1 /* 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * from: @(#)vm_kern.c 8.3 (Berkeley) 1/12/94 33 * 34 * 35 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 36 * All rights reserved. 37 * 38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 39 * 40 * Permission to use, copy, modify and distribute this software and 41 * its documentation is hereby granted, provided that both the copyright 42 * notice and this permission notice appear in all copies of the 43 * software, derivative works or modified versions, and any portions 44 * thereof, and that both notices appear in supporting documentation. 45 * 46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 47 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 49 * 50 * Carnegie Mellon requests users of this software to return to 51 * 52 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 53 * School of Computer Science 54 * Carnegie Mellon University 55 * Pittsburgh PA 15213-3890 56 * 57 * any improvements or extensions that they make and grant Carnegie the 58 * rights to redistribute these changes. 59 */ 60 61 /* 62 * Kernel memory management. 63 */ 64 65 #include <sys/cdefs.h> 66 __FBSDID("$FreeBSD$"); 67 68 #include <sys/param.h> 69 #include <sys/systm.h> 70 #include <sys/kernel.h> /* for ticks and hz */ 71 #include <sys/lock.h> 72 #include <sys/mutex.h> 73 #include <sys/proc.h> 74 #include <sys/malloc.h> 75 76 #include <vm/vm.h> 77 #include <vm/vm_param.h> 78 #include <vm/pmap.h> 79 #include <vm/vm_map.h> 80 #include <vm/vm_object.h> 81 #include <vm/vm_page.h> 82 #include <vm/vm_pageout.h> 83 #include <vm/vm_extern.h> 84 85 vm_map_t kernel_map=0; 86 vm_map_t kmem_map=0; 87 vm_map_t exec_map=0; 88 vm_map_t pipe_map; 89 vm_map_t buffer_map=0; 90 91 /* 92 * kmem_alloc_pageable: 93 * 94 * Allocate pageable memory to the kernel's address map. 95 * "map" must be kernel_map or a submap of kernel_map. 96 */ 97 vm_offset_t 98 kmem_alloc_pageable(map, size) 99 vm_map_t map; 100 vm_size_t size; 101 { 102 vm_offset_t addr; 103 int result; 104 105 size = round_page(size); 106 addr = vm_map_min(map); 107 result = vm_map_find(map, NULL, 0, 108 &addr, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, 0); 109 if (result != KERN_SUCCESS) { 110 return (0); 111 } 112 return (addr); 113 } 114 115 /* 116 * kmem_alloc_nofault: 117 * 118 * Allocate a virtual address range with no underlying object and 119 * no initial mapping to physical memory. Any mapping from this 120 * range to physical memory must be explicitly created prior to 121 * its use, typically with pmap_qenter(). Any attempt to create 122 * a mapping on demand through vm_fault() will result in a panic. 123 */ 124 vm_offset_t 125 kmem_alloc_nofault(map, size) 126 vm_map_t map; 127 vm_size_t size; 128 { 129 vm_offset_t addr; 130 int result; 131 132 size = round_page(size); 133 addr = vm_map_min(map); 134 result = vm_map_find(map, NULL, 0, 135 &addr, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT); 136 if (result != KERN_SUCCESS) { 137 return (0); 138 } 139 return (addr); 140 } 141 142 /* 143 * Allocate wired-down memory in the kernel's address map 144 * or a submap. 145 */ 146 vm_offset_t 147 kmem_alloc(map, size) 148 vm_map_t map; 149 vm_size_t size; 150 { 151 vm_offset_t addr; 152 vm_offset_t offset; 153 vm_offset_t i; 154 155 size = round_page(size); 156 157 /* 158 * Use the kernel object for wired-down kernel pages. Assume that no 159 * region of the kernel object is referenced more than once. 160 */ 161 162 /* 163 * Locate sufficient space in the map. This will give us the final 164 * virtual address for the new memory, and thus will tell us the 165 * offset within the kernel map. 166 */ 167 vm_map_lock(map); 168 if (vm_map_findspace(map, vm_map_min(map), size, &addr)) { 169 vm_map_unlock(map); 170 return (0); 171 } 172 offset = addr - VM_MIN_KERNEL_ADDRESS; 173 vm_object_reference(kernel_object); 174 vm_map_insert(map, kernel_object, offset, addr, addr + size, 175 VM_PROT_ALL, VM_PROT_ALL, 0); 176 vm_map_unlock(map); 177 178 /* 179 * Guarantee that there are pages already in this object before 180 * calling vm_map_wire. This is to prevent the following 181 * scenario: 182 * 183 * 1) Threads have swapped out, so that there is a pager for the 184 * kernel_object. 2) The kmsg zone is empty, and so we are 185 * kmem_allocing a new page for it. 3) vm_map_wire calls vm_fault; 186 * there is no page, but there is a pager, so we call 187 * pager_data_request. But the kmsg zone is empty, so we must 188 * kmem_alloc. 4) goto 1 5) Even if the kmsg zone is not empty: when 189 * we get the data back from the pager, it will be (very stale) 190 * non-zero data. kmem_alloc is defined to return zero-filled memory. 191 * 192 * We're intentionally not activating the pages we allocate to prevent a 193 * race with page-out. vm_map_wire will wire the pages. 194 */ 195 VM_OBJECT_LOCK(kernel_object); 196 for (i = 0; i < size; i += PAGE_SIZE) { 197 vm_page_t mem; 198 199 mem = vm_page_grab(kernel_object, OFF_TO_IDX(offset + i), 200 VM_ALLOC_ZERO | VM_ALLOC_RETRY); 201 mem->valid = VM_PAGE_BITS_ALL; 202 vm_page_lock_queues(); 203 vm_page_unmanage(mem); 204 vm_page_wakeup(mem); 205 vm_page_unlock_queues(); 206 } 207 VM_OBJECT_UNLOCK(kernel_object); 208 209 /* 210 * And finally, mark the data as non-pageable. 211 */ 212 (void) vm_map_wire(map, addr, addr + size, 213 VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES); 214 215 return (addr); 216 } 217 218 /* 219 * kmem_free: 220 * 221 * Release a region of kernel virtual memory allocated 222 * with kmem_alloc, and return the physical pages 223 * associated with that region. 224 * 225 * This routine may not block on kernel maps. 226 */ 227 void 228 kmem_free(map, addr, size) 229 vm_map_t map; 230 vm_offset_t addr; 231 vm_size_t size; 232 { 233 234 (void) vm_map_remove(map, trunc_page(addr), round_page(addr + size)); 235 } 236 237 /* 238 * kmem_suballoc: 239 * 240 * Allocates a map to manage a subrange 241 * of the kernel virtual address space. 242 * 243 * Arguments are as follows: 244 * 245 * parent Map to take range from 246 * min, max Returned endpoints of map 247 * size Size of range to find 248 */ 249 vm_map_t 250 kmem_suballoc(parent, min, max, size) 251 vm_map_t parent; 252 vm_offset_t *min, *max; 253 vm_size_t size; 254 { 255 int ret; 256 vm_map_t result; 257 258 size = round_page(size); 259 260 *min = (vm_offset_t) vm_map_min(parent); 261 ret = vm_map_find(parent, NULL, (vm_offset_t) 0, 262 min, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, 0); 263 if (ret != KERN_SUCCESS) { 264 printf("kmem_suballoc: bad status return of %d.\n", ret); 265 panic("kmem_suballoc"); 266 } 267 *max = *min + size; 268 result = vm_map_create(vm_map_pmap(parent), *min, *max); 269 if (result == NULL) 270 panic("kmem_suballoc: cannot create submap"); 271 if (vm_map_submap(parent, *min, *max, result) != KERN_SUCCESS) 272 panic("kmem_suballoc: unable to change range to submap"); 273 return (result); 274 } 275 276 /* 277 * kmem_malloc: 278 * 279 * Allocate wired-down memory in the kernel's address map for the higher 280 * level kernel memory allocator (kern/kern_malloc.c). We cannot use 281 * kmem_alloc() because we may need to allocate memory at interrupt 282 * level where we cannot block (canwait == FALSE). 283 * 284 * This routine has its own private kernel submap (kmem_map) and object 285 * (kmem_object). This, combined with the fact that only malloc uses 286 * this routine, ensures that we will never block in map or object waits. 287 * 288 * Note that this still only works in a uni-processor environment and 289 * when called at splhigh(). 290 * 291 * We don't worry about expanding the map (adding entries) since entries 292 * for wired maps are statically allocated. 293 * 294 * NOTE: This routine is not supposed to block if M_NOWAIT is set, but 295 * I have not verified that it actually does not block. 296 * 297 * `map' is ONLY allowed to be kmem_map or one of the mbuf submaps to 298 * which we never free. 299 */ 300 vm_offset_t 301 kmem_malloc(map, size, flags) 302 vm_map_t map; 303 vm_size_t size; 304 int flags; 305 { 306 vm_offset_t offset, i; 307 vm_map_entry_t entry; 308 vm_offset_t addr; 309 vm_page_t m; 310 int pflags; 311 312 size = round_page(size); 313 addr = vm_map_min(map); 314 315 /* 316 * Locate sufficient space in the map. This will give us the final 317 * virtual address for the new memory, and thus will tell us the 318 * offset within the kernel map. 319 */ 320 vm_map_lock(map); 321 if (vm_map_findspace(map, vm_map_min(map), size, &addr)) { 322 vm_map_unlock(map); 323 if ((flags & M_NOWAIT) == 0) 324 panic("kmem_malloc(%ld): kmem_map too small: %ld total allocated", 325 (long)size, (long)map->size); 326 return (0); 327 } 328 offset = addr - VM_MIN_KERNEL_ADDRESS; 329 vm_object_reference(kmem_object); 330 vm_map_insert(map, kmem_object, offset, addr, addr + size, 331 VM_PROT_ALL, VM_PROT_ALL, 0); 332 333 /* 334 * Note: if M_NOWAIT specified alone, allocate from 335 * interrupt-safe queues only (just the free list). If 336 * M_USE_RESERVE is also specified, we can also 337 * allocate from the cache. Neither of the latter two 338 * flags may be specified from an interrupt since interrupts 339 * are not allowed to mess with the cache queue. 340 */ 341 342 if ((flags & (M_NOWAIT|M_USE_RESERVE)) == M_NOWAIT) 343 pflags = VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED; 344 else 345 pflags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED; 346 347 if (flags & M_ZERO) 348 pflags |= VM_ALLOC_ZERO; 349 350 VM_OBJECT_LOCK(kmem_object); 351 for (i = 0; i < size; i += PAGE_SIZE) { 352 retry: 353 m = vm_page_alloc(kmem_object, OFF_TO_IDX(offset + i), pflags); 354 355 /* 356 * Ran out of space, free everything up and return. Don't need 357 * to lock page queues here as we know that the pages we got 358 * aren't on any queues. 359 */ 360 if (m == NULL) { 361 if ((flags & M_NOWAIT) == 0) { 362 VM_OBJECT_UNLOCK(kmem_object); 363 vm_map_unlock(map); 364 VM_WAIT; 365 vm_map_lock(map); 366 VM_OBJECT_LOCK(kmem_object); 367 goto retry; 368 } 369 /* 370 * Free the pages before removing the map entry. 371 * They are already marked busy. Calling 372 * vm_map_delete before the pages has been freed or 373 * unbusied will cause a deadlock. 374 */ 375 while (i != 0) { 376 i -= PAGE_SIZE; 377 m = vm_page_lookup(kmem_object, 378 OFF_TO_IDX(offset + i)); 379 vm_page_lock_queues(); 380 vm_page_unwire(m, 0); 381 vm_page_free(m); 382 vm_page_unlock_queues(); 383 } 384 VM_OBJECT_UNLOCK(kmem_object); 385 vm_map_delete(map, addr, addr + size); 386 vm_map_unlock(map); 387 return (0); 388 } 389 if (flags & M_ZERO && (m->flags & PG_ZERO) == 0) 390 pmap_zero_page(m); 391 m->valid = VM_PAGE_BITS_ALL; 392 vm_page_lock_queues(); 393 vm_page_unmanage(m); 394 vm_page_unlock_queues(); 395 } 396 VM_OBJECT_UNLOCK(kmem_object); 397 398 /* 399 * Mark map entry as non-pageable. Assert: vm_map_insert() will never 400 * be able to extend the previous entry so there will be a new entry 401 * exactly corresponding to this address range and it will have 402 * wired_count == 0. 403 */ 404 if (!vm_map_lookup_entry(map, addr, &entry) || 405 entry->start != addr || entry->end != addr + size || 406 entry->wired_count != 0) 407 panic("kmem_malloc: entry not found or misaligned"); 408 entry->wired_count = 1; 409 410 /* 411 * At this point, the kmem_object must be unlocked because 412 * vm_map_simplify_entry() calls vm_object_deallocate(), which 413 * locks the kmem_object. 414 */ 415 vm_map_simplify_entry(map, entry); 416 417 /* 418 * Loop thru pages, entering them in the pmap. (We cannot add them to 419 * the wired count without wrapping the vm_page_queue_lock in 420 * splimp...) 421 */ 422 VM_OBJECT_LOCK(kmem_object); 423 for (i = 0; i < size; i += PAGE_SIZE) { 424 m = vm_page_lookup(kmem_object, OFF_TO_IDX(offset + i)); 425 /* 426 * Because this is kernel_pmap, this call will not block. 427 */ 428 pmap_enter(kernel_pmap, addr + i, m, VM_PROT_ALL, 1); 429 vm_page_lock_queues(); 430 vm_page_flag_set(m, PG_WRITEABLE | PG_REFERENCED); 431 vm_page_wakeup(m); 432 vm_page_unlock_queues(); 433 } 434 VM_OBJECT_UNLOCK(kmem_object); 435 vm_map_unlock(map); 436 437 return (addr); 438 } 439 440 /* 441 * kmem_alloc_wait: 442 * 443 * Allocates pageable memory from a sub-map of the kernel. If the submap 444 * has no room, the caller sleeps waiting for more memory in the submap. 445 * 446 * This routine may block. 447 */ 448 vm_offset_t 449 kmem_alloc_wait(map, size) 450 vm_map_t map; 451 vm_size_t size; 452 { 453 vm_offset_t addr; 454 455 size = round_page(size); 456 457 for (;;) { 458 /* 459 * To make this work for more than one map, use the map's lock 460 * to lock out sleepers/wakers. 461 */ 462 vm_map_lock(map); 463 if (vm_map_findspace(map, vm_map_min(map), size, &addr) == 0) 464 break; 465 /* no space now; see if we can ever get space */ 466 if (vm_map_max(map) - vm_map_min(map) < size) { 467 vm_map_unlock(map); 468 return (0); 469 } 470 map->needs_wakeup = TRUE; 471 vm_map_unlock_and_wait(map, FALSE); 472 } 473 vm_map_insert(map, NULL, 0, addr, addr + size, VM_PROT_ALL, VM_PROT_ALL, 0); 474 vm_map_unlock(map); 475 return (addr); 476 } 477 478 /* 479 * kmem_free_wakeup: 480 * 481 * Returns memory to a submap of the kernel, and wakes up any processes 482 * waiting for memory in that map. 483 */ 484 void 485 kmem_free_wakeup(map, addr, size) 486 vm_map_t map; 487 vm_offset_t addr; 488 vm_size_t size; 489 { 490 491 vm_map_lock(map); 492 (void) vm_map_delete(map, trunc_page(addr), round_page(addr + size)); 493 if (map->needs_wakeup) { 494 map->needs_wakeup = FALSE; 495 vm_map_wakeup(map); 496 } 497 vm_map_unlock(map); 498 } 499 500 /* 501 * kmem_init: 502 * 503 * Create the kernel map; insert a mapping covering kernel text, 504 * data, bss, and all space allocated thus far (`boostrap' data). The 505 * new map will thus map the range between VM_MIN_KERNEL_ADDRESS and 506 * `start' as allocated, and the range between `start' and `end' as free. 507 */ 508 void 509 kmem_init(start, end) 510 vm_offset_t start, end; 511 { 512 vm_map_t m; 513 514 m = vm_map_create(kernel_pmap, VM_MIN_KERNEL_ADDRESS, end); 515 m->system_map = 1; 516 vm_map_lock(m); 517 /* N.B.: cannot use kgdb to debug, starting with this assignment ... */ 518 kernel_map = m; 519 (void) vm_map_insert(m, NULL, (vm_ooffset_t) 0, 520 VM_MIN_KERNEL_ADDRESS, start, VM_PROT_ALL, VM_PROT_ALL, 0); 521 /* ... and ending with the completion of the above `insert' */ 522 vm_map_unlock(m); 523 } 524