xref: /freebsd/sys/vm/vm_kern.c (revision 099a0e588cbe1bbc56a565bf57d722621b47a866)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)vm_kern.c	8.3 (Berkeley) 1/12/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60 
61 /*
62  *	Kernel memory management.
63  */
64 
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67 
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/kernel.h>		/* for ticks and hz */
71 #include <sys/lock.h>
72 #include <sys/mutex.h>
73 #include <sys/proc.h>
74 #include <sys/malloc.h>
75 
76 #include <vm/vm.h>
77 #include <vm/vm_param.h>
78 #include <vm/pmap.h>
79 #include <vm/vm_map.h>
80 #include <vm/vm_object.h>
81 #include <vm/vm_page.h>
82 #include <vm/vm_pageout.h>
83 #include <vm/vm_extern.h>
84 
85 vm_map_t kernel_map=0;
86 vm_map_t kmem_map=0;
87 vm_map_t exec_map=0;
88 vm_map_t pipe_map;
89 vm_map_t buffer_map=0;
90 
91 /*
92  *	kmem_alloc_pageable:
93  *
94  *	Allocate pageable memory to the kernel's address map.
95  *	"map" must be kernel_map or a submap of kernel_map.
96  */
97 vm_offset_t
98 kmem_alloc_pageable(map, size)
99 	vm_map_t map;
100 	vm_size_t size;
101 {
102 	vm_offset_t addr;
103 	int result;
104 
105 	size = round_page(size);
106 	addr = vm_map_min(map);
107 	result = vm_map_find(map, NULL, 0,
108 	    &addr, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, 0);
109 	if (result != KERN_SUCCESS) {
110 		return (0);
111 	}
112 	return (addr);
113 }
114 
115 /*
116  *	kmem_alloc_nofault:
117  *
118  *	Allocate a virtual address range with no underlying object and
119  *	no initial mapping to physical memory.  Any mapping from this
120  *	range to physical memory must be explicitly created prior to
121  *	its use, typically with pmap_qenter().  Any attempt to create
122  *	a mapping on demand through vm_fault() will result in a panic.
123  */
124 vm_offset_t
125 kmem_alloc_nofault(map, size)
126 	vm_map_t map;
127 	vm_size_t size;
128 {
129 	vm_offset_t addr;
130 	int result;
131 
132 	size = round_page(size);
133 	addr = vm_map_min(map);
134 	result = vm_map_find(map, NULL, 0,
135 	    &addr, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
136 	if (result != KERN_SUCCESS) {
137 		return (0);
138 	}
139 	return (addr);
140 }
141 
142 /*
143  *	Allocate wired-down memory in the kernel's address map
144  *	or a submap.
145  */
146 vm_offset_t
147 kmem_alloc(map, size)
148 	vm_map_t map;
149 	vm_size_t size;
150 {
151 	vm_offset_t addr;
152 	vm_offset_t offset;
153 	vm_offset_t i;
154 
155 	size = round_page(size);
156 
157 	/*
158 	 * Use the kernel object for wired-down kernel pages. Assume that no
159 	 * region of the kernel object is referenced more than once.
160 	 */
161 
162 	/*
163 	 * Locate sufficient space in the map.  This will give us the final
164 	 * virtual address for the new memory, and thus will tell us the
165 	 * offset within the kernel map.
166 	 */
167 	vm_map_lock(map);
168 	if (vm_map_findspace(map, vm_map_min(map), size, &addr)) {
169 		vm_map_unlock(map);
170 		return (0);
171 	}
172 	offset = addr - VM_MIN_KERNEL_ADDRESS;
173 	vm_object_reference(kernel_object);
174 	vm_map_insert(map, kernel_object, offset, addr, addr + size,
175 		VM_PROT_ALL, VM_PROT_ALL, 0);
176 	vm_map_unlock(map);
177 
178 	/*
179 	 * Guarantee that there are pages already in this object before
180 	 * calling vm_map_wire.  This is to prevent the following
181 	 * scenario:
182 	 *
183 	 * 1) Threads have swapped out, so that there is a pager for the
184 	 * kernel_object. 2) The kmsg zone is empty, and so we are
185 	 * kmem_allocing a new page for it. 3) vm_map_wire calls vm_fault;
186 	 * there is no page, but there is a pager, so we call
187 	 * pager_data_request.  But the kmsg zone is empty, so we must
188 	 * kmem_alloc. 4) goto 1 5) Even if the kmsg zone is not empty: when
189 	 * we get the data back from the pager, it will be (very stale)
190 	 * non-zero data.  kmem_alloc is defined to return zero-filled memory.
191 	 *
192 	 * We're intentionally not activating the pages we allocate to prevent a
193 	 * race with page-out.  vm_map_wire will wire the pages.
194 	 */
195 	VM_OBJECT_LOCK(kernel_object);
196 	for (i = 0; i < size; i += PAGE_SIZE) {
197 		vm_page_t mem;
198 
199 		mem = vm_page_grab(kernel_object, OFF_TO_IDX(offset + i),
200 				VM_ALLOC_ZERO | VM_ALLOC_RETRY);
201 		mem->valid = VM_PAGE_BITS_ALL;
202 		vm_page_lock_queues();
203 		vm_page_unmanage(mem);
204 		vm_page_wakeup(mem);
205 		vm_page_unlock_queues();
206 	}
207 	VM_OBJECT_UNLOCK(kernel_object);
208 
209 	/*
210 	 * And finally, mark the data as non-pageable.
211 	 */
212 	(void) vm_map_wire(map, addr, addr + size,
213 	    VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES);
214 
215 	return (addr);
216 }
217 
218 /*
219  *	kmem_free:
220  *
221  *	Release a region of kernel virtual memory allocated
222  *	with kmem_alloc, and return the physical pages
223  *	associated with that region.
224  *
225  *	This routine may not block on kernel maps.
226  */
227 void
228 kmem_free(map, addr, size)
229 	vm_map_t map;
230 	vm_offset_t addr;
231 	vm_size_t size;
232 {
233 
234 	(void) vm_map_remove(map, trunc_page(addr), round_page(addr + size));
235 }
236 
237 /*
238  *	kmem_suballoc:
239  *
240  *	Allocates a map to manage a subrange
241  *	of the kernel virtual address space.
242  *
243  *	Arguments are as follows:
244  *
245  *	parent		Map to take range from
246  *	min, max	Returned endpoints of map
247  *	size		Size of range to find
248  */
249 vm_map_t
250 kmem_suballoc(parent, min, max, size)
251 	vm_map_t parent;
252 	vm_offset_t *min, *max;
253 	vm_size_t size;
254 {
255 	int ret;
256 	vm_map_t result;
257 
258 	size = round_page(size);
259 
260 	*min = (vm_offset_t) vm_map_min(parent);
261 	ret = vm_map_find(parent, NULL, (vm_offset_t) 0,
262 	    min, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, 0);
263 	if (ret != KERN_SUCCESS) {
264 		printf("kmem_suballoc: bad status return of %d.\n", ret);
265 		panic("kmem_suballoc");
266 	}
267 	*max = *min + size;
268 	result = vm_map_create(vm_map_pmap(parent), *min, *max);
269 	if (result == NULL)
270 		panic("kmem_suballoc: cannot create submap");
271 	if (vm_map_submap(parent, *min, *max, result) != KERN_SUCCESS)
272 		panic("kmem_suballoc: unable to change range to submap");
273 	return (result);
274 }
275 
276 /*
277  *	kmem_malloc:
278  *
279  * 	Allocate wired-down memory in the kernel's address map for the higher
280  * 	level kernel memory allocator (kern/kern_malloc.c).  We cannot use
281  * 	kmem_alloc() because we may need to allocate memory at interrupt
282  * 	level where we cannot block (canwait == FALSE).
283  *
284  * 	This routine has its own private kernel submap (kmem_map) and object
285  * 	(kmem_object).  This, combined with the fact that only malloc uses
286  * 	this routine, ensures that we will never block in map or object waits.
287  *
288  * 	Note that this still only works in a uni-processor environment and
289  * 	when called at splhigh().
290  *
291  * 	We don't worry about expanding the map (adding entries) since entries
292  * 	for wired maps are statically allocated.
293  *
294  *	NOTE:  This routine is not supposed to block if M_NOWAIT is set, but
295  *	I have not verified that it actually does not block.
296  *
297  *	`map' is ONLY allowed to be kmem_map or one of the mbuf submaps to
298  *	which we never free.
299  */
300 vm_offset_t
301 kmem_malloc(map, size, flags)
302 	vm_map_t map;
303 	vm_size_t size;
304 	int flags;
305 {
306 	vm_offset_t offset, i;
307 	vm_map_entry_t entry;
308 	vm_offset_t addr;
309 	vm_page_t m;
310 	int pflags;
311 
312 	size = round_page(size);
313 	addr = vm_map_min(map);
314 
315 	/*
316 	 * Locate sufficient space in the map.  This will give us the final
317 	 * virtual address for the new memory, and thus will tell us the
318 	 * offset within the kernel map.
319 	 */
320 	vm_map_lock(map);
321 	if (vm_map_findspace(map, vm_map_min(map), size, &addr)) {
322 		vm_map_unlock(map);
323 		if ((flags & M_NOWAIT) == 0)
324 			panic("kmem_malloc(%ld): kmem_map too small: %ld total allocated",
325 				(long)size, (long)map->size);
326 		return (0);
327 	}
328 	offset = addr - VM_MIN_KERNEL_ADDRESS;
329 	vm_object_reference(kmem_object);
330 	vm_map_insert(map, kmem_object, offset, addr, addr + size,
331 		VM_PROT_ALL, VM_PROT_ALL, 0);
332 
333 	/*
334 	 * Note: if M_NOWAIT specified alone, allocate from
335 	 * interrupt-safe queues only (just the free list).  If
336 	 * M_USE_RESERVE is also specified, we can also
337 	 * allocate from the cache.  Neither of the latter two
338 	 * flags may be specified from an interrupt since interrupts
339 	 * are not allowed to mess with the cache queue.
340 	 */
341 
342 	if ((flags & (M_NOWAIT|M_USE_RESERVE)) == M_NOWAIT)
343 		pflags = VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED;
344 	else
345 		pflags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED;
346 
347 	if (flags & M_ZERO)
348 		pflags |= VM_ALLOC_ZERO;
349 
350 	VM_OBJECT_LOCK(kmem_object);
351 	for (i = 0; i < size; i += PAGE_SIZE) {
352 retry:
353 		m = vm_page_alloc(kmem_object, OFF_TO_IDX(offset + i), pflags);
354 
355 		/*
356 		 * Ran out of space, free everything up and return. Don't need
357 		 * to lock page queues here as we know that the pages we got
358 		 * aren't on any queues.
359 		 */
360 		if (m == NULL) {
361 			if ((flags & M_NOWAIT) == 0) {
362 				VM_OBJECT_UNLOCK(kmem_object);
363 				vm_map_unlock(map);
364 				VM_WAIT;
365 				vm_map_lock(map);
366 				VM_OBJECT_LOCK(kmem_object);
367 				goto retry;
368 			}
369 			/*
370 			 * Free the pages before removing the map entry.
371 			 * They are already marked busy.  Calling
372 			 * vm_map_delete before the pages has been freed or
373 			 * unbusied will cause a deadlock.
374 			 */
375 			while (i != 0) {
376 				i -= PAGE_SIZE;
377 				m = vm_page_lookup(kmem_object,
378 						   OFF_TO_IDX(offset + i));
379 				vm_page_lock_queues();
380 				vm_page_unwire(m, 0);
381 				vm_page_free(m);
382 				vm_page_unlock_queues();
383 			}
384 			VM_OBJECT_UNLOCK(kmem_object);
385 			vm_map_delete(map, addr, addr + size);
386 			vm_map_unlock(map);
387 			return (0);
388 		}
389 		if (flags & M_ZERO && (m->flags & PG_ZERO) == 0)
390 			pmap_zero_page(m);
391 		m->valid = VM_PAGE_BITS_ALL;
392 		vm_page_lock_queues();
393 		vm_page_unmanage(m);
394 		vm_page_unlock_queues();
395 	}
396 	VM_OBJECT_UNLOCK(kmem_object);
397 
398 	/*
399 	 * Mark map entry as non-pageable. Assert: vm_map_insert() will never
400 	 * be able to extend the previous entry so there will be a new entry
401 	 * exactly corresponding to this address range and it will have
402 	 * wired_count == 0.
403 	 */
404 	if (!vm_map_lookup_entry(map, addr, &entry) ||
405 	    entry->start != addr || entry->end != addr + size ||
406 	    entry->wired_count != 0)
407 		panic("kmem_malloc: entry not found or misaligned");
408 	entry->wired_count = 1;
409 
410 	/*
411 	 * At this point, the kmem_object must be unlocked because
412 	 * vm_map_simplify_entry() calls vm_object_deallocate(), which
413 	 * locks the kmem_object.
414 	 */
415 	vm_map_simplify_entry(map, entry);
416 
417 	/*
418 	 * Loop thru pages, entering them in the pmap. (We cannot add them to
419 	 * the wired count without wrapping the vm_page_queue_lock in
420 	 * splimp...)
421 	 */
422 	VM_OBJECT_LOCK(kmem_object);
423 	for (i = 0; i < size; i += PAGE_SIZE) {
424 		m = vm_page_lookup(kmem_object, OFF_TO_IDX(offset + i));
425 		/*
426 		 * Because this is kernel_pmap, this call will not block.
427 		 */
428 		pmap_enter(kernel_pmap, addr + i, m, VM_PROT_ALL, 1);
429 		vm_page_lock_queues();
430 		vm_page_flag_set(m, PG_WRITEABLE | PG_REFERENCED);
431 		vm_page_wakeup(m);
432 		vm_page_unlock_queues();
433 	}
434 	VM_OBJECT_UNLOCK(kmem_object);
435 	vm_map_unlock(map);
436 
437 	return (addr);
438 }
439 
440 /*
441  *	kmem_alloc_wait:
442  *
443  *	Allocates pageable memory from a sub-map of the kernel.  If the submap
444  *	has no room, the caller sleeps waiting for more memory in the submap.
445  *
446  *	This routine may block.
447  */
448 vm_offset_t
449 kmem_alloc_wait(map, size)
450 	vm_map_t map;
451 	vm_size_t size;
452 {
453 	vm_offset_t addr;
454 
455 	size = round_page(size);
456 
457 	for (;;) {
458 		/*
459 		 * To make this work for more than one map, use the map's lock
460 		 * to lock out sleepers/wakers.
461 		 */
462 		vm_map_lock(map);
463 		if (vm_map_findspace(map, vm_map_min(map), size, &addr) == 0)
464 			break;
465 		/* no space now; see if we can ever get space */
466 		if (vm_map_max(map) - vm_map_min(map) < size) {
467 			vm_map_unlock(map);
468 			return (0);
469 		}
470 		map->needs_wakeup = TRUE;
471 		vm_map_unlock_and_wait(map, FALSE);
472 	}
473 	vm_map_insert(map, NULL, 0, addr, addr + size, VM_PROT_ALL, VM_PROT_ALL, 0);
474 	vm_map_unlock(map);
475 	return (addr);
476 }
477 
478 /*
479  *	kmem_free_wakeup:
480  *
481  *	Returns memory to a submap of the kernel, and wakes up any processes
482  *	waiting for memory in that map.
483  */
484 void
485 kmem_free_wakeup(map, addr, size)
486 	vm_map_t map;
487 	vm_offset_t addr;
488 	vm_size_t size;
489 {
490 
491 	vm_map_lock(map);
492 	(void) vm_map_delete(map, trunc_page(addr), round_page(addr + size));
493 	if (map->needs_wakeup) {
494 		map->needs_wakeup = FALSE;
495 		vm_map_wakeup(map);
496 	}
497 	vm_map_unlock(map);
498 }
499 
500 /*
501  * 	kmem_init:
502  *
503  *	Create the kernel map; insert a mapping covering kernel text,
504  *	data, bss, and all space allocated thus far (`boostrap' data).  The
505  *	new map will thus map the range between VM_MIN_KERNEL_ADDRESS and
506  *	`start' as allocated, and the range between `start' and `end' as free.
507  */
508 void
509 kmem_init(start, end)
510 	vm_offset_t start, end;
511 {
512 	vm_map_t m;
513 
514 	m = vm_map_create(kernel_pmap, VM_MIN_KERNEL_ADDRESS, end);
515 	m->system_map = 1;
516 	vm_map_lock(m);
517 	/* N.B.: cannot use kgdb to debug, starting with this assignment ... */
518 	kernel_map = m;
519 	(void) vm_map_insert(m, NULL, (vm_ooffset_t) 0,
520 	    VM_MIN_KERNEL_ADDRESS, start, VM_PROT_ALL, VM_PROT_ALL, 0);
521 	/* ... and ending with the completion of the above `insert' */
522 	vm_map_unlock(m);
523 }
524