xref: /freebsd/sys/vm/vm_kern.c (revision 1e413cf93298b5b97441a21d9a50fdcd0ee9945e)
1 /*-
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)vm_kern.c	8.3 (Berkeley) 1/12/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60 
61 /*
62  *	Kernel memory management.
63  */
64 
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67 
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/kernel.h>		/* for ticks and hz */
71 #include <sys/eventhandler.h>
72 #include <sys/lock.h>
73 #include <sys/mutex.h>
74 #include <sys/proc.h>
75 #include <sys/malloc.h>
76 
77 #include <vm/vm.h>
78 #include <vm/vm_param.h>
79 #include <vm/pmap.h>
80 #include <vm/vm_map.h>
81 #include <vm/vm_object.h>
82 #include <vm/vm_page.h>
83 #include <vm/vm_pageout.h>
84 #include <vm/vm_extern.h>
85 #include <vm/uma.h>
86 
87 vm_map_t kernel_map=0;
88 vm_map_t kmem_map=0;
89 vm_map_t exec_map=0;
90 vm_map_t pipe_map;
91 vm_map_t buffer_map=0;
92 
93 /*
94  *	kmem_alloc_nofault:
95  *
96  *	Allocate a virtual address range with no underlying object and
97  *	no initial mapping to physical memory.  Any mapping from this
98  *	range to physical memory must be explicitly created prior to
99  *	its use, typically with pmap_qenter().  Any attempt to create
100  *	a mapping on demand through vm_fault() will result in a panic.
101  */
102 vm_offset_t
103 kmem_alloc_nofault(map, size)
104 	vm_map_t map;
105 	vm_size_t size;
106 {
107 	vm_offset_t addr;
108 	int result;
109 
110 	size = round_page(size);
111 	addr = vm_map_min(map);
112 	result = vm_map_find(map, NULL, 0,
113 	    &addr, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
114 	if (result != KERN_SUCCESS) {
115 		return (0);
116 	}
117 	return (addr);
118 }
119 
120 /*
121  *	Allocate wired-down memory in the kernel's address map
122  *	or a submap.
123  */
124 vm_offset_t
125 kmem_alloc(map, size)
126 	vm_map_t map;
127 	vm_size_t size;
128 {
129 	vm_offset_t addr;
130 	vm_offset_t offset;
131 	vm_offset_t i;
132 
133 	size = round_page(size);
134 
135 	/*
136 	 * Use the kernel object for wired-down kernel pages. Assume that no
137 	 * region of the kernel object is referenced more than once.
138 	 */
139 
140 	/*
141 	 * Locate sufficient space in the map.  This will give us the final
142 	 * virtual address for the new memory, and thus will tell us the
143 	 * offset within the kernel map.
144 	 */
145 	vm_map_lock(map);
146 	if (vm_map_findspace(map, vm_map_min(map), size, &addr)) {
147 		vm_map_unlock(map);
148 		return (0);
149 	}
150 	offset = addr - VM_MIN_KERNEL_ADDRESS;
151 	vm_object_reference(kernel_object);
152 	vm_map_insert(map, kernel_object, offset, addr, addr + size,
153 		VM_PROT_ALL, VM_PROT_ALL, 0);
154 	vm_map_unlock(map);
155 
156 	/*
157 	 * Guarantee that there are pages already in this object before
158 	 * calling vm_map_wire.  This is to prevent the following
159 	 * scenario:
160 	 *
161 	 * 1) Threads have swapped out, so that there is a pager for the
162 	 * kernel_object. 2) The kmsg zone is empty, and so we are
163 	 * kmem_allocing a new page for it. 3) vm_map_wire calls vm_fault;
164 	 * there is no page, but there is a pager, so we call
165 	 * pager_data_request.  But the kmsg zone is empty, so we must
166 	 * kmem_alloc. 4) goto 1 5) Even if the kmsg zone is not empty: when
167 	 * we get the data back from the pager, it will be (very stale)
168 	 * non-zero data.  kmem_alloc is defined to return zero-filled memory.
169 	 *
170 	 * We're intentionally not activating the pages we allocate to prevent a
171 	 * race with page-out.  vm_map_wire will wire the pages.
172 	 */
173 	VM_OBJECT_LOCK(kernel_object);
174 	for (i = 0; i < size; i += PAGE_SIZE) {
175 		vm_page_t mem;
176 
177 		mem = vm_page_grab(kernel_object, OFF_TO_IDX(offset + i),
178 		    VM_ALLOC_NOBUSY | VM_ALLOC_ZERO | VM_ALLOC_RETRY);
179 		mem->valid = VM_PAGE_BITS_ALL;
180 		KASSERT((mem->flags & PG_UNMANAGED) != 0,
181 		    ("kmem_alloc: page %p is managed", mem));
182 	}
183 	VM_OBJECT_UNLOCK(kernel_object);
184 
185 	/*
186 	 * And finally, mark the data as non-pageable.
187 	 */
188 	(void) vm_map_wire(map, addr, addr + size,
189 	    VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES);
190 
191 	return (addr);
192 }
193 
194 /*
195  *	kmem_free:
196  *
197  *	Release a region of kernel virtual memory allocated
198  *	with kmem_alloc, and return the physical pages
199  *	associated with that region.
200  *
201  *	This routine may not block on kernel maps.
202  */
203 void
204 kmem_free(map, addr, size)
205 	vm_map_t map;
206 	vm_offset_t addr;
207 	vm_size_t size;
208 {
209 
210 	(void) vm_map_remove(map, trunc_page(addr), round_page(addr + size));
211 }
212 
213 /*
214  *	kmem_suballoc:
215  *
216  *	Allocates a map to manage a subrange
217  *	of the kernel virtual address space.
218  *
219  *	Arguments are as follows:
220  *
221  *	parent		Map to take range from
222  *	min, max	Returned endpoints of map
223  *	size		Size of range to find
224  */
225 vm_map_t
226 kmem_suballoc(parent, min, max, size)
227 	vm_map_t parent;
228 	vm_offset_t *min, *max;
229 	vm_size_t size;
230 {
231 	int ret;
232 	vm_map_t result;
233 
234 	size = round_page(size);
235 
236 	*min = (vm_offset_t) vm_map_min(parent);
237 	ret = vm_map_find(parent, NULL, (vm_offset_t) 0,
238 	    min, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, 0);
239 	if (ret != KERN_SUCCESS) {
240 		printf("kmem_suballoc: bad status return of %d.\n", ret);
241 		panic("kmem_suballoc");
242 	}
243 	*max = *min + size;
244 	result = vm_map_create(vm_map_pmap(parent), *min, *max);
245 	if (result == NULL)
246 		panic("kmem_suballoc: cannot create submap");
247 	if (vm_map_submap(parent, *min, *max, result) != KERN_SUCCESS)
248 		panic("kmem_suballoc: unable to change range to submap");
249 	return (result);
250 }
251 
252 /*
253  *	kmem_malloc:
254  *
255  * 	Allocate wired-down memory in the kernel's address map for the higher
256  * 	level kernel memory allocator (kern/kern_malloc.c).  We cannot use
257  * 	kmem_alloc() because we may need to allocate memory at interrupt
258  * 	level where we cannot block (canwait == FALSE).
259  *
260  * 	This routine has its own private kernel submap (kmem_map) and object
261  * 	(kmem_object).  This, combined with the fact that only malloc uses
262  * 	this routine, ensures that we will never block in map or object waits.
263  *
264  * 	Note that this still only works in a uni-processor environment and
265  * 	when called at splhigh().
266  *
267  * 	We don't worry about expanding the map (adding entries) since entries
268  * 	for wired maps are statically allocated.
269  *
270  *	NOTE:  This routine is not supposed to block if M_NOWAIT is set, but
271  *	I have not verified that it actually does not block.
272  *
273  *	`map' is ONLY allowed to be kmem_map or one of the mbuf submaps to
274  *	which we never free.
275  */
276 vm_offset_t
277 kmem_malloc(map, size, flags)
278 	vm_map_t map;
279 	vm_size_t size;
280 	int flags;
281 {
282 	vm_offset_t offset, i;
283 	vm_map_entry_t entry;
284 	vm_offset_t addr;
285 	vm_page_t m;
286 	int pflags;
287 
288 	size = round_page(size);
289 	addr = vm_map_min(map);
290 
291 	/*
292 	 * Locate sufficient space in the map.  This will give us the final
293 	 * virtual address for the new memory, and thus will tell us the
294 	 * offset within the kernel map.
295 	 */
296 	vm_map_lock(map);
297 	if (vm_map_findspace(map, vm_map_min(map), size, &addr)) {
298 		vm_map_unlock(map);
299                 if ((flags & M_NOWAIT) == 0) {
300 			for (i = 0; i < 8; i++) {
301 				EVENTHANDLER_INVOKE(vm_lowmem, 0);
302 				uma_reclaim();
303 				vm_map_lock(map);
304 				if (vm_map_findspace(map, vm_map_min(map),
305 				    size, &addr) == 0) {
306 					break;
307 				}
308 				vm_map_unlock(map);
309 				tsleep(&i, 0, "nokva", (hz / 4) * (i + 1));
310 			}
311 			if (i == 8) {
312 				panic("kmem_malloc(%ld): kmem_map too small: %ld total allocated",
313 				    (long)size, (long)map->size);
314 			}
315 		} else {
316 			return (0);
317 		}
318 	}
319 	offset = addr - VM_MIN_KERNEL_ADDRESS;
320 	vm_object_reference(kmem_object);
321 	vm_map_insert(map, kmem_object, offset, addr, addr + size,
322 		VM_PROT_ALL, VM_PROT_ALL, 0);
323 
324 	/*
325 	 * Note: if M_NOWAIT specified alone, allocate from
326 	 * interrupt-safe queues only (just the free list).  If
327 	 * M_USE_RESERVE is also specified, we can also
328 	 * allocate from the cache.  Neither of the latter two
329 	 * flags may be specified from an interrupt since interrupts
330 	 * are not allowed to mess with the cache queue.
331 	 */
332 
333 	if ((flags & (M_NOWAIT|M_USE_RESERVE)) == M_NOWAIT)
334 		pflags = VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED;
335 	else
336 		pflags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED;
337 
338 	if (flags & M_ZERO)
339 		pflags |= VM_ALLOC_ZERO;
340 
341 	VM_OBJECT_LOCK(kmem_object);
342 	for (i = 0; i < size; i += PAGE_SIZE) {
343 retry:
344 		m = vm_page_alloc(kmem_object, OFF_TO_IDX(offset + i), pflags);
345 
346 		/*
347 		 * Ran out of space, free everything up and return. Don't need
348 		 * to lock page queues here as we know that the pages we got
349 		 * aren't on any queues.
350 		 */
351 		if (m == NULL) {
352 			if ((flags & M_NOWAIT) == 0) {
353 				VM_OBJECT_UNLOCK(kmem_object);
354 				vm_map_unlock(map);
355 				VM_WAIT;
356 				vm_map_lock(map);
357 				VM_OBJECT_LOCK(kmem_object);
358 				goto retry;
359 			}
360 			/*
361 			 * Free the pages before removing the map entry.
362 			 * They are already marked busy.  Calling
363 			 * vm_map_delete before the pages has been freed or
364 			 * unbusied will cause a deadlock.
365 			 */
366 			while (i != 0) {
367 				i -= PAGE_SIZE;
368 				m = vm_page_lookup(kmem_object,
369 						   OFF_TO_IDX(offset + i));
370 				vm_page_lock_queues();
371 				vm_page_unwire(m, 0);
372 				vm_page_free(m);
373 				vm_page_unlock_queues();
374 			}
375 			VM_OBJECT_UNLOCK(kmem_object);
376 			vm_map_delete(map, addr, addr + size);
377 			vm_map_unlock(map);
378 			return (0);
379 		}
380 		if (flags & M_ZERO && (m->flags & PG_ZERO) == 0)
381 			pmap_zero_page(m);
382 		m->valid = VM_PAGE_BITS_ALL;
383 		KASSERT((m->flags & PG_UNMANAGED) != 0,
384 		    ("kmem_malloc: page %p is managed", m));
385 	}
386 	VM_OBJECT_UNLOCK(kmem_object);
387 
388 	/*
389 	 * Mark map entry as non-pageable. Assert: vm_map_insert() will never
390 	 * be able to extend the previous entry so there will be a new entry
391 	 * exactly corresponding to this address range and it will have
392 	 * wired_count == 0.
393 	 */
394 	if (!vm_map_lookup_entry(map, addr, &entry) ||
395 	    entry->start != addr || entry->end != addr + size ||
396 	    entry->wired_count != 0)
397 		panic("kmem_malloc: entry not found or misaligned");
398 	entry->wired_count = 1;
399 
400 	/*
401 	 * At this point, the kmem_object must be unlocked because
402 	 * vm_map_simplify_entry() calls vm_object_deallocate(), which
403 	 * locks the kmem_object.
404 	 */
405 	vm_map_simplify_entry(map, entry);
406 
407 	/*
408 	 * Loop thru pages, entering them in the pmap.
409 	 */
410 	VM_OBJECT_LOCK(kmem_object);
411 	for (i = 0; i < size; i += PAGE_SIZE) {
412 		m = vm_page_lookup(kmem_object, OFF_TO_IDX(offset + i));
413 		/*
414 		 * Because this is kernel_pmap, this call will not block.
415 		 */
416 		pmap_enter(kernel_pmap, addr + i, VM_PROT_ALL, m, VM_PROT_ALL,
417 		    TRUE);
418 		vm_page_wakeup(m);
419 	}
420 	VM_OBJECT_UNLOCK(kmem_object);
421 	vm_map_unlock(map);
422 
423 	return (addr);
424 }
425 
426 /*
427  *	kmem_alloc_wait:
428  *
429  *	Allocates pageable memory from a sub-map of the kernel.  If the submap
430  *	has no room, the caller sleeps waiting for more memory in the submap.
431  *
432  *	This routine may block.
433  */
434 vm_offset_t
435 kmem_alloc_wait(map, size)
436 	vm_map_t map;
437 	vm_size_t size;
438 {
439 	vm_offset_t addr;
440 
441 	size = round_page(size);
442 
443 	for (;;) {
444 		/*
445 		 * To make this work for more than one map, use the map's lock
446 		 * to lock out sleepers/wakers.
447 		 */
448 		vm_map_lock(map);
449 		if (vm_map_findspace(map, vm_map_min(map), size, &addr) == 0)
450 			break;
451 		/* no space now; see if we can ever get space */
452 		if (vm_map_max(map) - vm_map_min(map) < size) {
453 			vm_map_unlock(map);
454 			return (0);
455 		}
456 		map->needs_wakeup = TRUE;
457 		vm_map_unlock_and_wait(map, 0);
458 	}
459 	vm_map_insert(map, NULL, 0, addr, addr + size, VM_PROT_ALL, VM_PROT_ALL, 0);
460 	vm_map_unlock(map);
461 	return (addr);
462 }
463 
464 /*
465  *	kmem_free_wakeup:
466  *
467  *	Returns memory to a submap of the kernel, and wakes up any processes
468  *	waiting for memory in that map.
469  */
470 void
471 kmem_free_wakeup(map, addr, size)
472 	vm_map_t map;
473 	vm_offset_t addr;
474 	vm_size_t size;
475 {
476 
477 	vm_map_lock(map);
478 	(void) vm_map_delete(map, trunc_page(addr), round_page(addr + size));
479 	if (map->needs_wakeup) {
480 		map->needs_wakeup = FALSE;
481 		vm_map_wakeup(map);
482 	}
483 	vm_map_unlock(map);
484 }
485 
486 /*
487  * 	kmem_init:
488  *
489  *	Create the kernel map; insert a mapping covering kernel text,
490  *	data, bss, and all space allocated thus far (`boostrap' data).  The
491  *	new map will thus map the range between VM_MIN_KERNEL_ADDRESS and
492  *	`start' as allocated, and the range between `start' and `end' as free.
493  */
494 void
495 kmem_init(start, end)
496 	vm_offset_t start, end;
497 {
498 	vm_map_t m;
499 
500 	m = vm_map_create(kernel_pmap, VM_MIN_KERNEL_ADDRESS, end);
501 	m->system_map = 1;
502 	vm_map_lock(m);
503 	/* N.B.: cannot use kgdb to debug, starting with this assignment ... */
504 	kernel_map = m;
505 	(void) vm_map_insert(m, NULL, (vm_ooffset_t) 0,
506 	    VM_MIN_KERNEL_ADDRESS, start, VM_PROT_ALL, VM_PROT_ALL,
507 	    MAP_NOFAULT);
508 	/* ... and ending with the completion of the above `insert' */
509 	vm_map_unlock(m);
510 }
511