xref: /freebsd/sys/vm/vm_kern.c (revision 09e8dea79366f1e5b3a73e8a271b26e4b6bf2e6a)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_kern.c	8.3 (Berkeley) 1/12/94
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  *
64  * $FreeBSD$
65  */
66 
67 /*
68  *	Kernel memory management.
69  */
70 
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/kernel.h>		/* for ticks and hz */
74 #include <sys/lock.h>
75 #include <sys/mutex.h>
76 #include <sys/proc.h>
77 #include <sys/malloc.h>
78 
79 #include <vm/vm.h>
80 #include <vm/vm_param.h>
81 #include <vm/pmap.h>
82 #include <vm/vm_map.h>
83 #include <vm/vm_object.h>
84 #include <vm/vm_page.h>
85 #include <vm/vm_pageout.h>
86 #include <vm/vm_extern.h>
87 
88 vm_map_t kernel_map=0;
89 vm_map_t kmem_map=0;
90 vm_map_t exec_map=0;
91 vm_map_t clean_map=0;
92 vm_map_t buffer_map=0;
93 
94 /*
95  *	kmem_alloc_pageable:
96  *
97  *	Allocate pageable memory to the kernel's address map.
98  *	"map" must be kernel_map or a submap of kernel_map.
99  *
100  * MPSAFE
101  */
102 vm_offset_t
103 kmem_alloc_pageable(map, size)
104 	vm_map_t map;
105 	vm_size_t size;
106 {
107 	vm_offset_t addr;
108 	int result;
109 
110 	size = round_page(size);
111 	addr = vm_map_min(map);
112 	result = vm_map_find(map, NULL, 0,
113 	    &addr, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, 0);
114 	if (result != KERN_SUCCESS) {
115 		return (0);
116 	}
117 	return (addr);
118 }
119 
120 /*
121  *	kmem_alloc_nofault:
122  *
123  *	Same as kmem_alloc_pageable, except that it create a nofault entry.
124  *
125  * MPSAFE
126  */
127 vm_offset_t
128 kmem_alloc_nofault(map, size)
129 	vm_map_t map;
130 	vm_size_t size;
131 {
132 	vm_offset_t addr;
133 	int result;
134 
135 	size = round_page(size);
136 	addr = vm_map_min(map);
137 	result = vm_map_find(map, NULL, 0,
138 	    &addr, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
139 	if (result != KERN_SUCCESS) {
140 		return (0);
141 	}
142 	return (addr);
143 }
144 
145 /*
146  *	Allocate wired-down memory in the kernel's address map
147  *	or a submap.
148  */
149 vm_offset_t
150 kmem_alloc(map, size)
151 	vm_map_t map;
152 	vm_size_t size;
153 {
154 	vm_offset_t addr;
155 	vm_offset_t offset;
156 	vm_offset_t i;
157 
158 	GIANT_REQUIRED;
159 
160 	size = round_page(size);
161 
162 	/*
163 	 * Use the kernel object for wired-down kernel pages. Assume that no
164 	 * region of the kernel object is referenced more than once.
165 	 */
166 
167 	/*
168 	 * Locate sufficient space in the map.  This will give us the final
169 	 * virtual address for the new memory, and thus will tell us the
170 	 * offset within the kernel map.
171 	 */
172 	vm_map_lock(map);
173 	if (vm_map_findspace(map, vm_map_min(map), size, &addr)) {
174 		vm_map_unlock(map);
175 		return (0);
176 	}
177 	offset = addr - VM_MIN_KERNEL_ADDRESS;
178 	vm_object_reference(kernel_object);
179 	vm_map_insert(map, kernel_object, offset, addr, addr + size,
180 		VM_PROT_ALL, VM_PROT_ALL, 0);
181 	vm_map_unlock(map);
182 
183 	/*
184 	 * Guarantee that there are pages already in this object before
185 	 * calling vm_map_pageable.  This is to prevent the following
186 	 * scenario:
187 	 *
188 	 * 1) Threads have swapped out, so that there is a pager for the
189 	 * kernel_object. 2) The kmsg zone is empty, and so we are
190 	 * kmem_allocing a new page for it. 3) vm_map_pageable calls vm_fault;
191 	 * there is no page, but there is a pager, so we call
192 	 * pager_data_request.  But the kmsg zone is empty, so we must
193 	 * kmem_alloc. 4) goto 1 5) Even if the kmsg zone is not empty: when
194 	 * we get the data back from the pager, it will be (very stale)
195 	 * non-zero data.  kmem_alloc is defined to return zero-filled memory.
196 	 *
197 	 * We're intentionally not activating the pages we allocate to prevent a
198 	 * race with page-out.  vm_map_pageable will wire the pages.
199 	 */
200 	for (i = 0; i < size; i += PAGE_SIZE) {
201 		vm_page_t mem;
202 
203 		mem = vm_page_grab(kernel_object, OFF_TO_IDX(offset + i),
204 				VM_ALLOC_ZERO | VM_ALLOC_RETRY);
205 		if ((mem->flags & PG_ZERO) == 0)
206 			vm_page_zero_fill(mem);
207 		mem->valid = VM_PAGE_BITS_ALL;
208 		vm_page_flag_clear(mem, PG_ZERO);
209 		vm_page_wakeup(mem);
210 	}
211 
212 	/*
213 	 * And finally, mark the data as non-pageable.
214 	 */
215 	(void) vm_map_wire(map, addr, addr + size, FALSE);
216 
217 	return (addr);
218 }
219 
220 /*
221  *	kmem_free:
222  *
223  *	Release a region of kernel virtual memory allocated
224  *	with kmem_alloc, and return the physical pages
225  *	associated with that region.
226  *
227  *	This routine may not block on kernel maps.
228  *
229  * MPSAFE
230  */
231 void
232 kmem_free(map, addr, size)
233 	vm_map_t map;
234 	vm_offset_t addr;
235 	vm_size_t size;
236 {
237 
238 	(void) vm_map_remove(map, trunc_page(addr), round_page(addr + size));
239 }
240 
241 /*
242  *	kmem_suballoc:
243  *
244  *	Allocates a map to manage a subrange
245  *	of the kernel virtual address space.
246  *
247  *	Arguments are as follows:
248  *
249  *	parent		Map to take range from
250  *	min, max	Returned endpoints of map
251  *	size		Size of range to find
252  */
253 vm_map_t
254 kmem_suballoc(parent, min, max, size)
255 	vm_map_t parent;
256 	vm_offset_t *min, *max;
257 	vm_size_t size;
258 {
259 	int ret;
260 	vm_map_t result;
261 
262 	GIANT_REQUIRED;
263 
264 	size = round_page(size);
265 
266 	*min = (vm_offset_t) vm_map_min(parent);
267 	ret = vm_map_find(parent, NULL, (vm_offset_t) 0,
268 	    min, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, 0);
269 	if (ret != KERN_SUCCESS) {
270 		printf("kmem_suballoc: bad status return of %d.\n", ret);
271 		panic("kmem_suballoc");
272 	}
273 	*max = *min + size;
274 	result = vm_map_create(vm_map_pmap(parent), *min, *max);
275 	if (result == NULL)
276 		panic("kmem_suballoc: cannot create submap");
277 	if (vm_map_submap(parent, *min, *max, result) != KERN_SUCCESS)
278 		panic("kmem_suballoc: unable to change range to submap");
279 	return (result);
280 }
281 
282 /*
283  *	kmem_malloc:
284  *
285  * 	Allocate wired-down memory in the kernel's address map for the higher
286  * 	level kernel memory allocator (kern/kern_malloc.c).  We cannot use
287  * 	kmem_alloc() because we may need to allocate memory at interrupt
288  * 	level where we cannot block (canwait == FALSE).
289  *
290  * 	This routine has its own private kernel submap (kmem_map) and object
291  * 	(kmem_object).  This, combined with the fact that only malloc uses
292  * 	this routine, ensures that we will never block in map or object waits.
293  *
294  * 	Note that this still only works in a uni-processor environment and
295  * 	when called at splhigh().
296  *
297  * 	We don't worry about expanding the map (adding entries) since entries
298  * 	for wired maps are statically allocated.
299  *
300  *	NOTE:  This routine is not supposed to block if M_NOWAIT is set, but
301  *	I have not verified that it actually does not block.
302  *
303  *	`map' is ONLY allowed to be kmem_map or one of the mbuf submaps to
304  *	which we never free.
305  */
306 vm_offset_t
307 kmem_malloc(map, size, flags)
308 	vm_map_t map;
309 	vm_size_t size;
310 	int flags;
311 {
312 	vm_offset_t offset, i;
313 	vm_map_entry_t entry;
314 	vm_offset_t addr;
315 	vm_page_t m;
316 	int pflags;
317 
318 	GIANT_REQUIRED;
319 
320 	size = round_page(size);
321 	addr = vm_map_min(map);
322 
323 	/*
324 	 * Locate sufficient space in the map.  This will give us the final
325 	 * virtual address for the new memory, and thus will tell us the
326 	 * offset within the kernel map.
327 	 */
328 	vm_map_lock(map);
329 	if (vm_map_findspace(map, vm_map_min(map), size, &addr)) {
330 		vm_map_unlock(map);
331 		if (map != kmem_map) {
332 			static int last_report; /* when we did it (in ticks) */
333 			if (ticks < last_report ||
334 			    (ticks - last_report) >= hz) {
335 				last_report = ticks;
336 				printf("Out of mbuf address space!\n");
337 				printf("Consider increasing NMBCLUSTERS\n");
338 			}
339 			goto bad;
340 		}
341 		if ((flags & M_NOWAIT) == 0)
342 			panic("kmem_malloc(%ld): kmem_map too small: %ld total allocated",
343 				(long)size, (long)map->size);
344 		goto bad;
345 	}
346 	offset = addr - VM_MIN_KERNEL_ADDRESS;
347 	vm_object_reference(kmem_object);
348 	vm_map_insert(map, kmem_object, offset, addr, addr + size,
349 		VM_PROT_ALL, VM_PROT_ALL, 0);
350 
351 	/*
352 	 * Note: if M_NOWAIT specified alone, allocate from
353 	 * interrupt-safe queues only (just the free list).  If
354 	 * M_USE_RESERVE is also specified, we can also
355 	 * allocate from the cache.  Neither of the latter two
356 	 * flags may be specified from an interrupt since interrupts
357 	 * are not allowed to mess with the cache queue.
358 	 */
359 
360 	if ((flags & (M_NOWAIT|M_USE_RESERVE)) == M_NOWAIT)
361 		pflags = VM_ALLOC_INTERRUPT;
362 	else
363 		pflags = VM_ALLOC_SYSTEM;
364 
365 	if (flags & M_ZERO)
366 		pflags |= VM_ALLOC_ZERO;
367 
368 
369 	for (i = 0; i < size; i += PAGE_SIZE) {
370 retry:
371 		m = vm_page_alloc(kmem_object, OFF_TO_IDX(offset + i), pflags);
372 
373 		/*
374 		 * Ran out of space, free everything up and return. Don't need
375 		 * to lock page queues here as we know that the pages we got
376 		 * aren't on any queues.
377 		 */
378 		if (m == NULL) {
379 			if ((flags & M_NOWAIT) == 0) {
380 				vm_map_unlock(map);
381 				VM_WAIT;
382 				vm_map_lock(map);
383 				goto retry;
384 			}
385 			/*
386 			 * Free the pages before removing the map entry.
387 			 * They are already marked busy.  Calling
388 			 * vm_map_delete before the pages has been freed or
389 			 * unbusied will cause a deadlock.
390 			 */
391 			while (i != 0) {
392 				i -= PAGE_SIZE;
393 				m = vm_page_lookup(kmem_object,
394 						   OFF_TO_IDX(offset + i));
395 				vm_page_free(m);
396 			}
397 			vm_map_delete(map, addr, addr + size);
398 			vm_map_unlock(map);
399 			goto bad;
400 		}
401 		if (flags & M_ZERO && (m->flags & PG_ZERO) == 0)
402 			vm_page_zero_fill(m);
403 		vm_page_flag_clear(m, PG_ZERO);
404 		m->valid = VM_PAGE_BITS_ALL;
405 	}
406 
407 	/*
408 	 * Mark map entry as non-pageable. Assert: vm_map_insert() will never
409 	 * be able to extend the previous entry so there will be a new entry
410 	 * exactly corresponding to this address range and it will have
411 	 * wired_count == 0.
412 	 */
413 	if (!vm_map_lookup_entry(map, addr, &entry) ||
414 	    entry->start != addr || entry->end != addr + size ||
415 	    entry->wired_count != 0)
416 		panic("kmem_malloc: entry not found or misaligned");
417 	entry->wired_count = 1;
418 
419 	vm_map_simplify_entry(map, entry);
420 
421 	/*
422 	 * Loop thru pages, entering them in the pmap. (We cannot add them to
423 	 * the wired count without wrapping the vm_page_queue_lock in
424 	 * splimp...)
425 	 */
426 	for (i = 0; i < size; i += PAGE_SIZE) {
427 		m = vm_page_lookup(kmem_object, OFF_TO_IDX(offset + i));
428 		vm_page_wire(m);
429 		vm_page_wakeup(m);
430 		/*
431 		 * Because this is kernel_pmap, this call will not block.
432 		 */
433 		pmap_enter(kernel_pmap, addr + i, m, VM_PROT_ALL, 1);
434 		vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE | PG_REFERENCED);
435 	}
436 	vm_map_unlock(map);
437 
438 	return (addr);
439 
440 bad:
441 	return (0);
442 }
443 
444 /*
445  *	kmem_alloc_wait:
446  *
447  *	Allocates pageable memory from a sub-map of the kernel.  If the submap
448  *	has no room, the caller sleeps waiting for more memory in the submap.
449  *
450  *	This routine may block.
451  */
452 vm_offset_t
453 kmem_alloc_wait(map, size)
454 	vm_map_t map;
455 	vm_size_t size;
456 {
457 	vm_offset_t addr;
458 
459 	GIANT_REQUIRED;
460 
461 	size = round_page(size);
462 
463 	for (;;) {
464 		/*
465 		 * To make this work for more than one map, use the map's lock
466 		 * to lock out sleepers/wakers.
467 		 */
468 		vm_map_lock(map);
469 		if (vm_map_findspace(map, vm_map_min(map), size, &addr) == 0)
470 			break;
471 		/* no space now; see if we can ever get space */
472 		if (vm_map_max(map) - vm_map_min(map) < size) {
473 			vm_map_unlock(map);
474 			return (0);
475 		}
476 		vm_map_unlock(map);
477 		tsleep(map, PVM, "kmaw", 0);
478 	}
479 	vm_map_insert(map, NULL, (vm_offset_t) 0, addr, addr + size, VM_PROT_ALL, VM_PROT_ALL, 0);
480 	vm_map_unlock(map);
481 	return (addr);
482 }
483 
484 /*
485  *	kmem_free_wakeup:
486  *
487  *	Returns memory to a submap of the kernel, and wakes up any processes
488  *	waiting for memory in that map.
489  */
490 void
491 kmem_free_wakeup(map, addr, size)
492 	vm_map_t map;
493 	vm_offset_t addr;
494 	vm_size_t size;
495 {
496 	GIANT_REQUIRED;
497 
498 	vm_map_lock(map);
499 	(void) vm_map_delete(map, trunc_page(addr), round_page(addr + size));
500 	wakeup(map);
501 	vm_map_unlock(map);
502 }
503 
504 /*
505  * 	kmem_init:
506  *
507  *	Create the kernel map; insert a mapping covering kernel text,
508  *	data, bss, and all space allocated thus far (`boostrap' data).  The
509  *	new map will thus map the range between VM_MIN_KERNEL_ADDRESS and
510  *	`start' as allocated, and the range between `start' and `end' as free.
511  */
512 void
513 kmem_init(start, end)
514 	vm_offset_t start, end;
515 {
516 	vm_map_t m;
517 
518 	m = vm_map_create(kernel_pmap, VM_MIN_KERNEL_ADDRESS, end);
519 	vm_map_lock(m);
520 	/* N.B.: cannot use kgdb to debug, starting with this assignment ... */
521 	kernel_map = m;
522 	kernel_map->system_map = 1;
523 	(void) vm_map_insert(m, NULL, (vm_offset_t) 0,
524 	    VM_MIN_KERNEL_ADDRESS, start, VM_PROT_ALL, VM_PROT_ALL, 0);
525 	/* ... and ending with the completion of the above `insert' */
526 	vm_map_unlock(m);
527 }
528