1 /*- 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * from: @(#)vm_kern.c 8.3 (Berkeley) 1/12/94 33 * 34 * 35 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 36 * All rights reserved. 37 * 38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 39 * 40 * Permission to use, copy, modify and distribute this software and 41 * its documentation is hereby granted, provided that both the copyright 42 * notice and this permission notice appear in all copies of the 43 * software, derivative works or modified versions, and any portions 44 * thereof, and that both notices appear in supporting documentation. 45 * 46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 47 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 49 * 50 * Carnegie Mellon requests users of this software to return to 51 * 52 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 53 * School of Computer Science 54 * Carnegie Mellon University 55 * Pittsburgh PA 15213-3890 56 * 57 * any improvements or extensions that they make and grant Carnegie the 58 * rights to redistribute these changes. 59 */ 60 61 /* 62 * Kernel memory management. 63 */ 64 65 #include <sys/cdefs.h> 66 __FBSDID("$FreeBSD$"); 67 68 #include <sys/param.h> 69 #include <sys/systm.h> 70 #include <sys/kernel.h> /* for ticks and hz */ 71 #include <sys/eventhandler.h> 72 #include <sys/lock.h> 73 #include <sys/mutex.h> 74 #include <sys/proc.h> 75 #include <sys/malloc.h> 76 #include <sys/sysctl.h> 77 78 #include <vm/vm.h> 79 #include <vm/vm_param.h> 80 #include <vm/pmap.h> 81 #include <vm/vm_map.h> 82 #include <vm/vm_object.h> 83 #include <vm/vm_page.h> 84 #include <vm/vm_pageout.h> 85 #include <vm/vm_extern.h> 86 #include <vm/uma.h> 87 88 vm_map_t kernel_map=0; 89 vm_map_t kmem_map=0; 90 vm_map_t exec_map=0; 91 vm_map_t pipe_map; 92 vm_map_t buffer_map=0; 93 94 const void *zero_region; 95 CTASSERT((ZERO_REGION_SIZE & PAGE_MASK) == 0); 96 97 /* 98 * kmem_alloc_nofault: 99 * 100 * Allocate a virtual address range with no underlying object and 101 * no initial mapping to physical memory. Any mapping from this 102 * range to physical memory must be explicitly created prior to 103 * its use, typically with pmap_qenter(). Any attempt to create 104 * a mapping on demand through vm_fault() will result in a panic. 105 */ 106 vm_offset_t 107 kmem_alloc_nofault(map, size) 108 vm_map_t map; 109 vm_size_t size; 110 { 111 vm_offset_t addr; 112 int result; 113 114 size = round_page(size); 115 addr = vm_map_min(map); 116 result = vm_map_find(map, NULL, 0, &addr, size, VMFS_ANY_SPACE, 117 VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT); 118 if (result != KERN_SUCCESS) { 119 return (0); 120 } 121 return (addr); 122 } 123 124 /* 125 * kmem_alloc_nofault_space: 126 * 127 * Allocate a virtual address range with no underlying object and 128 * no initial mapping to physical memory within the specified 129 * address space. Any mapping from this range to physical memory 130 * must be explicitly created prior to its use, typically with 131 * pmap_qenter(). Any attempt to create a mapping on demand 132 * through vm_fault() will result in a panic. 133 */ 134 vm_offset_t 135 kmem_alloc_nofault_space(map, size, find_space) 136 vm_map_t map; 137 vm_size_t size; 138 int find_space; 139 { 140 vm_offset_t addr; 141 int result; 142 143 size = round_page(size); 144 addr = vm_map_min(map); 145 result = vm_map_find(map, NULL, 0, &addr, size, find_space, 146 VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT); 147 if (result != KERN_SUCCESS) { 148 return (0); 149 } 150 return (addr); 151 } 152 153 /* 154 * Allocate wired-down memory in the kernel's address map 155 * or a submap. 156 */ 157 vm_offset_t 158 kmem_alloc(map, size) 159 vm_map_t map; 160 vm_size_t size; 161 { 162 vm_offset_t addr; 163 vm_offset_t offset; 164 165 size = round_page(size); 166 167 /* 168 * Use the kernel object for wired-down kernel pages. Assume that no 169 * region of the kernel object is referenced more than once. 170 */ 171 172 /* 173 * Locate sufficient space in the map. This will give us the final 174 * virtual address for the new memory, and thus will tell us the 175 * offset within the kernel map. 176 */ 177 vm_map_lock(map); 178 if (vm_map_findspace(map, vm_map_min(map), size, &addr)) { 179 vm_map_unlock(map); 180 return (0); 181 } 182 offset = addr - VM_MIN_KERNEL_ADDRESS; 183 vm_object_reference(kernel_object); 184 vm_map_insert(map, kernel_object, offset, addr, addr + size, 185 VM_PROT_ALL, VM_PROT_ALL, 0); 186 vm_map_unlock(map); 187 188 /* 189 * And finally, mark the data as non-pageable. 190 */ 191 (void) vm_map_wire(map, addr, addr + size, 192 VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES); 193 194 return (addr); 195 } 196 197 /* 198 * Allocates a region from the kernel address map and physical pages 199 * within the specified address range to the kernel object. Creates a 200 * wired mapping from this region to these pages, and returns the 201 * region's starting virtual address. The allocated pages are not 202 * necessarily physically contiguous. If M_ZERO is specified through the 203 * given flags, then the pages are zeroed before they are mapped. 204 */ 205 vm_offset_t 206 kmem_alloc_attr(vm_map_t map, vm_size_t size, int flags, vm_paddr_t low, 207 vm_paddr_t high, vm_memattr_t memattr) 208 { 209 vm_object_t object = kernel_object; 210 vm_offset_t addr; 211 vm_ooffset_t end_offset, offset; 212 vm_page_t m; 213 int pflags, tries; 214 215 size = round_page(size); 216 vm_map_lock(map); 217 if (vm_map_findspace(map, vm_map_min(map), size, &addr)) { 218 vm_map_unlock(map); 219 return (0); 220 } 221 offset = addr - VM_MIN_KERNEL_ADDRESS; 222 vm_object_reference(object); 223 vm_map_insert(map, object, offset, addr, addr + size, VM_PROT_ALL, 224 VM_PROT_ALL, 0); 225 if ((flags & (M_NOWAIT | M_USE_RESERVE)) == M_NOWAIT) 226 pflags = VM_ALLOC_INTERRUPT | VM_ALLOC_NOBUSY; 227 else 228 pflags = VM_ALLOC_SYSTEM | VM_ALLOC_NOBUSY; 229 if (flags & M_ZERO) 230 pflags |= VM_ALLOC_ZERO; 231 VM_OBJECT_LOCK(object); 232 end_offset = offset + size; 233 for (; offset < end_offset; offset += PAGE_SIZE) { 234 tries = 0; 235 retry: 236 m = vm_page_alloc_contig(object, OFF_TO_IDX(offset), pflags, 1, 237 low, high, PAGE_SIZE, 0, memattr); 238 if (m == NULL) { 239 VM_OBJECT_UNLOCK(object); 240 if (tries < ((flags & M_NOWAIT) != 0 ? 1 : 3)) { 241 vm_map_unlock(map); 242 vm_pageout_grow_cache(tries, low, high); 243 vm_map_lock(map); 244 VM_OBJECT_LOCK(object); 245 tries++; 246 goto retry; 247 } 248 249 /* 250 * Since the pages that were allocated by any previous 251 * iterations of this loop are not busy, they can be 252 * freed by vm_object_page_remove(), which is called 253 * by vm_map_delete(). 254 */ 255 vm_map_delete(map, addr, addr + size); 256 vm_map_unlock(map); 257 return (0); 258 } 259 if ((flags & M_ZERO) && (m->flags & PG_ZERO) == 0) 260 pmap_zero_page(m); 261 m->valid = VM_PAGE_BITS_ALL; 262 } 263 VM_OBJECT_UNLOCK(object); 264 vm_map_unlock(map); 265 vm_map_wire(map, addr, addr + size, VM_MAP_WIRE_SYSTEM | 266 VM_MAP_WIRE_NOHOLES); 267 return (addr); 268 } 269 270 /* 271 * Allocates a region from the kernel address map and physically 272 * contiguous pages within the specified address range to the kernel 273 * object. Creates a wired mapping from this region to these pages, and 274 * returns the region's starting virtual address. If M_ZERO is specified 275 * through the given flags, then the pages are zeroed before they are 276 * mapped. 277 */ 278 vm_offset_t 279 kmem_alloc_contig(vm_map_t map, vm_size_t size, int flags, vm_paddr_t low, 280 vm_paddr_t high, u_long alignment, vm_paddr_t boundary, 281 vm_memattr_t memattr) 282 { 283 vm_object_t object = kernel_object; 284 vm_offset_t addr; 285 vm_ooffset_t offset; 286 vm_page_t end_m, m; 287 int pflags, tries; 288 289 size = round_page(size); 290 vm_map_lock(map); 291 if (vm_map_findspace(map, vm_map_min(map), size, &addr)) { 292 vm_map_unlock(map); 293 return (0); 294 } 295 offset = addr - VM_MIN_KERNEL_ADDRESS; 296 vm_object_reference(object); 297 vm_map_insert(map, object, offset, addr, addr + size, VM_PROT_ALL, 298 VM_PROT_ALL, 0); 299 if ((flags & (M_NOWAIT | M_USE_RESERVE)) == M_NOWAIT) 300 pflags = VM_ALLOC_INTERRUPT | VM_ALLOC_NOBUSY; 301 else 302 pflags = VM_ALLOC_SYSTEM | VM_ALLOC_NOBUSY; 303 if (flags & M_ZERO) 304 pflags |= VM_ALLOC_ZERO; 305 if (flags & M_NODUMP) 306 pflags |= VM_ALLOC_NODUMP; 307 VM_OBJECT_LOCK(object); 308 tries = 0; 309 retry: 310 m = vm_page_alloc_contig(object, OFF_TO_IDX(offset), pflags, 311 atop(size), low, high, alignment, boundary, memattr); 312 if (m == NULL) { 313 VM_OBJECT_UNLOCK(object); 314 if (tries < ((flags & M_NOWAIT) != 0 ? 1 : 3)) { 315 vm_map_unlock(map); 316 vm_pageout_grow_cache(tries, low, high); 317 vm_map_lock(map); 318 VM_OBJECT_LOCK(object); 319 tries++; 320 goto retry; 321 } 322 vm_map_delete(map, addr, addr + size); 323 vm_map_unlock(map); 324 return (0); 325 } 326 end_m = m + atop(size); 327 for (; m < end_m; m++) { 328 if ((flags & M_ZERO) && (m->flags & PG_ZERO) == 0) 329 pmap_zero_page(m); 330 m->valid = VM_PAGE_BITS_ALL; 331 } 332 VM_OBJECT_UNLOCK(object); 333 vm_map_unlock(map); 334 vm_map_wire(map, addr, addr + size, VM_MAP_WIRE_SYSTEM | 335 VM_MAP_WIRE_NOHOLES); 336 return (addr); 337 } 338 339 /* 340 * kmem_free: 341 * 342 * Release a region of kernel virtual memory allocated 343 * with kmem_alloc, and return the physical pages 344 * associated with that region. 345 * 346 * This routine may not block on kernel maps. 347 */ 348 void 349 kmem_free(map, addr, size) 350 vm_map_t map; 351 vm_offset_t addr; 352 vm_size_t size; 353 { 354 355 (void) vm_map_remove(map, trunc_page(addr), round_page(addr + size)); 356 } 357 358 /* 359 * kmem_suballoc: 360 * 361 * Allocates a map to manage a subrange 362 * of the kernel virtual address space. 363 * 364 * Arguments are as follows: 365 * 366 * parent Map to take range from 367 * min, max Returned endpoints of map 368 * size Size of range to find 369 * superpage_align Request that min is superpage aligned 370 */ 371 vm_map_t 372 kmem_suballoc(vm_map_t parent, vm_offset_t *min, vm_offset_t *max, 373 vm_size_t size, boolean_t superpage_align) 374 { 375 int ret; 376 vm_map_t result; 377 378 size = round_page(size); 379 380 *min = vm_map_min(parent); 381 ret = vm_map_find(parent, NULL, 0, min, size, superpage_align ? 382 VMFS_ALIGNED_SPACE : VMFS_ANY_SPACE, VM_PROT_ALL, VM_PROT_ALL, 383 MAP_ACC_NO_CHARGE); 384 if (ret != KERN_SUCCESS) 385 panic("kmem_suballoc: bad status return of %d", ret); 386 *max = *min + size; 387 result = vm_map_create(vm_map_pmap(parent), *min, *max); 388 if (result == NULL) 389 panic("kmem_suballoc: cannot create submap"); 390 if (vm_map_submap(parent, *min, *max, result) != KERN_SUCCESS) 391 panic("kmem_suballoc: unable to change range to submap"); 392 return (result); 393 } 394 395 /* 396 * kmem_malloc: 397 * 398 * Allocate wired-down memory in the kernel's address map for the higher 399 * level kernel memory allocator (kern/kern_malloc.c). We cannot use 400 * kmem_alloc() because we may need to allocate memory at interrupt 401 * level where we cannot block (canwait == FALSE). 402 * 403 * This routine has its own private kernel submap (kmem_map) and object 404 * (kmem_object). This, combined with the fact that only malloc uses 405 * this routine, ensures that we will never block in map or object waits. 406 * 407 * We don't worry about expanding the map (adding entries) since entries 408 * for wired maps are statically allocated. 409 * 410 * `map' is ONLY allowed to be kmem_map or one of the mbuf submaps to 411 * which we never free. 412 */ 413 vm_offset_t 414 kmem_malloc(map, size, flags) 415 vm_map_t map; 416 vm_size_t size; 417 int flags; 418 { 419 vm_offset_t addr; 420 int i, rv; 421 422 size = round_page(size); 423 addr = vm_map_min(map); 424 425 /* 426 * Locate sufficient space in the map. This will give us the final 427 * virtual address for the new memory, and thus will tell us the 428 * offset within the kernel map. 429 */ 430 vm_map_lock(map); 431 if (vm_map_findspace(map, vm_map_min(map), size, &addr)) { 432 vm_map_unlock(map); 433 if ((flags & M_NOWAIT) == 0) { 434 for (i = 0; i < 8; i++) { 435 EVENTHANDLER_INVOKE(vm_lowmem, 0); 436 uma_reclaim(); 437 vm_map_lock(map); 438 if (vm_map_findspace(map, vm_map_min(map), 439 size, &addr) == 0) { 440 break; 441 } 442 vm_map_unlock(map); 443 tsleep(&i, 0, "nokva", (hz / 4) * (i + 1)); 444 } 445 if (i == 8) { 446 panic("kmem_malloc(%ld): kmem_map too small: %ld total allocated", 447 (long)size, (long)map->size); 448 } 449 } else { 450 return (0); 451 } 452 } 453 454 rv = kmem_back(map, addr, size, flags); 455 vm_map_unlock(map); 456 return (rv == KERN_SUCCESS ? addr : 0); 457 } 458 459 /* 460 * kmem_back: 461 * 462 * Allocate physical pages for the specified virtual address range. 463 */ 464 int 465 kmem_back(vm_map_t map, vm_offset_t addr, vm_size_t size, int flags) 466 { 467 vm_offset_t offset, i; 468 vm_map_entry_t entry; 469 vm_page_t m; 470 int pflags; 471 boolean_t found; 472 473 KASSERT(vm_map_locked(map), ("kmem_back: map %p is not locked", map)); 474 offset = addr - VM_MIN_KERNEL_ADDRESS; 475 vm_object_reference(kmem_object); 476 vm_map_insert(map, kmem_object, offset, addr, addr + size, 477 VM_PROT_ALL, VM_PROT_ALL, 0); 478 479 /* 480 * Assert: vm_map_insert() will never be able to extend the 481 * previous entry so vm_map_lookup_entry() will find a new 482 * entry exactly corresponding to this address range and it 483 * will have wired_count == 0. 484 */ 485 found = vm_map_lookup_entry(map, addr, &entry); 486 KASSERT(found && entry->start == addr && entry->end == addr + size && 487 entry->wired_count == 0 && (entry->eflags & MAP_ENTRY_IN_TRANSITION) 488 == 0, ("kmem_back: entry not found or misaligned")); 489 490 if ((flags & (M_NOWAIT|M_USE_RESERVE)) == M_NOWAIT) 491 pflags = VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED; 492 else 493 pflags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED; 494 495 if (flags & M_ZERO) 496 pflags |= VM_ALLOC_ZERO; 497 if (flags & M_NODUMP) 498 pflags |= VM_ALLOC_NODUMP; 499 500 VM_OBJECT_LOCK(kmem_object); 501 for (i = 0; i < size; i += PAGE_SIZE) { 502 retry: 503 m = vm_page_alloc(kmem_object, OFF_TO_IDX(offset + i), pflags); 504 505 /* 506 * Ran out of space, free everything up and return. Don't need 507 * to lock page queues here as we know that the pages we got 508 * aren't on any queues. 509 */ 510 if (m == NULL) { 511 if ((flags & M_NOWAIT) == 0) { 512 VM_OBJECT_UNLOCK(kmem_object); 513 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 514 vm_map_unlock(map); 515 VM_WAIT; 516 vm_map_lock(map); 517 KASSERT( 518 (entry->eflags & (MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_NEEDS_WAKEUP)) == 519 MAP_ENTRY_IN_TRANSITION, 520 ("kmem_back: volatile entry")); 521 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION; 522 VM_OBJECT_LOCK(kmem_object); 523 goto retry; 524 } 525 /* 526 * Free the pages before removing the map entry. 527 * They are already marked busy. Calling 528 * vm_map_delete before the pages has been freed or 529 * unbusied will cause a deadlock. 530 */ 531 while (i != 0) { 532 i -= PAGE_SIZE; 533 m = vm_page_lookup(kmem_object, 534 OFF_TO_IDX(offset + i)); 535 vm_page_unwire(m, 0); 536 vm_page_free(m); 537 } 538 VM_OBJECT_UNLOCK(kmem_object); 539 vm_map_delete(map, addr, addr + size); 540 return (KERN_NO_SPACE); 541 } 542 if (flags & M_ZERO && (m->flags & PG_ZERO) == 0) 543 pmap_zero_page(m); 544 m->valid = VM_PAGE_BITS_ALL; 545 KASSERT((m->oflags & VPO_UNMANAGED) != 0, 546 ("kmem_malloc: page %p is managed", m)); 547 } 548 VM_OBJECT_UNLOCK(kmem_object); 549 550 /* 551 * Mark map entry as non-pageable. Repeat the assert. 552 */ 553 KASSERT(entry->start == addr && entry->end == addr + size && 554 entry->wired_count == 0, 555 ("kmem_back: entry not found or misaligned after allocation")); 556 entry->wired_count = 1; 557 558 /* 559 * At this point, the kmem_object must be unlocked because 560 * vm_map_simplify_entry() calls vm_object_deallocate(), which 561 * locks the kmem_object. 562 */ 563 vm_map_simplify_entry(map, entry); 564 565 /* 566 * Loop thru pages, entering them in the pmap. 567 */ 568 VM_OBJECT_LOCK(kmem_object); 569 for (i = 0; i < size; i += PAGE_SIZE) { 570 m = vm_page_lookup(kmem_object, OFF_TO_IDX(offset + i)); 571 /* 572 * Because this is kernel_pmap, this call will not block. 573 */ 574 pmap_enter(kernel_pmap, addr + i, VM_PROT_ALL, m, VM_PROT_ALL, 575 TRUE); 576 vm_page_wakeup(m); 577 } 578 VM_OBJECT_UNLOCK(kmem_object); 579 580 return (KERN_SUCCESS); 581 } 582 583 /* 584 * kmem_alloc_wait: 585 * 586 * Allocates pageable memory from a sub-map of the kernel. If the submap 587 * has no room, the caller sleeps waiting for more memory in the submap. 588 * 589 * This routine may block. 590 */ 591 vm_offset_t 592 kmem_alloc_wait(map, size) 593 vm_map_t map; 594 vm_size_t size; 595 { 596 vm_offset_t addr; 597 598 size = round_page(size); 599 if (!swap_reserve(size)) 600 return (0); 601 602 for (;;) { 603 /* 604 * To make this work for more than one map, use the map's lock 605 * to lock out sleepers/wakers. 606 */ 607 vm_map_lock(map); 608 if (vm_map_findspace(map, vm_map_min(map), size, &addr) == 0) 609 break; 610 /* no space now; see if we can ever get space */ 611 if (vm_map_max(map) - vm_map_min(map) < size) { 612 vm_map_unlock(map); 613 swap_release(size); 614 return (0); 615 } 616 map->needs_wakeup = TRUE; 617 vm_map_unlock_and_wait(map, 0); 618 } 619 vm_map_insert(map, NULL, 0, addr, addr + size, VM_PROT_ALL, 620 VM_PROT_ALL, MAP_ACC_CHARGED); 621 vm_map_unlock(map); 622 return (addr); 623 } 624 625 /* 626 * kmem_free_wakeup: 627 * 628 * Returns memory to a submap of the kernel, and wakes up any processes 629 * waiting for memory in that map. 630 */ 631 void 632 kmem_free_wakeup(map, addr, size) 633 vm_map_t map; 634 vm_offset_t addr; 635 vm_size_t size; 636 { 637 638 vm_map_lock(map); 639 (void) vm_map_delete(map, trunc_page(addr), round_page(addr + size)); 640 if (map->needs_wakeup) { 641 map->needs_wakeup = FALSE; 642 vm_map_wakeup(map); 643 } 644 vm_map_unlock(map); 645 } 646 647 static void 648 kmem_init_zero_region(void) 649 { 650 vm_offset_t addr, i; 651 vm_page_t m; 652 int error; 653 654 /* 655 * Map a single physical page of zeros to a larger virtual range. 656 * This requires less looping in places that want large amounts of 657 * zeros, while not using much more physical resources. 658 */ 659 addr = kmem_alloc_nofault(kernel_map, ZERO_REGION_SIZE); 660 m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | 661 VM_ALLOC_NOOBJ | VM_ALLOC_WIRED | VM_ALLOC_ZERO); 662 if ((m->flags & PG_ZERO) == 0) 663 pmap_zero_page(m); 664 for (i = 0; i < ZERO_REGION_SIZE; i += PAGE_SIZE) 665 pmap_qenter(addr + i, &m, 1); 666 error = vm_map_protect(kernel_map, addr, addr + ZERO_REGION_SIZE, 667 VM_PROT_READ, TRUE); 668 KASSERT(error == 0, ("error=%d", error)); 669 670 zero_region = (const void *)addr; 671 } 672 673 /* 674 * kmem_init: 675 * 676 * Create the kernel map; insert a mapping covering kernel text, 677 * data, bss, and all space allocated thus far (`boostrap' data). The 678 * new map will thus map the range between VM_MIN_KERNEL_ADDRESS and 679 * `start' as allocated, and the range between `start' and `end' as free. 680 */ 681 void 682 kmem_init(start, end) 683 vm_offset_t start, end; 684 { 685 vm_map_t m; 686 687 m = vm_map_create(kernel_pmap, VM_MIN_KERNEL_ADDRESS, end); 688 m->system_map = 1; 689 vm_map_lock(m); 690 /* N.B.: cannot use kgdb to debug, starting with this assignment ... */ 691 kernel_map = m; 692 (void) vm_map_insert(m, NULL, (vm_ooffset_t) 0, 693 #ifdef __amd64__ 694 KERNBASE, 695 #else 696 VM_MIN_KERNEL_ADDRESS, 697 #endif 698 start, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT); 699 /* ... and ending with the completion of the above `insert' */ 700 vm_map_unlock(m); 701 702 kmem_init_zero_region(); 703 } 704 705 #ifdef DIAGNOSTIC 706 /* 707 * Allow userspace to directly trigger the VM drain routine for testing 708 * purposes. 709 */ 710 static int 711 debug_vm_lowmem(SYSCTL_HANDLER_ARGS) 712 { 713 int error, i; 714 715 i = 0; 716 error = sysctl_handle_int(oidp, &i, 0, req); 717 if (error) 718 return (error); 719 if (i) 720 EVENTHANDLER_INVOKE(vm_lowmem, 0); 721 return (0); 722 } 723 724 SYSCTL_PROC(_debug, OID_AUTO, vm_lowmem, CTLTYPE_INT | CTLFLAG_RW, 0, 0, 725 debug_vm_lowmem, "I", "set to trigger vm_lowmem event"); 726 #endif 727