xref: /freebsd/sys/vm/vm_kern.c (revision 17ee9d00bc1ae1e598c38f25826f861e4bc6c3ce)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_kern.c	8.3 (Berkeley) 1/12/94
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  *
64  * $Id: vm_kern.c,v 1.10 1995/02/02 09:08:33 davidg Exp $
65  */
66 
67 /*
68  *	Kernel memory management.
69  */
70 
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/kernel.h>
74 #include <sys/proc.h>
75 #include <sys/malloc.h>
76 
77 #include <vm/vm.h>
78 #include <vm/vm_page.h>
79 #include <vm/vm_pageout.h>
80 #include <vm/vm_kern.h>
81 
82 vm_map_t buffer_map;
83 vm_map_t kernel_map;
84 vm_map_t kmem_map;
85 vm_map_t mb_map;
86 vm_map_t io_map;
87 vm_map_t clean_map;
88 vm_map_t pager_map;
89 vm_map_t phys_map;
90 vm_map_t exec_map;
91 vm_map_t u_map;
92 
93 /*
94  *	kmem_alloc_pageable:
95  *
96  *	Allocate pageable memory to the kernel's address map.
97  *	map must be "kernel_map" below.
98  */
99 
100 vm_offset_t
101 kmem_alloc_pageable(map, size)
102 	vm_map_t map;
103 	register vm_size_t size;
104 {
105 	vm_offset_t addr;
106 	register int result;
107 
108 #if	0
109 	if (map != kernel_map)
110 		panic("kmem_alloc_pageable: not called with kernel_map");
111 #endif
112 
113 	size = round_page(size);
114 
115 	addr = vm_map_min(map);
116 	result = vm_map_find(map, NULL, (vm_offset_t) 0,
117 	    &addr, size, TRUE);
118 	if (result != KERN_SUCCESS) {
119 		return (0);
120 	}
121 	return (addr);
122 }
123 
124 /*
125  *	Allocate wired-down memory in the kernel's address map
126  *	or a submap.
127  */
128 vm_offset_t
129 kmem_alloc(map, size)
130 	register vm_map_t map;
131 	register vm_size_t size;
132 {
133 	vm_offset_t addr;
134 	register vm_offset_t offset;
135 	vm_offset_t i;
136 
137 	size = round_page(size);
138 
139 	/*
140 	 * Use the kernel object for wired-down kernel pages. Assume that no
141 	 * region of the kernel object is referenced more than once.
142 	 */
143 
144 	/*
145 	 * Locate sufficient space in the map.  This will give us the final
146 	 * virtual address for the new memory, and thus will tell us the
147 	 * offset within the kernel map.
148 	 */
149 	vm_map_lock(map);
150 	if (vm_map_findspace(map, 0, size, &addr)) {
151 		vm_map_unlock(map);
152 		return (0);
153 	}
154 	offset = addr - VM_MIN_KERNEL_ADDRESS;
155 	vm_object_reference(kernel_object);
156 	vm_map_insert(map, kernel_object, offset, addr, addr + size);
157 	vm_map_unlock(map);
158 
159 	/*
160 	 * Guarantee that there are pages already in this object before
161 	 * calling vm_map_pageable.  This is to prevent the following
162 	 * scenario:
163 	 *
164 	 * 1) Threads have swapped out, so that there is a pager for the
165 	 * kernel_object. 2) The kmsg zone is empty, and so we are
166 	 * kmem_allocing a new page for it. 3) vm_map_pageable calls vm_fault;
167 	 * there is no page, but there is a pager, so we call
168 	 * pager_data_request.  But the kmsg zone is empty, so we must
169 	 * kmem_alloc. 4) goto 1 5) Even if the kmsg zone is not empty: when
170 	 * we get the data back from the pager, it will be (very stale)
171 	 * non-zero data.  kmem_alloc is defined to return zero-filled memory.
172 	 *
173 	 * We're intentionally not activating the pages we allocate to prevent a
174 	 * race with page-out.  vm_map_pageable will wire the pages.
175 	 */
176 
177 	vm_object_lock(kernel_object);
178 	for (i = 0; i < size; i += PAGE_SIZE) {
179 		vm_page_t mem;
180 
181 		while ((mem = vm_page_alloc(kernel_object, offset + i, VM_ALLOC_NORMAL)) == NULL) {
182 			vm_object_unlock(kernel_object);
183 			VM_WAIT;
184 			vm_object_lock(kernel_object);
185 		}
186 		vm_page_zero_fill(mem);
187 		mem->flags &= ~PG_BUSY;
188 		mem->valid = VM_PAGE_BITS_ALL;
189 	}
190 	vm_object_unlock(kernel_object);
191 
192 	/*
193 	 * And finally, mark the data as non-pageable.
194 	 */
195 
196 	(void) vm_map_pageable(map, (vm_offset_t) addr, addr + size, FALSE);
197 
198 	/*
199 	 * Try to coalesce the map
200 	 */
201 	vm_map_simplify(map, addr);
202 
203 	return (addr);
204 }
205 
206 /*
207  *	kmem_free:
208  *
209  *	Release a region of kernel virtual memory allocated
210  *	with kmem_alloc, and return the physical pages
211  *	associated with that region.
212  */
213 void
214 kmem_free(map, addr, size)
215 	vm_map_t map;
216 	register vm_offset_t addr;
217 	vm_size_t size;
218 {
219 	(void) vm_map_remove(map, trunc_page(addr), round_page(addr + size));
220 }
221 
222 /*
223  *	kmem_suballoc:
224  *
225  *	Allocates a map to manage a subrange
226  *	of the kernel virtual address space.
227  *
228  *	Arguments are as follows:
229  *
230  *	parent		Map to take range from
231  *	size		Size of range to find
232  *	min, max	Returned endpoints of map
233  *	pageable	Can the region be paged
234  */
235 vm_map_t
236 kmem_suballoc(parent, min, max, size, pageable)
237 	register vm_map_t parent;
238 	vm_offset_t *min, *max;
239 	register vm_size_t size;
240 	boolean_t pageable;
241 {
242 	register int ret;
243 	vm_map_t result;
244 
245 	size = round_page(size);
246 
247 	*min = (vm_offset_t) vm_map_min(parent);
248 	ret = vm_map_find(parent, NULL, (vm_offset_t) 0,
249 	    min, size, TRUE);
250 	if (ret != KERN_SUCCESS) {
251 		printf("kmem_suballoc: bad status return of %d.\n", ret);
252 		panic("kmem_suballoc");
253 	}
254 	*max = *min + size;
255 	pmap_reference(vm_map_pmap(parent));
256 	result = vm_map_create(vm_map_pmap(parent), *min, *max, pageable);
257 	if (result == NULL)
258 		panic("kmem_suballoc: cannot create submap");
259 	if ((ret = vm_map_submap(parent, *min, *max, result)) != KERN_SUCCESS)
260 		panic("kmem_suballoc: unable to change range to submap");
261 	return (result);
262 }
263 
264 /*
265  * Allocate wired-down memory in the kernel's address map for the higher
266  * level kernel memory allocator (kern/kern_malloc.c).  We cannot use
267  * kmem_alloc() because we may need to allocate memory at interrupt
268  * level where we cannot block (canwait == FALSE).
269  *
270  * This routine has its own private kernel submap (kmem_map) and object
271  * (kmem_object).  This, combined with the fact that only malloc uses
272  * this routine, ensures that we will never block in map or object waits.
273  *
274  * Note that this still only works in a uni-processor environment and
275  * when called at splhigh().
276  *
277  * We don't worry about expanding the map (adding entries) since entries
278  * for wired maps are statically allocated.
279  */
280 vm_offset_t
281 kmem_malloc(map, size, waitflag)
282 	register vm_map_t map;
283 	register vm_size_t size;
284 	boolean_t waitflag;
285 {
286 	register vm_offset_t offset, i;
287 	vm_map_entry_t entry;
288 	vm_offset_t addr;
289 	vm_page_t m;
290 
291 	if (map != kmem_map && map != mb_map)
292 		panic("kern_malloc_alloc: map != {kmem,mb}_map");
293 
294 	size = round_page(size);
295 	addr = vm_map_min(map);
296 
297 	/*
298 	 * Locate sufficient space in the map.  This will give us the final
299 	 * virtual address for the new memory, and thus will tell us the
300 	 * offset within the kernel map.
301 	 */
302 	vm_map_lock(map);
303 	if (vm_map_findspace(map, 0, size, &addr)) {
304 		vm_map_unlock(map);
305 #if 0
306 		if (canwait)	/* XXX  should wait */
307 			panic("kmem_malloc: %s too small",
308 			    map == kmem_map ? "kmem_map" : "mb_map");
309 #endif
310 		if (waitflag == M_WAITOK)
311 			panic("kmem_malloc: map too small");
312 		return (0);
313 	}
314 	offset = addr - vm_map_min(kmem_map);
315 	vm_object_reference(kmem_object);
316 	vm_map_insert(map, kmem_object, offset, addr, addr + size);
317 
318 	/*
319 	 * If we can wait, just mark the range as wired (will fault pages as
320 	 * necessary).
321 	 */
322 	if (waitflag == M_WAITOK) {
323 		vm_map_unlock(map);
324 		(void) vm_map_pageable(map, (vm_offset_t) addr, addr + size,
325 		    FALSE);
326 		vm_map_simplify(map, addr);
327 		return (addr);
328 	}
329 	/*
330 	 * If we cannot wait then we must allocate all memory up front,
331 	 * pulling it off the active queue to prevent pageout.
332 	 */
333 	vm_object_lock(kmem_object);
334 	for (i = 0; i < size; i += PAGE_SIZE) {
335 		m = vm_page_alloc(kmem_object, offset + i,
336 			(waitflag == M_NOWAIT) ? VM_ALLOC_INTERRUPT : VM_ALLOC_SYSTEM);
337 
338 		/*
339 		 * Ran out of space, free everything up and return. Don't need
340 		 * to lock page queues here as we know that the pages we got
341 		 * aren't on any queues.
342 		 */
343 		if (m == NULL) {
344 			while (i != 0) {
345 				i -= PAGE_SIZE;
346 				m = vm_page_lookup(kmem_object, offset + i);
347 				vm_page_free(m);
348 			}
349 			vm_object_unlock(kmem_object);
350 			vm_map_delete(map, addr, addr + size);
351 			vm_map_unlock(map);
352 			return (0);
353 		}
354 #if 0
355 		vm_page_zero_fill(m);
356 #endif
357 		m->flags &= ~PG_BUSY;
358 		m->valid = VM_PAGE_BITS_ALL;
359 	}
360 	vm_object_unlock(kmem_object);
361 
362 	/*
363 	 * Mark map entry as non-pageable. Assert: vm_map_insert() will never
364 	 * be able to extend the previous entry so there will be a new entry
365 	 * exactly corresponding to this address range and it will have
366 	 * wired_count == 0.
367 	 */
368 	if (!vm_map_lookup_entry(map, addr, &entry) ||
369 	    entry->start != addr || entry->end != addr + size ||
370 	    entry->wired_count)
371 		panic("kmem_malloc: entry not found or misaligned");
372 	entry->wired_count++;
373 
374 	/*
375 	 * Loop thru pages, entering them in the pmap. (We cannot add them to
376 	 * the wired count without wrapping the vm_page_queue_lock in
377 	 * splimp...)
378 	 */
379 	for (i = 0; i < size; i += PAGE_SIZE) {
380 		vm_object_lock(kmem_object);
381 		m = vm_page_lookup(kmem_object, offset + i);
382 		vm_object_unlock(kmem_object);
383 		pmap_kenter(addr + i, VM_PAGE_TO_PHYS(m));
384 	}
385 	vm_map_unlock(map);
386 
387 	vm_map_simplify(map, addr);
388 	return (addr);
389 }
390 
391 /*
392  *	kmem_alloc_wait
393  *
394  *	Allocates pageable memory from a sub-map of the kernel.  If the submap
395  *	has no room, the caller sleeps waiting for more memory in the submap.
396  *
397  */
398 vm_offset_t
399 kmem_alloc_wait(map, size)
400 	vm_map_t map;
401 	vm_size_t size;
402 {
403 	vm_offset_t addr;
404 
405 	size = round_page(size);
406 
407 	for (;;) {
408 		/*
409 		 * To make this work for more than one map, use the map's lock
410 		 * to lock out sleepers/wakers.
411 		 */
412 		vm_map_lock(map);
413 		if (vm_map_findspace(map, 0, size, &addr) == 0)
414 			break;
415 		/* no space now; see if we can ever get space */
416 		if (vm_map_max(map) - vm_map_min(map) < size) {
417 			vm_map_unlock(map);
418 			return (0);
419 		}
420 		assert_wait((int) map, TRUE);
421 		vm_map_unlock(map);
422 		thread_block("kmaw");
423 	}
424 	vm_map_insert(map, NULL, (vm_offset_t) 0, addr, addr + size);
425 	vm_map_unlock(map);
426 	return (addr);
427 }
428 
429 /*
430  *	kmem_free_wakeup
431  *
432  *	Returns memory to a submap of the kernel, and wakes up any threads
433  *	waiting for memory in that map.
434  */
435 void
436 kmem_free_wakeup(map, addr, size)
437 	vm_map_t map;
438 	vm_offset_t addr;
439 	vm_size_t size;
440 {
441 	vm_map_lock(map);
442 	(void) vm_map_delete(map, trunc_page(addr), round_page(addr + size));
443 	thread_wakeup((int) map);
444 	vm_map_unlock(map);
445 }
446 
447 /*
448  * Create the kernel map; insert a mapping covering kernel text, data, bss,
449  * and all space allocated thus far (`boostrap' data).  The new map will thus
450  * map the range between VM_MIN_KERNEL_ADDRESS and `start' as allocated, and
451  * the range between `start' and `end' as free.
452  */
453 void
454 kmem_init(start, end)
455 	vm_offset_t start, end;
456 {
457 	register vm_map_t m;
458 
459 	m = vm_map_create(kernel_pmap, VM_MIN_KERNEL_ADDRESS, end, FALSE);
460 	vm_map_lock(m);
461 	/* N.B.: cannot use kgdb to debug, starting with this assignment ... */
462 	kernel_map = m;
463 	(void) vm_map_insert(m, NULL, (vm_offset_t) 0,
464 	    VM_MIN_KERNEL_ADDRESS, start);
465 	/* ... and ending with the completion of the above `insert' */
466 	vm_map_unlock(m);
467 }
468