 VM_OBJECT_UNLOCK(kmem_object); 359 vm_map_delete(map, addr, addr + size); 360 vm_map_unlock(map); 361 return (0); 362 } 363 if (flags & M_ZERO && (m->flags & PG_ZERO) == 0) 364 pmap_zero_page(m); 365 m->valid = VM_PAGE_BITS_ALL; 366 KASSERT((m->flags & PG_UNMANAGED) != 0, 367 ("kmem_malloc: page %p is managed", m)); 368 } 369 VM_OBJECT_UNLOCK(kmem_object); 370 371 /* 372 * Mark map entry as non-pageable. Assert: vm_map_insert() will never 373 * be able to extend the previous entry so there will be a new entry 374 * exactly corresponding to this address range and it will have 375 * wired_count == 0. 376 */ 377 if (!vm_map_lookup_entry(map, addr, &entry) || 378 entry->start != addr || entry->end != addr + size || 379 entry->wired_count != 0) 380 panic("kmem_malloc: entry not found or misaligned"); 381 entry->wired_count = 1; 382 383 /* 384 * At this point, the kmem_object must be unlocked because 385 * vm_map_simplify_entry() calls vm_object_deallocate(), which 386 * locks the kmem_object. 387 */ 388 vm_map_simplify_entry(map, entry); 389 390 /* 391 * Loop thru pages, entering them in the pmap. 392 */ 393 VM_OBJECT_LOCK(kmem_object); 394 for (i = 0; i < size; i += PAGE_SIZE) { 395 m = vm_page_lookup(kmem_object, OFF_TO_IDX(offset + i)); 396 /* 397 * Because this is kernel_pmap, this call will not block. 398 */ 399 pmap_enter(kernel_pmap, addr + i, m, VM_PROT_ALL, 1); 400 vm_page_wakeup(m); 401 } 402 VM_OBJECT_UNLOCK(kmem_object); 403 vm_map_unlock(map); 404 405 return (addr); 406 } 407 408 /* 409 * kmem_alloc_wait: 410 * 411 * Allocates pageable memory from a sub-map of the kernel. If the submap 412 * has no room, the caller sleeps waiting for more memory in the submap. 413 * 414 * This routine may block. 415 */ 416 vm_offset_t 417 kmem_alloc_wait(map, size) 418 vm_map_t map; 419 vm_size_t size; 420 { 421 vm_offset_t addr; 422 423 size = round_page(size); 424 425 for (;;) { 426 /* 427 * To make this work for more than one map, use the map's lock 428 * to lock out sleepers/wakers. 429 */ 430 vm_map_lock(map); 431 if (vm_map_findspace(map, vm_map_min(map), size, &addr) == 0) 432 break; 433 /* no space now; see if we can ever get space */ 434 if (vm_map_max(map) - vm_map_min(map) < size) { 435 vm_map_unlock(map); 436 return (0); 437 } 438 map->needs_wakeup = TRUE; 439 vm_map_unlock_and_wait(map, FALSE); 440 } 441 vm_map_insert(map, NULL, 0, addr, addr + size, VM_PROT_ALL, VM_PROT_ALL, 0); 442 vm_map_unlock(map); 443 return (addr); 444 } 445 446 /* 447 * kmem_free_wakeup: 448 * 449 * Returns memory to a submap of the kernel, and wakes up any processes 450 * waiting for memory in that map. 451 */ 452 void 453 kmem_free_wakeup(map, addr, size) 454 vm_map_t map; 455 vm_offset_t addr; 456 vm_size_t size; 457 { 458 459 vm_map_lock(map); 460 (void) vm_map_delete(map, trunc_page(addr), round_page(addr + size)); 461 if (map->needs_wakeup) { 462 map->needs_wakeup = FALSE; 463 vm_map_wakeup(map); 464 } 465 vm_map_unlock(map); 466 } 467 468 /* 469 * kmem_init: 470 * 471 * Create the kernel map; insert a mapping covering kernel text, 472 * data, bss, and all space allocated thus far (`boostrap' data). The 473 * new map will thus map the range between VM_MIN_KERNEL_ADDRESS and 474 * `start' as allocated, and the range between `start' and `end' as free. 475 */ 476 void 477 kmem_init(start, end) 478 vm_offset_t start, end; 479 { 480 vm_map_t m; 481 482 m = vm_map_create(kernel_pmap, VM_MIN_KERNEL_ADDRESS, end); 483 m->system_map = 1; 484 vm_map_lock(m); 485 /* N.B.: cannot use kgdb to debug, starting with this assignment ... */ 486 kernel_map = m; 487 (void) vm_map_insert(m, NULL, (vm_ooffset_t) 0, 488 VM_MIN_KERNEL_ADDRESS, start, VM_PROT_ALL, VM_PROT_ALL, 489 MAP_NOFAULT); 490 /* ... and ending with the completion of the above `insert' */ 491 vm_map_unlock(m); 492 } 493