xref: /freebsd/sys/vm/vm_kern.c (revision 1b6c76a2fe091c74f08427e6c870851025a9cf67)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_kern.c	8.3 (Berkeley) 1/12/94
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  *
64  * $FreeBSD$
65  */
66 
67 /*
68  *	Kernel memory management.
69  */
70 
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/lock.h>
74 #include <sys/mutex.h>
75 #include <sys/proc.h>
76 #include <sys/malloc.h>
77 
78 #include <vm/vm.h>
79 #include <vm/vm_param.h>
80 #include <vm/pmap.h>
81 #include <vm/vm_map.h>
82 #include <vm/vm_object.h>
83 #include <vm/vm_page.h>
84 #include <vm/vm_pageout.h>
85 #include <vm/vm_extern.h>
86 
87 vm_map_t kernel_map=0;
88 vm_map_t kmem_map=0;
89 vm_map_t exec_map=0;
90 vm_map_t clean_map=0;
91 vm_map_t buffer_map=0;
92 
93 /*
94  *	kmem_alloc_pageable:
95  *
96  *	Allocate pageable memory to the kernel's address map.
97  *	"map" must be kernel_map or a submap of kernel_map.
98  */
99 
100 vm_offset_t
101 kmem_alloc_pageable(map, size)
102 	vm_map_t map;
103 	vm_size_t size;
104 {
105 	vm_offset_t addr;
106 	int result;
107 	int hadvmlock;
108 
109 	hadvmlock = mtx_owned(&vm_mtx);
110 	if (!hadvmlock)
111 		mtx_lock(&vm_mtx);
112 	size = round_page(size);
113 	addr = vm_map_min(map);
114 	result = vm_map_find(map, NULL, (vm_offset_t) 0,
115 	    &addr, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, 0);
116 	if (!hadvmlock)
117 		mtx_unlock(&vm_mtx);
118 	if (result != KERN_SUCCESS) {
119 		return (0);
120 	}
121 	return (addr);
122 }
123 
124 /*
125  *	kmem_alloc_nofault:
126  *
127  *	Same as kmem_alloc_pageable, except that it create a nofault entry.
128  */
129 
130 vm_offset_t
131 kmem_alloc_nofault(map, size)
132 	vm_map_t map;
133 	vm_size_t size;
134 {
135 	vm_offset_t addr;
136 	int result;
137 
138 	int hadvmlock;
139 
140 	hadvmlock = mtx_owned(&vm_mtx);
141 	if (!hadvmlock)
142 		mtx_lock(&vm_mtx);
143 	size = round_page(size);
144 	addr = vm_map_min(map);
145 	result = vm_map_find(map, NULL, (vm_offset_t) 0,
146 	    &addr, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
147 	if (!hadvmlock)
148 		mtx_unlock(&vm_mtx);
149 	if (result != KERN_SUCCESS) {
150 		return (0);
151 	}
152 	return (addr);
153 }
154 
155 /*
156  *	Allocate wired-down memory in the kernel's address map
157  *	or a submap.
158  */
159 vm_offset_t
160 kmem_alloc(map, size)
161 	vm_map_t map;
162 	vm_size_t size;
163 {
164 	vm_offset_t addr;
165 	vm_offset_t offset;
166 	vm_offset_t i;
167 	int hadvmlock;
168 
169 	hadvmlock = mtx_owned(&vm_mtx);
170 	if (!hadvmlock)
171 		mtx_lock(&vm_mtx);
172 	size = round_page(size);
173 
174 	/*
175 	 * Use the kernel object for wired-down kernel pages. Assume that no
176 	 * region of the kernel object is referenced more than once.
177 	 */
178 
179 	/*
180 	 * Locate sufficient space in the map.  This will give us the final
181 	 * virtual address for the new memory, and thus will tell us the
182 	 * offset within the kernel map.
183 	 */
184 	vm_map_lock(map);
185 	if (vm_map_findspace(map, vm_map_min(map), size, &addr)) {
186 		vm_map_unlock(map);
187 		if (!hadvmlock)
188 			mtx_unlock(&vm_mtx);
189 		return (0);
190 	}
191 	offset = addr - VM_MIN_KERNEL_ADDRESS;
192 	vm_object_reference(kernel_object);
193 	vm_map_insert(map, kernel_object, offset, addr, addr + size,
194 		VM_PROT_ALL, VM_PROT_ALL, 0);
195 	vm_map_unlock(map);
196 
197 	/*
198 	 * Guarantee that there are pages already in this object before
199 	 * calling vm_map_pageable.  This is to prevent the following
200 	 * scenario:
201 	 *
202 	 * 1) Threads have swapped out, so that there is a pager for the
203 	 * kernel_object. 2) The kmsg zone is empty, and so we are
204 	 * kmem_allocing a new page for it. 3) vm_map_pageable calls vm_fault;
205 	 * there is no page, but there is a pager, so we call
206 	 * pager_data_request.  But the kmsg zone is empty, so we must
207 	 * kmem_alloc. 4) goto 1 5) Even if the kmsg zone is not empty: when
208 	 * we get the data back from the pager, it will be (very stale)
209 	 * non-zero data.  kmem_alloc is defined to return zero-filled memory.
210 	 *
211 	 * We're intentionally not activating the pages we allocate to prevent a
212 	 * race with page-out.  vm_map_pageable will wire the pages.
213 	 */
214 
215 	for (i = 0; i < size; i += PAGE_SIZE) {
216 		vm_page_t mem;
217 
218 		mem = vm_page_grab(kernel_object, OFF_TO_IDX(offset + i),
219 				VM_ALLOC_ZERO | VM_ALLOC_RETRY);
220 		if ((mem->flags & PG_ZERO) == 0)
221 			vm_page_zero_fill(mem);
222 		mem->valid = VM_PAGE_BITS_ALL;
223 		vm_page_flag_clear(mem, PG_ZERO);
224 		vm_page_wakeup(mem);
225 	}
226 
227 	/*
228 	 * And finally, mark the data as non-pageable.
229 	 */
230 
231 	(void) vm_map_pageable(map, (vm_offset_t) addr, addr + size, FALSE);
232 
233 	if (!hadvmlock)
234 		mtx_unlock(&vm_mtx);
235 	return (addr);
236 }
237 
238 /*
239  *	kmem_free:
240  *
241  *	Release a region of kernel virtual memory allocated
242  *	with kmem_alloc, and return the physical pages
243  *	associated with that region.
244  *
245  *	This routine may not block on kernel maps.
246  */
247 void
248 kmem_free(map, addr, size)
249 	vm_map_t map;
250 	vm_offset_t addr;
251 	vm_size_t size;
252 {
253 	int hadvmlock;
254 
255 	hadvmlock = mtx_owned(&vm_mtx);
256 	if (!hadvmlock)
257 		mtx_lock(&vm_mtx);
258 
259 	(void) vm_map_remove(map, trunc_page(addr), round_page(addr + size));
260 
261 	if (!hadvmlock)
262 		mtx_unlock(&vm_mtx);
263 }
264 
265 /*
266  *	kmem_suballoc:
267  *
268  *	Allocates a map to manage a subrange
269  *	of the kernel virtual address space.
270  *
271  *	Arguments are as follows:
272  *
273  *	parent		Map to take range from
274  *	min, max	Returned endpoints of map
275  *	size		Size of range to find
276  */
277 vm_map_t
278 kmem_suballoc(parent, min, max, size)
279 	vm_map_t parent;
280 	vm_offset_t *min, *max;
281 	vm_size_t size;
282 {
283 	int ret;
284 	vm_map_t result;
285 	int hadvmlock;
286 
287 	hadvmlock = mtx_owned(&vm_mtx);
288 	if (!hadvmlock)
289 		mtx_lock(&vm_mtx);
290 
291 	size = round_page(size);
292 
293 	*min = (vm_offset_t) vm_map_min(parent);
294 	ret = vm_map_find(parent, NULL, (vm_offset_t) 0,
295 	    min, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, 0);
296 	if (ret != KERN_SUCCESS) {
297 		printf("kmem_suballoc: bad status return of %d.\n", ret);
298 		panic("kmem_suballoc");
299 	}
300 	*max = *min + size;
301 	pmap_reference(vm_map_pmap(parent));
302 	result = vm_map_create(vm_map_pmap(parent), *min, *max);
303 	if (result == NULL)
304 		panic("kmem_suballoc: cannot create submap");
305 	if (vm_map_submap(parent, *min, *max, result) != KERN_SUCCESS)
306 		panic("kmem_suballoc: unable to change range to submap");
307 	if (!hadvmlock)
308 		mtx_unlock(&vm_mtx);
309 	return (result);
310 }
311 
312 /*
313  *	kmem_malloc:
314  *
315  * 	Allocate wired-down memory in the kernel's address map for the higher
316  * 	level kernel memory allocator (kern/kern_malloc.c).  We cannot use
317  * 	kmem_alloc() because we may need to allocate memory at interrupt
318  * 	level where we cannot block (canwait == FALSE).
319  *
320  * 	This routine has its own private kernel submap (kmem_map) and object
321  * 	(kmem_object).  This, combined with the fact that only malloc uses
322  * 	this routine, ensures that we will never block in map or object waits.
323  *
324  * 	Note that this still only works in a uni-processor environment and
325  * 	when called at splhigh().
326  *
327  * 	We don't worry about expanding the map (adding entries) since entries
328  * 	for wired maps are statically allocated.
329  *
330  *	NOTE:  This routine is not supposed to block if M_NOWAIT is set, but
331  *	I have not verified that it actually does not block.
332  *
333  *	`map' is ONLY allowed to be kmem_map or one of the mbuf submaps to
334  *	which we never free.
335  */
336 vm_offset_t
337 kmem_malloc(map, size, flags)
338 	vm_map_t map;
339 	vm_size_t size;
340 	int flags;
341 {
342 	vm_offset_t offset, i;
343 	vm_map_entry_t entry;
344 	vm_offset_t addr;
345 	vm_page_t m;
346 	int hadvmlock;
347 
348 	hadvmlock = mtx_owned(&vm_mtx);
349 	if (!hadvmlock)
350 		mtx_lock(&vm_mtx);
351 
352 	size = round_page(size);
353 	addr = vm_map_min(map);
354 
355 	/*
356 	 * Locate sufficient space in the map.  This will give us the final
357 	 * virtual address for the new memory, and thus will tell us the
358 	 * offset within the kernel map.
359 	 */
360 	vm_map_lock(map);
361 	if (vm_map_findspace(map, vm_map_min(map), size, &addr)) {
362 		vm_map_unlock(map);
363 		if (map != kmem_map) {
364 			printf("Out of mbuf address space!\n");
365 			printf("Consider increasing NMBCLUSTERS\n");
366 			goto bad;
367 		}
368 		if ((flags & M_NOWAIT) == 0)
369 			panic("kmem_malloc(%ld): kmem_map too small: %ld total allocated",
370 				(long)size, (long)map->size);
371 		goto bad;
372 	}
373 	offset = addr - VM_MIN_KERNEL_ADDRESS;
374 	vm_object_reference(kmem_object);
375 	vm_map_insert(map, kmem_object, offset, addr, addr + size,
376 		VM_PROT_ALL, VM_PROT_ALL, 0);
377 
378 	for (i = 0; i < size; i += PAGE_SIZE) {
379 		/*
380 		 * Note: if M_NOWAIT specified alone, allocate from
381 		 * interrupt-safe queues only (just the free list).  If
382 		 * M_ASLEEP or M_USE_RESERVE is also specified, we can also
383 		 * allocate from the cache.  Neither of the latter two
384 		 * flags may be specified from an interrupt since interrupts
385 		 * are not allowed to mess with the cache queue.
386 		 */
387 retry:
388 		m = vm_page_alloc(kmem_object, OFF_TO_IDX(offset + i),
389 		    ((flags & (M_NOWAIT|M_ASLEEP|M_USE_RESERVE)) == M_NOWAIT) ?
390 			VM_ALLOC_INTERRUPT :
391 			VM_ALLOC_SYSTEM);
392 
393 		/*
394 		 * Ran out of space, free everything up and return. Don't need
395 		 * to lock page queues here as we know that the pages we got
396 		 * aren't on any queues.
397 		 */
398 		if (m == NULL) {
399 			if ((flags & M_NOWAIT) == 0) {
400 				vm_map_unlock(map);
401 				VM_WAIT;
402 				vm_map_lock(map);
403 				goto retry;
404 			}
405 			vm_map_delete(map, addr, addr + size);
406 			vm_map_unlock(map);
407 			if (flags & M_ASLEEP) {
408 				VM_AWAIT;
409 			}
410 			goto bad;
411 		}
412 		vm_page_flag_clear(m, PG_ZERO);
413 		m->valid = VM_PAGE_BITS_ALL;
414 	}
415 
416 	/*
417 	 * Mark map entry as non-pageable. Assert: vm_map_insert() will never
418 	 * be able to extend the previous entry so there will be a new entry
419 	 * exactly corresponding to this address range and it will have
420 	 * wired_count == 0.
421 	 */
422 	if (!vm_map_lookup_entry(map, addr, &entry) ||
423 	    entry->start != addr || entry->end != addr + size ||
424 	    entry->wired_count != 0)
425 		panic("kmem_malloc: entry not found or misaligned");
426 	entry->wired_count = 1;
427 
428 	vm_map_simplify_entry(map, entry);
429 
430 	/*
431 	 * Loop thru pages, entering them in the pmap. (We cannot add them to
432 	 * the wired count without wrapping the vm_page_queue_lock in
433 	 * splimp...)
434 	 */
435 	for (i = 0; i < size; i += PAGE_SIZE) {
436 		m = vm_page_lookup(kmem_object, OFF_TO_IDX(offset + i));
437 		vm_page_wire(m);
438 		vm_page_wakeup(m);
439 		/*
440 		 * Because this is kernel_pmap, this call will not block.
441 		 */
442 		pmap_enter(kernel_pmap, addr + i, m, VM_PROT_ALL, 1);
443 		vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE | PG_REFERENCED);
444 	}
445 	vm_map_unlock(map);
446 
447 	if (!hadvmlock)
448 		mtx_unlock(&vm_mtx);
449 	return (addr);
450 
451 bad:
452 	if (!hadvmlock)
453 		mtx_unlock(&vm_mtx);
454 	return (0);
455 }
456 
457 /*
458  *	kmem_alloc_wait:
459  *
460  *	Allocates pageable memory from a sub-map of the kernel.  If the submap
461  *	has no room, the caller sleeps waiting for more memory in the submap.
462  *
463  *	This routine may block.
464  */
465 
466 vm_offset_t
467 kmem_alloc_wait(map, size)
468 	vm_map_t map;
469 	vm_size_t size;
470 {
471 	vm_offset_t addr;
472 	int hadvmlock;
473 
474 	hadvmlock = mtx_owned(&vm_mtx);
475 	if (!hadvmlock)
476 		mtx_lock(&vm_mtx);
477 
478 	size = round_page(size);
479 
480 	for (;;) {
481 		/*
482 		 * To make this work for more than one map, use the map's lock
483 		 * to lock out sleepers/wakers.
484 		 */
485 		vm_map_lock(map);
486 		if (vm_map_findspace(map, vm_map_min(map), size, &addr) == 0)
487 			break;
488 		/* no space now; see if we can ever get space */
489 		if (vm_map_max(map) - vm_map_min(map) < size) {
490 			vm_map_unlock(map);
491 			if (!hadvmlock)
492 				mtx_unlock(&vm_mtx);
493 			return (0);
494 		}
495 		vm_map_unlock(map);
496 		msleep(map, &vm_mtx, PVM, "kmaw", 0);
497 	}
498 	vm_map_insert(map, NULL, (vm_offset_t) 0, addr, addr + size, VM_PROT_ALL, VM_PROT_ALL, 0);
499 	vm_map_unlock(map);
500 	if (!hadvmlock)
501 		mtx_unlock(&vm_mtx);
502 	return (addr);
503 }
504 
505 /*
506  *	kmem_free_wakeup:
507  *
508  *	Returns memory to a submap of the kernel, and wakes up any processes
509  *	waiting for memory in that map.
510  */
511 void
512 kmem_free_wakeup(map, addr, size)
513 	vm_map_t map;
514 	vm_offset_t addr;
515 	vm_size_t size;
516 {
517 	int hadvmlock;
518 
519 	hadvmlock = mtx_owned(&vm_mtx);
520 	if (!hadvmlock)
521 		mtx_lock(&vm_mtx);
522 	vm_map_lock(map);
523 	(void) vm_map_delete(map, trunc_page(addr), round_page(addr + size));
524 	wakeup(map);
525 	vm_map_unlock(map);
526 	if (!hadvmlock)
527 		mtx_unlock(&vm_mtx);
528 }
529 
530 /*
531  * 	kmem_init:
532  *
533  *	Create the kernel map; insert a mapping covering kernel text,
534  *	data, bss, and all space allocated thus far (`boostrap' data).  The
535  *	new map will thus map the range between VM_MIN_KERNEL_ADDRESS and
536  *	`start' as allocated, and the range between `start' and `end' as free.
537  */
538 
539 void
540 kmem_init(start, end)
541 	vm_offset_t start, end;
542 {
543 	vm_map_t m;
544 
545 	m = vm_map_create(kernel_pmap, VM_MIN_KERNEL_ADDRESS, end);
546 	vm_map_lock(m);
547 	/* N.B.: cannot use kgdb to debug, starting with this assignment ... */
548 	kernel_map = m;
549 	kernel_map->system_map = 1;
550 	(void) vm_map_insert(m, NULL, (vm_offset_t) 0,
551 	    VM_MIN_KERNEL_ADDRESS, start, VM_PROT_ALL, VM_PROT_ALL, 0);
552 	/* ... and ending with the completion of the above `insert' */
553 	vm_map_unlock(m);
554 }
555