1 /* 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. All advertising materials mentioning features or use of this software 17 * must display the following acknowledgement: 18 * This product includes software developed by the University of 19 * California, Berkeley and its contributors. 20 * 4. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * from: @(#)vm_kern.c 8.3 (Berkeley) 1/12/94 37 * 38 * 39 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 40 * All rights reserved. 41 * 42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 43 * 44 * Permission to use, copy, modify and distribute this software and 45 * its documentation is hereby granted, provided that both the copyright 46 * notice and this permission notice appear in all copies of the 47 * software, derivative works or modified versions, and any portions 48 * thereof, and that both notices appear in supporting documentation. 49 * 50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 51 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 53 * 54 * Carnegie Mellon requests users of this software to return to 55 * 56 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 57 * School of Computer Science 58 * Carnegie Mellon University 59 * Pittsburgh PA 15213-3890 60 * 61 * any improvements or extensions that they make and grant Carnegie the 62 * rights to redistribute these changes. 63 * 64 * $Id: vm_kern.c,v 1.10 1995/02/02 09:08:33 davidg Exp $ 65 */ 66 67 /* 68 * Kernel memory management. 69 */ 70 71 #include <sys/param.h> 72 #include <sys/systm.h> 73 #include <sys/kernel.h> 74 #include <sys/proc.h> 75 #include <sys/malloc.h> 76 77 #include <vm/vm.h> 78 #include <vm/vm_page.h> 79 #include <vm/vm_pageout.h> 80 #include <vm/vm_kern.h> 81 82 vm_map_t buffer_map; 83 vm_map_t kernel_map; 84 vm_map_t kmem_map; 85 vm_map_t mb_map; 86 vm_map_t io_map; 87 vm_map_t clean_map; 88 vm_map_t pager_map; 89 vm_map_t phys_map; 90 vm_map_t exec_map; 91 vm_map_t u_map; 92 93 /* 94 * kmem_alloc_pageable: 95 * 96 * Allocate pageable memory to the kernel's address map. 97 * map must be "kernel_map" below. 98 */ 99 100 vm_offset_t 101 kmem_alloc_pageable(map, size) 102 vm_map_t map; 103 register vm_size_t size; 104 { 105 vm_offset_t addr; 106 register int result; 107 108 #if 0 109 if (map != kernel_map) 110 panic("kmem_alloc_pageable: not called with kernel_map"); 111 #endif 112 113 size = round_page(size); 114 115 addr = vm_map_min(map); 116 result = vm_map_find(map, NULL, (vm_offset_t) 0, 117 &addr, size, TRUE); 118 if (result != KERN_SUCCESS) { 119 return (0); 120 } 121 return (addr); 122 } 123 124 /* 125 * Allocate wired-down memory in the kernel's address map 126 * or a submap. 127 */ 128 vm_offset_t 129 kmem_alloc(map, size) 130 register vm_map_t map; 131 register vm_size_t size; 132 { 133 vm_offset_t addr; 134 register vm_offset_t offset; 135 vm_offset_t i; 136 137 size = round_page(size); 138 139 /* 140 * Use the kernel object for wired-down kernel pages. Assume that no 141 * region of the kernel object is referenced more than once. 142 */ 143 144 /* 145 * Locate sufficient space in the map. This will give us the final 146 * virtual address for the new memory, and thus will tell us the 147 * offset within the kernel map. 148 */ 149 vm_map_lock(map); 150 if (vm_map_findspace(map, 0, size, &addr)) { 151 vm_map_unlock(map); 152 return (0); 153 } 154 offset = addr - VM_MIN_KERNEL_ADDRESS; 155 vm_object_reference(kernel_object); 156 vm_map_insert(map, kernel_object, offset, addr, addr + size); 157 vm_map_unlock(map); 158 159 /* 160 * Guarantee that there are pages already in this object before 161 * calling vm_map_pageable. This is to prevent the following 162 * scenario: 163 * 164 * 1) Threads have swapped out, so that there is a pager for the 165 * kernel_object. 2) The kmsg zone is empty, and so we are 166 * kmem_allocing a new page for it. 3) vm_map_pageable calls vm_fault; 167 * there is no page, but there is a pager, so we call 168 * pager_data_request. But the kmsg zone is empty, so we must 169 * kmem_alloc. 4) goto 1 5) Even if the kmsg zone is not empty: when 170 * we get the data back from the pager, it will be (very stale) 171 * non-zero data. kmem_alloc is defined to return zero-filled memory. 172 * 173 * We're intentionally not activating the pages we allocate to prevent a 174 * race with page-out. vm_map_pageable will wire the pages. 175 */ 176 177 vm_object_lock(kernel_object); 178 for (i = 0; i < size; i += PAGE_SIZE) { 179 vm_page_t mem; 180 181 while ((mem = vm_page_alloc(kernel_object, offset + i, VM_ALLOC_NORMAL)) == NULL) { 182 vm_object_unlock(kernel_object); 183 VM_WAIT; 184 vm_object_lock(kernel_object); 185 } 186 vm_page_zero_fill(mem); 187 mem->flags &= ~PG_BUSY; 188 mem->valid = VM_PAGE_BITS_ALL; 189 } 190 vm_object_unlock(kernel_object); 191 192 /* 193 * And finally, mark the data as non-pageable. 194 */ 195 196 (void) vm_map_pageable(map, (vm_offset_t) addr, addr + size, FALSE); 197 198 /* 199 * Try to coalesce the map 200 */ 201 vm_map_simplify(map, addr); 202 203 return (addr); 204 } 205 206 /* 207 * kmem_free: 208 * 209 * Release a region of kernel virtual memory allocated 210 * with kmem_alloc, and return the physical pages 211 * associated with that region. 212 */ 213 void 214 kmem_free(map, addr, size) 215 vm_map_t map; 216 register vm_offset_t addr; 217 vm_size_t size; 218 { 219 (void) vm_map_remove(map, trunc_page(addr), round_page(addr + size)); 220 } 221 222 /* 223 * kmem_suballoc: 224 * 225 * Allocates a map to manage a subrange 226 * of the kernel virtual address space. 227 * 228 * Arguments are as follows: 229 * 230 * parent Map to take range from 231 * size Size of range to find 232 * min, max Returned endpoints of map 233 * pageable Can the region be paged 234 */ 235 vm_map_t 236 kmem_suballoc(parent, min, max, size, pageable) 237 register vm_map_t parent; 238 vm_offset_t *min, *max; 239 register vm_size_t size; 240 boolean_t pageable; 241 { 242 register int ret; 243 vm_map_t result; 244 245 size = round_page(size); 246 247 *min = (vm_offset_t) vm_map_min(parent); 248 ret = vm_map_find(parent, NULL, (vm_offset_t) 0, 249 min, size, TRUE); 250 if (ret != KERN_SUCCESS) { 251 printf("kmem_suballoc: bad status return of %d.\n", ret); 252 panic("kmem_suballoc"); 253 } 254 *max = *min + size; 255 pmap_reference(vm_map_pmap(parent)); 256 result = vm_map_create(vm_map_pmap(parent), *min, *max, pageable); 257 if (result == NULL) 258 panic("kmem_suballoc: cannot create submap"); 259 if ((ret = vm_map_submap(parent, *min, *max, result)) != KERN_SUCCESS) 260 panic("kmem_suballoc: unable to change range to submap"); 261 return (result); 262 } 263 264 /* 265 * Allocate wired-down memory in the kernel's address map for the higher 266 * level kernel memory allocator (kern/kern_malloc.c). We cannot use 267 * kmem_alloc() because we may need to allocate memory at interrupt 268 * level where we cannot block (canwait == FALSE). 269 * 270 * This routine has its own private kernel submap (kmem_map) and object 271 * (kmem_object). This, combined with the fact that only malloc uses 272 * this routine, ensures that we will never block in map or object waits. 273 * 274 * Note that this still only works in a uni-processor environment and 275 * when called at splhigh(). 276 * 277 * We don't worry about expanding the map (adding entries) since entries 278 * for wired maps are statically allocated. 279 */ 280 vm_offset_t 281 kmem_malloc(map, size, waitflag) 282 register vm_map_t map; 283 register vm_size_t size; 284 boolean_t waitflag; 285 { 286 register vm_offset_t offset, i; 287 vm_map_entry_t entry; 288 vm_offset_t addr; 289 vm_page_t m; 290 291 if (map != kmem_map && map != mb_map) 292 panic("kern_malloc_alloc: map != {kmem,mb}_map"); 293 294 size = round_page(size); 295 addr = vm_map_min(map); 296 297 /* 298 * Locate sufficient space in the map. This will give us the final 299 * virtual address for the new memory, and thus will tell us the 300 * offset within the kernel map. 301 */ 302 vm_map_lock(map); 303 if (vm_map_findspace(map, 0, size, &addr)) { 304 vm_map_unlock(map); 305 #if 0 306 if (canwait) /* XXX should wait */ 307 panic("kmem_malloc: %s too small", 308 map == kmem_map ? "kmem_map" : "mb_map"); 309 #endif 310 if (waitflag == M_WAITOK) 311 panic("kmem_malloc: map too small"); 312 return (0); 313 } 314 offset = addr - vm_map_min(kmem_map); 315 vm_object_reference(kmem_object); 316 vm_map_insert(map, kmem_object, offset, addr, addr + size); 317 318 /* 319 * If we can wait, just mark the range as wired (will fault pages as 320 * necessary). 321 */ 322 if (waitflag == M_WAITOK) { 323 vm_map_unlock(map); 324 (void) vm_map_pageable(map, (vm_offset_t) addr, addr + size, 325 FALSE); 326 vm_map_simplify(map, addr); 327 return (addr); 328 } 329 /* 330 * If we cannot wait then we must allocate all memory up front, 331 * pulling it off the active queue to prevent pageout. 332 */ 333 vm_object_lock(kmem_object); 334 for (i = 0; i < size; i += PAGE_SIZE) { 335 m = vm_page_alloc(kmem_object, offset + i, 336 (waitflag == M_NOWAIT) ? VM_ALLOC_INTERRUPT : VM_ALLOC_SYSTEM); 337 338 /* 339 * Ran out of space, free everything up and return. Don't need 340 * to lock page queues here as we know that the pages we got 341 * aren't on any queues. 342 */ 343 if (m == NULL) { 344 while (i != 0) { 345 i -= PAGE_SIZE; 346 m = vm_page_lookup(kmem_object, offset + i); 347 vm_page_free(m); 348 } 349 vm_object_unlock(kmem_object); 350 vm_map_delete(map, addr, addr + size); 351 vm_map_unlock(map); 352 return (0); 353 } 354 #if 0 355 vm_page_zero_fill(m); 356 #endif 357 m->flags &= ~PG_BUSY; 358 m->valid = VM_PAGE_BITS_ALL; 359 } 360 vm_object_unlock(kmem_object); 361 362 /* 363 * Mark map entry as non-pageable. Assert: vm_map_insert() will never 364 * be able to extend the previous entry so there will be a new entry 365 * exactly corresponding to this address range and it will have 366 * wired_count == 0. 367 */ 368 if (!vm_map_lookup_entry(map, addr, &entry) || 369 entry->start != addr || entry->end != addr + size || 370 entry->wired_count) 371 panic("kmem_malloc: entry not found or misaligned"); 372 entry->wired_count++; 373 374 /* 375 * Loop thru pages, entering them in the pmap. (We cannot add them to 376 * the wired count without wrapping the vm_page_queue_lock in 377 * splimp...) 378 */ 379 for (i = 0; i < size; i += PAGE_SIZE) { 380 vm_object_lock(kmem_object); 381 m = vm_page_lookup(kmem_object, offset + i); 382 vm_object_unlock(kmem_object); 383 pmap_kenter(addr + i, VM_PAGE_TO_PHYS(m)); 384 } 385 vm_map_unlock(map); 386 387 vm_map_simplify(map, addr); 388 return (addr); 389 } 390 391 /* 392 * kmem_alloc_wait 393 * 394 * Allocates pageable memory from a sub-map of the kernel. If the submap 395 * has no room, the caller sleeps waiting for more memory in the submap. 396 * 397 */ 398 vm_offset_t 399 kmem_alloc_wait(map, size) 400 vm_map_t map; 401 vm_size_t size; 402 { 403 vm_offset_t addr; 404 405 size = round_page(size); 406 407 for (;;) { 408 /* 409 * To make this work for more than one map, use the map's lock 410 * to lock out sleepers/wakers. 411 */ 412 vm_map_lock(map); 413 if (vm_map_findspace(map, 0, size, &addr) == 0) 414 break; 415 /* no space now; see if we can ever get space */ 416 if (vm_map_max(map) - vm_map_min(map) < size) { 417 vm_map_unlock(map); 418 return (0); 419 } 420 assert_wait((int) map, TRUE); 421 vm_map_unlock(map); 422 thread_block("kmaw"); 423 } 424 vm_map_insert(map, NULL, (vm_offset_t) 0, addr, addr + size); 425 vm_map_unlock(map); 426 return (addr); 427 } 428 429 /* 430 * kmem_free_wakeup 431 * 432 * Returns memory to a submap of the kernel, and wakes up any threads 433 * waiting for memory in that map. 434 */ 435 void 436 kmem_free_wakeup(map, addr, size) 437 vm_map_t map; 438 vm_offset_t addr; 439 vm_size_t size; 440 { 441 vm_map_lock(map); 442 (void) vm_map_delete(map, trunc_page(addr), round_page(addr + size)); 443 thread_wakeup((int) map); 444 vm_map_unlock(map); 445 } 446 447 /* 448 * Create the kernel map; insert a mapping covering kernel text, data, bss, 449 * and all space allocated thus far (`boostrap' data). The new map will thus 450 * map the range between VM_MIN_KERNEL_ADDRESS and `start' as allocated, and 451 * the range between `start' and `end' as free. 452 */ 453 void 454 kmem_init(start, end) 455 vm_offset_t start, end; 456 { 457 register vm_map_t m; 458 459 m = vm_map_create(kernel_pmap, VM_MIN_KERNEL_ADDRESS, end, FALSE); 460 vm_map_lock(m); 461 /* N.B.: cannot use kgdb to debug, starting with this assignment ... */ 462 kernel_map = m; 463 (void) vm_map_insert(m, NULL, (vm_offset_t) 0, 464 VM_MIN_KERNEL_ADDRESS, start); 465 /* ... and ending with the completion of the above `insert' */ 466 vm_map_unlock(m); 467 } 468