1 /* 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. All advertising materials mentioning features or use of this software 17 * must display the following acknowledgement: 18 * This product includes software developed by the University of 19 * California, Berkeley and its contributors. 20 * 4. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * from: @(#)vm_kern.c 8.3 (Berkeley) 1/12/94 37 * 38 * 39 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 40 * All rights reserved. 41 * 42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 43 * 44 * Permission to use, copy, modify and distribute this software and 45 * its documentation is hereby granted, provided that both the copyright 46 * notice and this permission notice appear in all copies of the 47 * software, derivative works or modified versions, and any portions 48 * thereof, and that both notices appear in supporting documentation. 49 * 50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 51 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 53 * 54 * Carnegie Mellon requests users of this software to return to 55 * 56 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 57 * School of Computer Science 58 * Carnegie Mellon University 59 * Pittsburgh PA 15213-3890 60 * 61 * any improvements or extensions that they make and grant Carnegie the 62 * rights to redistribute these changes. 63 * 64 * $Id: vm_kern.c,v 1.6 1994/08/07 14:53:26 davidg Exp $ 65 */ 66 67 /* 68 * Kernel memory management. 69 */ 70 71 #include <sys/param.h> 72 #include <sys/systm.h> 73 #include <sys/kernel.h> 74 #include <sys/proc.h> 75 76 #include <vm/vm.h> 77 #include <vm/vm_page.h> 78 #include <vm/vm_pageout.h> 79 #include <vm/vm_kern.h> 80 81 vm_map_t buffer_map; 82 vm_map_t kernel_map; 83 vm_map_t kmem_map; 84 vm_map_t mb_map; 85 vm_map_t io_map; 86 vm_map_t clean_map; 87 vm_map_t pager_map; 88 vm_map_t phys_map; 89 90 /* 91 * kmem_alloc_pageable: 92 * 93 * Allocate pageable memory to the kernel's address map. 94 * map must be "kernel_map" below. 95 */ 96 97 vm_offset_t kmem_alloc_pageable(map, size) 98 vm_map_t map; 99 register vm_size_t size; 100 { 101 vm_offset_t addr; 102 register int result; 103 104 #if 0 105 if (map != kernel_map) 106 panic("kmem_alloc_pageable: not called with kernel_map"); 107 #endif 108 109 size = round_page(size); 110 111 addr = vm_map_min(map); 112 result = vm_map_find(map, NULL, (vm_offset_t) 0, 113 &addr, size, TRUE); 114 if (result != KERN_SUCCESS) { 115 return(0); 116 } 117 118 return(addr); 119 } 120 121 /* 122 * Allocate wired-down memory in the kernel's address map 123 * or a submap. 124 */ 125 vm_offset_t kmem_alloc(map, size) 126 register vm_map_t map; 127 register vm_size_t size; 128 { 129 vm_offset_t addr; 130 register vm_offset_t offset; 131 vm_offset_t i; 132 133 size = round_page(size); 134 135 /* 136 * Use the kernel object for wired-down kernel pages. 137 * Assume that no region of the kernel object is 138 * referenced more than once. 139 */ 140 141 /* 142 * Locate sufficient space in the map. This will give us the 143 * final virtual address for the new memory, and thus will tell 144 * us the offset within the kernel map. 145 */ 146 vm_map_lock(map); 147 if (vm_map_findspace(map, 0, size, &addr)) { 148 vm_map_unlock(map); 149 return (0); 150 } 151 offset = addr - VM_MIN_KERNEL_ADDRESS; 152 vm_object_reference(kernel_object); 153 vm_map_insert(map, kernel_object, offset, addr, addr + size); 154 vm_map_unlock(map); 155 156 /* 157 * Guarantee that there are pages already in this object 158 * before calling vm_map_pageable. This is to prevent the 159 * following scenario: 160 * 161 * 1) Threads have swapped out, so that there is a 162 * pager for the kernel_object. 163 * 2) The kmsg zone is empty, and so we are kmem_allocing 164 * a new page for it. 165 * 3) vm_map_pageable calls vm_fault; there is no page, 166 * but there is a pager, so we call 167 * pager_data_request. But the kmsg zone is empty, 168 * so we must kmem_alloc. 169 * 4) goto 1 170 * 5) Even if the kmsg zone is not empty: when we get 171 * the data back from the pager, it will be (very 172 * stale) non-zero data. kmem_alloc is defined to 173 * return zero-filled memory. 174 * 175 * We're intentionally not activating the pages we allocate 176 * to prevent a race with page-out. vm_map_pageable will wire 177 * the pages. 178 */ 179 180 vm_object_lock(kernel_object); 181 for (i = 0 ; i < size; i+= PAGE_SIZE) { 182 vm_page_t mem; 183 184 while ((mem = vm_page_alloc(kernel_object, offset+i)) == NULL) { 185 vm_object_unlock(kernel_object); 186 VM_WAIT; 187 vm_object_lock(kernel_object); 188 } 189 vm_page_zero_fill(mem); 190 mem->flags &= ~PG_BUSY; 191 } 192 vm_object_unlock(kernel_object); 193 194 /* 195 * And finally, mark the data as non-pageable. 196 */ 197 198 (void) vm_map_pageable(map, (vm_offset_t) addr, addr + size, FALSE); 199 200 /* 201 * Try to coalesce the map 202 */ 203 204 vm_map_simplify(map, addr); 205 206 return(addr); 207 } 208 209 /* 210 * kmem_free: 211 * 212 * Release a region of kernel virtual memory allocated 213 * with kmem_alloc, and return the physical pages 214 * associated with that region. 215 */ 216 void kmem_free(map, addr, size) 217 vm_map_t map; 218 register vm_offset_t addr; 219 vm_size_t size; 220 { 221 (void) vm_map_remove(map, trunc_page(addr), round_page(addr + size)); 222 } 223 224 /* 225 * kmem_suballoc: 226 * 227 * Allocates a map to manage a subrange 228 * of the kernel virtual address space. 229 * 230 * Arguments are as follows: 231 * 232 * parent Map to take range from 233 * size Size of range to find 234 * min, max Returned endpoints of map 235 * pageable Can the region be paged 236 */ 237 vm_map_t kmem_suballoc(parent, min, max, size, pageable) 238 register vm_map_t parent; 239 vm_offset_t *min, *max; 240 register vm_size_t size; 241 boolean_t pageable; 242 { 243 register int ret; 244 vm_map_t result; 245 246 size = round_page(size); 247 248 *min = (vm_offset_t) vm_map_min(parent); 249 ret = vm_map_find(parent, NULL, (vm_offset_t) 0, 250 min, size, TRUE); 251 if (ret != KERN_SUCCESS) { 252 printf("kmem_suballoc: bad status return of %d.\n", ret); 253 panic("kmem_suballoc"); 254 } 255 *max = *min + size; 256 pmap_reference(vm_map_pmap(parent)); 257 result = vm_map_create(vm_map_pmap(parent), *min, *max, pageable); 258 if (result == NULL) 259 panic("kmem_suballoc: cannot create submap"); 260 if ((ret = vm_map_submap(parent, *min, *max, result)) != KERN_SUCCESS) 261 panic("kmem_suballoc: unable to change range to submap"); 262 return(result); 263 } 264 265 /* 266 * Allocate wired-down memory in the kernel's address map for the higher 267 * level kernel memory allocator (kern/kern_malloc.c). We cannot use 268 * kmem_alloc() because we may need to allocate memory at interrupt 269 * level where we cannot block (canwait == FALSE). 270 * 271 * This routine has its own private kernel submap (kmem_map) and object 272 * (kmem_object). This, combined with the fact that only malloc uses 273 * this routine, ensures that we will never block in map or object waits. 274 * 275 * Note that this still only works in a uni-processor environment and 276 * when called at splhigh(). 277 * 278 * We don't worry about expanding the map (adding entries) since entries 279 * for wired maps are statically allocated. 280 */ 281 vm_offset_t 282 kmem_malloc(map, size, canwait) 283 register vm_map_t map; 284 register vm_size_t size; 285 boolean_t canwait; 286 { 287 register vm_offset_t offset, i; 288 vm_map_entry_t entry; 289 vm_offset_t addr; 290 vm_page_t m; 291 292 if (map != kmem_map && map != mb_map) 293 panic("kern_malloc_alloc: map != {kmem,mb}_map"); 294 295 size = round_page(size); 296 addr = vm_map_min(map); 297 298 /* 299 * Locate sufficient space in the map. This will give us the 300 * final virtual address for the new memory, and thus will tell 301 * us the offset within the kernel map. 302 */ 303 vm_map_lock(map); 304 if (vm_map_findspace(map, 0, size, &addr)) { 305 vm_map_unlock(map); 306 #if 0 307 if (canwait) /* XXX should wait */ 308 panic("kmem_malloc: %s too small", 309 map == kmem_map ? "kmem_map" : "mb_map"); 310 #endif 311 if (canwait) 312 panic("kmem_malloc: map too small"); 313 return (0); 314 } 315 offset = addr - vm_map_min(kmem_map); 316 vm_object_reference(kmem_object); 317 vm_map_insert(map, kmem_object, offset, addr, addr + size); 318 319 /* 320 * If we can wait, just mark the range as wired 321 * (will fault pages as necessary). 322 */ 323 if (canwait) { 324 vm_map_unlock(map); 325 (void) vm_map_pageable(map, (vm_offset_t) addr, addr + size, 326 FALSE); 327 vm_map_simplify(map, addr); 328 return(addr); 329 } 330 331 /* 332 * If we cannot wait then we must allocate all memory up front, 333 * pulling it off the active queue to prevent pageout. 334 */ 335 vm_object_lock(kmem_object); 336 for (i = 0; i < size; i += PAGE_SIZE) { 337 m = vm_page_alloc(kmem_object, offset + i); 338 339 /* 340 * Ran out of space, free everything up and return. 341 * Don't need to lock page queues here as we know 342 * that the pages we got aren't on any queues. 343 */ 344 if (m == NULL) { 345 while (i != 0) { 346 i -= PAGE_SIZE; 347 m = vm_page_lookup(kmem_object, offset + i); 348 vm_page_free(m); 349 } 350 vm_object_unlock(kmem_object); 351 vm_map_delete(map, addr, addr + size); 352 vm_map_unlock(map); 353 return(0); 354 } 355 #if 0 356 vm_page_zero_fill(m); 357 #endif 358 m->flags &= ~PG_BUSY; 359 } 360 vm_object_unlock(kmem_object); 361 362 /* 363 * Mark map entry as non-pageable. 364 * Assert: vm_map_insert() will never be able to extend the previous 365 * entry so there will be a new entry exactly corresponding to this 366 * address range and it will have wired_count == 0. 367 */ 368 if (!vm_map_lookup_entry(map, addr, &entry) || 369 entry->start != addr || entry->end != addr + size || 370 entry->wired_count) 371 panic("kmem_malloc: entry not found or misaligned"); 372 entry->wired_count++; 373 374 /* 375 * Loop thru pages, entering them in the pmap. 376 * (We cannot add them to the wired count without 377 * wrapping the vm_page_queue_lock in splimp...) 378 */ 379 for (i = 0; i < size; i += PAGE_SIZE) { 380 vm_object_lock(kmem_object); 381 m = vm_page_lookup(kmem_object, offset + i); 382 vm_object_unlock(kmem_object); 383 pmap_kenter( addr + i, VM_PAGE_TO_PHYS(m)); 384 } 385 vm_map_unlock(map); 386 387 vm_map_simplify(map, addr); 388 return(addr); 389 } 390 391 /* 392 * kmem_alloc_wait 393 * 394 * Allocates pageable memory from a sub-map of the kernel. If the submap 395 * has no room, the caller sleeps waiting for more memory in the submap. 396 * 397 */ 398 vm_offset_t kmem_alloc_wait(map, size) 399 vm_map_t map; 400 vm_size_t size; 401 { 402 vm_offset_t addr; 403 404 size = round_page(size); 405 406 for (;;) { 407 /* 408 * To make this work for more than one map, 409 * use the map's lock to lock out sleepers/wakers. 410 */ 411 vm_map_lock(map); 412 if (vm_map_findspace(map, 0, size, &addr) == 0) 413 break; 414 /* no space now; see if we can ever get space */ 415 if (vm_map_max(map) - vm_map_min(map) < size) { 416 vm_map_unlock(map); 417 return (0); 418 } 419 assert_wait((int)map, TRUE); 420 vm_map_unlock(map); 421 thread_block("kmaw"); 422 } 423 vm_map_insert(map, NULL, (vm_offset_t)0, addr, addr + size); 424 vm_map_unlock(map); 425 return (addr); 426 } 427 428 /* 429 * kmem_free_wakeup 430 * 431 * Returns memory to a submap of the kernel, and wakes up any threads 432 * waiting for memory in that map. 433 */ 434 void kmem_free_wakeup(map, addr, size) 435 vm_map_t map; 436 vm_offset_t addr; 437 vm_size_t size; 438 { 439 vm_map_lock(map); 440 (void) vm_map_delete(map, trunc_page(addr), round_page(addr + size)); 441 thread_wakeup((int)map); 442 vm_map_unlock(map); 443 } 444 445 /* 446 * Create the kernel map; insert a mapping covering kernel text, data, bss, 447 * and all space allocated thus far (`boostrap' data). The new map will thus 448 * map the range between VM_MIN_KERNEL_ADDRESS and `start' as allocated, and 449 * the range between `start' and `end' as free. 450 */ 451 void kmem_init(start, end) 452 vm_offset_t start, end; 453 { 454 register vm_map_t m; 455 456 m = vm_map_create(kernel_pmap, VM_MIN_KERNEL_ADDRESS, end, FALSE); 457 vm_map_lock(m); 458 /* N.B.: cannot use kgdb to debug, starting with this assignment ... */ 459 kernel_map = m; 460 (void) vm_map_insert(m, NULL, (vm_offset_t)0, 461 VM_MIN_KERNEL_ADDRESS, start); 462 /* ... and ending with the completion of the above `insert' */ 463 vm_map_unlock(m); 464 } 465