1 /* 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. All advertising materials mentioning features or use of this software 17 * must display the following acknowledgement: 18 * This product includes software developed by the University of 19 * California, Berkeley and its contributors. 20 * 4. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * from: @(#)vm_kern.c 8.3 (Berkeley) 1/12/94 37 * 38 * 39 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 40 * All rights reserved. 41 * 42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 43 * 44 * Permission to use, copy, modify and distribute this software and 45 * its documentation is hereby granted, provided that both the copyright 46 * notice and this permission notice appear in all copies of the 47 * software, derivative works or modified versions, and any portions 48 * thereof, and that both notices appear in supporting documentation. 49 * 50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 51 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 53 * 54 * Carnegie Mellon requests users of this software to return to 55 * 56 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 57 * School of Computer Science 58 * Carnegie Mellon University 59 * Pittsburgh PA 15213-3890 60 * 61 * any improvements or extensions that they make and grant Carnegie the 62 * rights to redistribute these changes. 63 * 64 * $FreeBSD$ 65 */ 66 67 /* 68 * Kernel memory management. 69 */ 70 71 #include <sys/param.h> 72 #include <sys/systm.h> 73 #include <sys/lock.h> 74 #include <sys/mutex.h> 75 #include <sys/proc.h> 76 #include <sys/malloc.h> 77 78 #include <vm/vm.h> 79 #include <vm/vm_param.h> 80 #include <vm/pmap.h> 81 #include <vm/vm_map.h> 82 #include <vm/vm_object.h> 83 #include <vm/vm_page.h> 84 #include <vm/vm_pageout.h> 85 #include <vm/vm_extern.h> 86 87 vm_map_t kernel_map=0; 88 vm_map_t kmem_map=0; 89 vm_map_t exec_map=0; 90 vm_map_t clean_map=0; 91 vm_map_t buffer_map=0; 92 93 /* 94 * kmem_alloc_pageable: 95 * 96 * Allocate pageable memory to the kernel's address map. 97 * "map" must be kernel_map or a submap of kernel_map. 98 */ 99 100 vm_offset_t 101 kmem_alloc_pageable(map, size) 102 vm_map_t map; 103 vm_size_t size; 104 { 105 vm_offset_t addr; 106 int result; 107 int hadvmlock; 108 109 hadvmlock = mtx_owned(&vm_mtx); 110 if (!hadvmlock) 111 mtx_lock(&vm_mtx); 112 size = round_page(size); 113 addr = vm_map_min(map); 114 result = vm_map_find(map, NULL, (vm_offset_t) 0, 115 &addr, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, 0); 116 if (!hadvmlock) 117 mtx_unlock(&vm_mtx); 118 if (result != KERN_SUCCESS) { 119 return (0); 120 } 121 return (addr); 122 } 123 124 /* 125 * kmem_alloc_nofault: 126 * 127 * Same as kmem_alloc_pageable, except that it create a nofault entry. 128 */ 129 130 vm_offset_t 131 kmem_alloc_nofault(map, size) 132 vm_map_t map; 133 vm_size_t size; 134 { 135 vm_offset_t addr; 136 int result; 137 138 int hadvmlock; 139 140 hadvmlock = mtx_owned(&vm_mtx); 141 if (!hadvmlock) 142 mtx_lock(&vm_mtx); 143 size = round_page(size); 144 addr = vm_map_min(map); 145 result = vm_map_find(map, NULL, (vm_offset_t) 0, 146 &addr, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT); 147 if (!hadvmlock) 148 mtx_unlock(&vm_mtx); 149 if (result != KERN_SUCCESS) { 150 return (0); 151 } 152 return (addr); 153 } 154 155 /* 156 * Allocate wired-down memory in the kernel's address map 157 * or a submap. 158 */ 159 vm_offset_t 160 kmem_alloc(map, size) 161 vm_map_t map; 162 vm_size_t size; 163 { 164 vm_offset_t addr; 165 vm_offset_t offset; 166 vm_offset_t i; 167 int hadvmlock; 168 169 hadvmlock = mtx_owned(&vm_mtx); 170 if (!hadvmlock) 171 mtx_lock(&vm_mtx); 172 size = round_page(size); 173 174 /* 175 * Use the kernel object for wired-down kernel pages. Assume that no 176 * region of the kernel object is referenced more than once. 177 */ 178 179 /* 180 * Locate sufficient space in the map. This will give us the final 181 * virtual address for the new memory, and thus will tell us the 182 * offset within the kernel map. 183 */ 184 vm_map_lock(map); 185 if (vm_map_findspace(map, vm_map_min(map), size, &addr)) { 186 vm_map_unlock(map); 187 if (!hadvmlock) 188 mtx_unlock(&vm_mtx); 189 return (0); 190 } 191 offset = addr - VM_MIN_KERNEL_ADDRESS; 192 vm_object_reference(kernel_object); 193 vm_map_insert(map, kernel_object, offset, addr, addr + size, 194 VM_PROT_ALL, VM_PROT_ALL, 0); 195 vm_map_unlock(map); 196 197 /* 198 * Guarantee that there are pages already in this object before 199 * calling vm_map_pageable. This is to prevent the following 200 * scenario: 201 * 202 * 1) Threads have swapped out, so that there is a pager for the 203 * kernel_object. 2) The kmsg zone is empty, and so we are 204 * kmem_allocing a new page for it. 3) vm_map_pageable calls vm_fault; 205 * there is no page, but there is a pager, so we call 206 * pager_data_request. But the kmsg zone is empty, so we must 207 * kmem_alloc. 4) goto 1 5) Even if the kmsg zone is not empty: when 208 * we get the data back from the pager, it will be (very stale) 209 * non-zero data. kmem_alloc is defined to return zero-filled memory. 210 * 211 * We're intentionally not activating the pages we allocate to prevent a 212 * race with page-out. vm_map_pageable will wire the pages. 213 */ 214 215 for (i = 0; i < size; i += PAGE_SIZE) { 216 vm_page_t mem; 217 218 mem = vm_page_grab(kernel_object, OFF_TO_IDX(offset + i), 219 VM_ALLOC_ZERO | VM_ALLOC_RETRY); 220 if ((mem->flags & PG_ZERO) == 0) 221 vm_page_zero_fill(mem); 222 mem->valid = VM_PAGE_BITS_ALL; 223 vm_page_flag_clear(mem, PG_ZERO); 224 vm_page_wakeup(mem); 225 } 226 227 /* 228 * And finally, mark the data as non-pageable. 229 */ 230 231 (void) vm_map_pageable(map, (vm_offset_t) addr, addr + size, FALSE); 232 233 if (!hadvmlock) 234 mtx_unlock(&vm_mtx); 235 return (addr); 236 } 237 238 /* 239 * kmem_free: 240 * 241 * Release a region of kernel virtual memory allocated 242 * with kmem_alloc, and return the physical pages 243 * associated with that region. 244 * 245 * This routine may not block on kernel maps. 246 */ 247 void 248 kmem_free(map, addr, size) 249 vm_map_t map; 250 vm_offset_t addr; 251 vm_size_t size; 252 { 253 int hadvmlock; 254 255 hadvmlock = mtx_owned(&vm_mtx); 256 if (!hadvmlock) 257 mtx_lock(&vm_mtx); 258 259 (void) vm_map_remove(map, trunc_page(addr), round_page(addr + size)); 260 261 if (!hadvmlock) 262 mtx_unlock(&vm_mtx); 263 } 264 265 /* 266 * kmem_suballoc: 267 * 268 * Allocates a map to manage a subrange 269 * of the kernel virtual address space. 270 * 271 * Arguments are as follows: 272 * 273 * parent Map to take range from 274 * min, max Returned endpoints of map 275 * size Size of range to find 276 */ 277 vm_map_t 278 kmem_suballoc(parent, min, max, size) 279 vm_map_t parent; 280 vm_offset_t *min, *max; 281 vm_size_t size; 282 { 283 int ret; 284 vm_map_t result; 285 int hadvmlock; 286 287 hadvmlock = mtx_owned(&vm_mtx); 288 if (!hadvmlock) 289 mtx_lock(&vm_mtx); 290 291 size = round_page(size); 292 293 *min = (vm_offset_t) vm_map_min(parent); 294 ret = vm_map_find(parent, NULL, (vm_offset_t) 0, 295 min, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, 0); 296 if (ret != KERN_SUCCESS) { 297 printf("kmem_suballoc: bad status return of %d.\n", ret); 298 panic("kmem_suballoc"); 299 } 300 *max = *min + size; 301 pmap_reference(vm_map_pmap(parent)); 302 result = vm_map_create(vm_map_pmap(parent), *min, *max); 303 if (result == NULL) 304 panic("kmem_suballoc: cannot create submap"); 305 if (vm_map_submap(parent, *min, *max, result) != KERN_SUCCESS) 306 panic("kmem_suballoc: unable to change range to submap"); 307 if (!hadvmlock) 308 mtx_unlock(&vm_mtx); 309 return (result); 310 } 311 312 /* 313 * kmem_malloc: 314 * 315 * Allocate wired-down memory in the kernel's address map for the higher 316 * level kernel memory allocator (kern/kern_malloc.c). We cannot use 317 * kmem_alloc() because we may need to allocate memory at interrupt 318 * level where we cannot block (canwait == FALSE). 319 * 320 * This routine has its own private kernel submap (kmem_map) and object 321 * (kmem_object). This, combined with the fact that only malloc uses 322 * this routine, ensures that we will never block in map or object waits. 323 * 324 * Note that this still only works in a uni-processor environment and 325 * when called at splhigh(). 326 * 327 * We don't worry about expanding the map (adding entries) since entries 328 * for wired maps are statically allocated. 329 * 330 * NOTE: This routine is not supposed to block if M_NOWAIT is set, but 331 * I have not verified that it actually does not block. 332 * 333 * `map' is ONLY allowed to be kmem_map or one of the mbuf submaps to 334 * which we never free. 335 */ 336 vm_offset_t 337 kmem_malloc(map, size, flags) 338 vm_map_t map; 339 vm_size_t size; 340 int flags; 341 { 342 vm_offset_t offset, i; 343 vm_map_entry_t entry; 344 vm_offset_t addr; 345 vm_page_t m; 346 int hadvmlock; 347 348 hadvmlock = mtx_owned(&vm_mtx); 349 if (!hadvmlock) 350 mtx_lock(&vm_mtx); 351 352 size = round_page(size); 353 addr = vm_map_min(map); 354 355 /* 356 * Locate sufficient space in the map. This will give us the final 357 * virtual address for the new memory, and thus will tell us the 358 * offset within the kernel map. 359 */ 360 vm_map_lock(map); 361 if (vm_map_findspace(map, vm_map_min(map), size, &addr)) { 362 vm_map_unlock(map); 363 if (map != kmem_map) { 364 printf("Out of mbuf address space!\n"); 365 printf("Consider increasing NMBCLUSTERS\n"); 366 goto bad; 367 } 368 if ((flags & M_NOWAIT) == 0) 369 panic("kmem_malloc(%ld): kmem_map too small: %ld total allocated", 370 (long)size, (long)map->size); 371 goto bad; 372 } 373 offset = addr - VM_MIN_KERNEL_ADDRESS; 374 vm_object_reference(kmem_object); 375 vm_map_insert(map, kmem_object, offset, addr, addr + size, 376 VM_PROT_ALL, VM_PROT_ALL, 0); 377 378 for (i = 0; i < size; i += PAGE_SIZE) { 379 /* 380 * Note: if M_NOWAIT specified alone, allocate from 381 * interrupt-safe queues only (just the free list). If 382 * M_ASLEEP or M_USE_RESERVE is also specified, we can also 383 * allocate from the cache. Neither of the latter two 384 * flags may be specified from an interrupt since interrupts 385 * are not allowed to mess with the cache queue. 386 */ 387 retry: 388 m = vm_page_alloc(kmem_object, OFF_TO_IDX(offset + i), 389 ((flags & (M_NOWAIT|M_ASLEEP|M_USE_RESERVE)) == M_NOWAIT) ? 390 VM_ALLOC_INTERRUPT : 391 VM_ALLOC_SYSTEM); 392 393 /* 394 * Ran out of space, free everything up and return. Don't need 395 * to lock page queues here as we know that the pages we got 396 * aren't on any queues. 397 */ 398 if (m == NULL) { 399 if ((flags & M_NOWAIT) == 0) { 400 vm_map_unlock(map); 401 VM_WAIT; 402 vm_map_lock(map); 403 goto retry; 404 } 405 vm_map_delete(map, addr, addr + size); 406 vm_map_unlock(map); 407 if (flags & M_ASLEEP) { 408 VM_AWAIT; 409 } 410 goto bad; 411 } 412 vm_page_flag_clear(m, PG_ZERO); 413 m->valid = VM_PAGE_BITS_ALL; 414 } 415 416 /* 417 * Mark map entry as non-pageable. Assert: vm_map_insert() will never 418 * be able to extend the previous entry so there will be a new entry 419 * exactly corresponding to this address range and it will have 420 * wired_count == 0. 421 */ 422 if (!vm_map_lookup_entry(map, addr, &entry) || 423 entry->start != addr || entry->end != addr + size || 424 entry->wired_count != 0) 425 panic("kmem_malloc: entry not found or misaligned"); 426 entry->wired_count = 1; 427 428 vm_map_simplify_entry(map, entry); 429 430 /* 431 * Loop thru pages, entering them in the pmap. (We cannot add them to 432 * the wired count without wrapping the vm_page_queue_lock in 433 * splimp...) 434 */ 435 for (i = 0; i < size; i += PAGE_SIZE) { 436 m = vm_page_lookup(kmem_object, OFF_TO_IDX(offset + i)); 437 vm_page_wire(m); 438 vm_page_wakeup(m); 439 /* 440 * Because this is kernel_pmap, this call will not block. 441 */ 442 pmap_enter(kernel_pmap, addr + i, m, VM_PROT_ALL, 1); 443 vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE | PG_REFERENCED); 444 } 445 vm_map_unlock(map); 446 447 if (!hadvmlock) 448 mtx_unlock(&vm_mtx); 449 return (addr); 450 451 bad: 452 if (!hadvmlock) 453 mtx_unlock(&vm_mtx); 454 return (0); 455 } 456 457 /* 458 * kmem_alloc_wait: 459 * 460 * Allocates pageable memory from a sub-map of the kernel. If the submap 461 * has no room, the caller sleeps waiting for more memory in the submap. 462 * 463 * This routine may block. 464 */ 465 466 vm_offset_t 467 kmem_alloc_wait(map, size) 468 vm_map_t map; 469 vm_size_t size; 470 { 471 vm_offset_t addr; 472 int hadvmlock; 473 474 hadvmlock = mtx_owned(&vm_mtx); 475 if (!hadvmlock) 476 mtx_lock(&vm_mtx); 477 478 size = round_page(size); 479 480 for (;;) { 481 /* 482 * To make this work for more than one map, use the map's lock 483 * to lock out sleepers/wakers. 484 */ 485 vm_map_lock(map); 486 if (vm_map_findspace(map, vm_map_min(map), size, &addr) == 0) 487 break; 488 /* no space now; see if we can ever get space */ 489 if (vm_map_max(map) - vm_map_min(map) < size) { 490 vm_map_unlock(map); 491 if (!hadvmlock) 492 mtx_unlock(&vm_mtx); 493 return (0); 494 } 495 vm_map_unlock(map); 496 msleep(map, &vm_mtx, PVM, "kmaw", 0); 497 } 498 vm_map_insert(map, NULL, (vm_offset_t) 0, addr, addr + size, VM_PROT_ALL, VM_PROT_ALL, 0); 499 vm_map_unlock(map); 500 if (!hadvmlock) 501 mtx_unlock(&vm_mtx); 502 return (addr); 503 } 504 505 /* 506 * kmem_free_wakeup: 507 * 508 * Returns memory to a submap of the kernel, and wakes up any processes 509 * waiting for memory in that map. 510 */ 511 void 512 kmem_free_wakeup(map, addr, size) 513 vm_map_t map; 514 vm_offset_t addr; 515 vm_size_t size; 516 { 517 int hadvmlock; 518 519 hadvmlock = mtx_owned(&vm_mtx); 520 if (!hadvmlock) 521 mtx_lock(&vm_mtx); 522 vm_map_lock(map); 523 (void) vm_map_delete(map, trunc_page(addr), round_page(addr + size)); 524 wakeup(map); 525 vm_map_unlock(map); 526 if (!hadvmlock) 527 mtx_unlock(&vm_mtx); 528 } 529 530 /* 531 * kmem_init: 532 * 533 * Create the kernel map; insert a mapping covering kernel text, 534 * data, bss, and all space allocated thus far (`boostrap' data). The 535 * new map will thus map the range between VM_MIN_KERNEL_ADDRESS and 536 * `start' as allocated, and the range between `start' and `end' as free. 537 */ 538 539 void 540 kmem_init(start, end) 541 vm_offset_t start, end; 542 { 543 vm_map_t m; 544 545 m = vm_map_create(kernel_pmap, VM_MIN_KERNEL_ADDRESS, end); 546 vm_map_lock(m); 547 /* N.B.: cannot use kgdb to debug, starting with this assignment ... */ 548 kernel_map = m; 549 kernel_map->system_map = 1; 550 (void) vm_map_insert(m, NULL, (vm_offset_t) 0, 551 VM_MIN_KERNEL_ADDRESS, start, VM_PROT_ALL, VM_PROT_ALL, 0); 552 /* ... and ending with the completion of the above `insert' */ 553 vm_map_unlock(m); 554 } 555