xref: /freebsd/sys/vm/vm_kern.c (revision 05c7a37afb48ddd5ee1bd921a5d46fe59cc70b15)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_kern.c	8.3 (Berkeley) 1/12/94
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  *
64  * $Id: vm_kern.c,v 1.21 1996/01/19 03:59:48 dyson Exp $
65  */
66 
67 /*
68  *	Kernel memory management.
69  */
70 
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/kernel.h>
74 #include <sys/proc.h>
75 #include <sys/malloc.h>
76 #include <sys/syslog.h>
77 #include <sys/queue.h>
78 #include <sys/vmmeter.h>
79 
80 #include <vm/vm.h>
81 #include <vm/vm_param.h>
82 #include <vm/vm_prot.h>
83 #include <vm/lock.h>
84 #include <vm/pmap.h>
85 #include <vm/vm_map.h>
86 #include <vm/vm_object.h>
87 #include <vm/vm_page.h>
88 #include <vm/vm_pageout.h>
89 #include <vm/vm_kern.h>
90 #include <vm/vm_extern.h>
91 
92 vm_map_t buffer_map;
93 vm_map_t kernel_map;
94 vm_map_t kmem_map;
95 vm_map_t mb_map;
96 int mb_map_full;
97 vm_map_t io_map;
98 vm_map_t clean_map;
99 vm_map_t phys_map;
100 vm_map_t exec_map;
101 vm_map_t u_map;
102 
103 /*
104  *	kmem_alloc_pageable:
105  *
106  *	Allocate pageable memory to the kernel's address map.
107  *	"map" must be kernel_map or a submap of kernel_map.
108  */
109 
110 vm_offset_t
111 kmem_alloc_pageable(map, size)
112 	vm_map_t map;
113 	register vm_size_t size;
114 {
115 	vm_offset_t addr;
116 	register int result;
117 
118 	size = round_page(size);
119 	addr = vm_map_min(map);
120 	result = vm_map_find(map, NULL, (vm_offset_t) 0,
121 	    &addr, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, 0);
122 	if (result != KERN_SUCCESS) {
123 		return (0);
124 	}
125 	return (addr);
126 }
127 
128 /*
129  *	Allocate wired-down memory in the kernel's address map
130  *	or a submap.
131  */
132 vm_offset_t
133 kmem_alloc(map, size)
134 	register vm_map_t map;
135 	register vm_size_t size;
136 {
137 	vm_offset_t addr;
138 	register vm_offset_t offset;
139 	vm_offset_t i;
140 
141 	size = round_page(size);
142 
143 	/*
144 	 * Use the kernel object for wired-down kernel pages. Assume that no
145 	 * region of the kernel object is referenced more than once.
146 	 */
147 
148 	/*
149 	 * Locate sufficient space in the map.  This will give us the final
150 	 * virtual address for the new memory, and thus will tell us the
151 	 * offset within the kernel map.
152 	 */
153 	vm_map_lock(map);
154 	if (vm_map_findspace(map, 0, size, &addr)) {
155 		vm_map_unlock(map);
156 		return (0);
157 	}
158 	offset = addr - VM_MIN_KERNEL_ADDRESS;
159 	vm_object_reference(kernel_object);
160 	vm_map_insert(map, kernel_object, offset, addr, addr + size,
161 		VM_PROT_ALL, VM_PROT_ALL, 0);
162 	vm_map_unlock(map);
163 
164 	/*
165 	 * Guarantee that there are pages already in this object before
166 	 * calling vm_map_pageable.  This is to prevent the following
167 	 * scenario:
168 	 *
169 	 * 1) Threads have swapped out, so that there is a pager for the
170 	 * kernel_object. 2) The kmsg zone is empty, and so we are
171 	 * kmem_allocing a new page for it. 3) vm_map_pageable calls vm_fault;
172 	 * there is no page, but there is a pager, so we call
173 	 * pager_data_request.  But the kmsg zone is empty, so we must
174 	 * kmem_alloc. 4) goto 1 5) Even if the kmsg zone is not empty: when
175 	 * we get the data back from the pager, it will be (very stale)
176 	 * non-zero data.  kmem_alloc is defined to return zero-filled memory.
177 	 *
178 	 * We're intentionally not activating the pages we allocate to prevent a
179 	 * race with page-out.  vm_map_pageable will wire the pages.
180 	 */
181 
182 	for (i = 0; i < size; i += PAGE_SIZE) {
183 		vm_page_t mem;
184 
185 		while ((mem = vm_page_alloc(kernel_object,
186 			OFF_TO_IDX(offset + i), VM_ALLOC_ZERO)) == NULL) {
187 			VM_WAIT;
188 		}
189 		if ((mem->flags & PG_ZERO) == 0)
190 			vm_page_zero_fill(mem);
191 		mem->flags &= ~(PG_BUSY|PG_ZERO);
192 		mem->valid = VM_PAGE_BITS_ALL;
193 	}
194 
195 	/*
196 	 * And finally, mark the data as non-pageable.
197 	 */
198 
199 	(void) vm_map_pageable(map, (vm_offset_t) addr, addr + size, FALSE);
200 
201 	/*
202 	 * Try to coalesce the map
203 	 */
204 	vm_map_simplify(map, addr);
205 
206 	return (addr);
207 }
208 
209 /*
210  *	kmem_free:
211  *
212  *	Release a region of kernel virtual memory allocated
213  *	with kmem_alloc, and return the physical pages
214  *	associated with that region.
215  */
216 void
217 kmem_free(map, addr, size)
218 	vm_map_t map;
219 	register vm_offset_t addr;
220 	vm_size_t size;
221 {
222 	(void) vm_map_remove(map, trunc_page(addr), round_page(addr + size));
223 }
224 
225 /*
226  *	kmem_suballoc:
227  *
228  *	Allocates a map to manage a subrange
229  *	of the kernel virtual address space.
230  *
231  *	Arguments are as follows:
232  *
233  *	parent		Map to take range from
234  *	size		Size of range to find
235  *	min, max	Returned endpoints of map
236  *	pageable	Can the region be paged
237  */
238 vm_map_t
239 kmem_suballoc(parent, min, max, size, pageable)
240 	register vm_map_t parent;
241 	vm_offset_t *min, *max;
242 	register vm_size_t size;
243 	boolean_t pageable;
244 {
245 	register int ret;
246 	vm_map_t result;
247 
248 	size = round_page(size);
249 
250 	*min = (vm_offset_t) vm_map_min(parent);
251 	ret = vm_map_find(parent, NULL, (vm_offset_t) 0,
252 	    min, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, 0);
253 	if (ret != KERN_SUCCESS) {
254 		printf("kmem_suballoc: bad status return of %d.\n", ret);
255 		panic("kmem_suballoc");
256 	}
257 	*max = *min + size;
258 	pmap_reference(vm_map_pmap(parent));
259 	result = vm_map_create(vm_map_pmap(parent), *min, *max, pageable);
260 	if (result == NULL)
261 		panic("kmem_suballoc: cannot create submap");
262 	if ((ret = vm_map_submap(parent, *min, *max, result)) != KERN_SUCCESS)
263 		panic("kmem_suballoc: unable to change range to submap");
264 	return (result);
265 }
266 
267 /*
268  * Allocate wired-down memory in the kernel's address map for the higher
269  * level kernel memory allocator (kern/kern_malloc.c).  We cannot use
270  * kmem_alloc() because we may need to allocate memory at interrupt
271  * level where we cannot block (canwait == FALSE).
272  *
273  * This routine has its own private kernel submap (kmem_map) and object
274  * (kmem_object).  This, combined with the fact that only malloc uses
275  * this routine, ensures that we will never block in map or object waits.
276  *
277  * Note that this still only works in a uni-processor environment and
278  * when called at splhigh().
279  *
280  * We don't worry about expanding the map (adding entries) since entries
281  * for wired maps are statically allocated.
282  */
283 vm_offset_t
284 kmem_malloc(map, size, waitflag)
285 	register vm_map_t map;
286 	register vm_size_t size;
287 	boolean_t waitflag;
288 {
289 	register vm_offset_t offset, i;
290 	vm_map_entry_t entry;
291 	vm_offset_t addr;
292 	vm_page_t m;
293 
294 	if (map != kmem_map && map != mb_map)
295 		panic("kmem_malloc: map != {kmem,mb}_map");
296 
297 	size = round_page(size);
298 	addr = vm_map_min(map);
299 
300 	/*
301 	 * Locate sufficient space in the map.  This will give us the final
302 	 * virtual address for the new memory, and thus will tell us the
303 	 * offset within the kernel map.
304 	 */
305 	vm_map_lock(map);
306 	if (vm_map_findspace(map, 0, size, &addr)) {
307 		vm_map_unlock(map);
308 		if (map == mb_map) {
309 			mb_map_full = TRUE;
310 			log(LOG_ERR, "Out of mbuf clusters - increase maxusers!\n");
311 			return (0);
312 		}
313 		if (waitflag == M_WAITOK)
314 			panic("kmem_malloc: kmem_map too small");
315 		return (0);
316 	}
317 	offset = addr - vm_map_min(kmem_map);
318 	vm_object_reference(kmem_object);
319 	vm_map_insert(map, kmem_object, offset, addr, addr + size,
320 		VM_PROT_ALL, VM_PROT_ALL, 0);
321 
322 	/*
323 	 * If we can wait, just mark the range as wired (will fault pages as
324 	 * necessary).
325 	 */
326 	if (waitflag == M_WAITOK) {
327 		vm_map_unlock(map);
328 		(void) vm_map_pageable(map, (vm_offset_t) addr, addr + size,
329 		    FALSE);
330 		vm_map_simplify(map, addr);
331 		return (addr);
332 	}
333 	/*
334 	 * If we cannot wait then we must allocate all memory up front,
335 	 * pulling it off the active queue to prevent pageout.
336 	 */
337 	for (i = 0; i < size; i += PAGE_SIZE) {
338 		m = vm_page_alloc(kmem_object, OFF_TO_IDX(offset + i),
339 			(waitflag == M_NOWAIT) ? VM_ALLOC_INTERRUPT : VM_ALLOC_SYSTEM);
340 
341 		/*
342 		 * Ran out of space, free everything up and return. Don't need
343 		 * to lock page queues here as we know that the pages we got
344 		 * aren't on any queues.
345 		 */
346 		if (m == NULL) {
347 			while (i != 0) {
348 				i -= PAGE_SIZE;
349 				m = vm_page_lookup(kmem_object,
350 					OFF_TO_IDX(offset + i));
351 				vm_page_free(m);
352 			}
353 			vm_map_delete(map, addr, addr + size);
354 			vm_map_unlock(map);
355 			return (0);
356 		}
357 		m->flags &= ~(PG_BUSY|PG_ZERO);
358 		m->valid = VM_PAGE_BITS_ALL;
359 	}
360 
361 	/*
362 	 * Mark map entry as non-pageable. Assert: vm_map_insert() will never
363 	 * be able to extend the previous entry so there will be a new entry
364 	 * exactly corresponding to this address range and it will have
365 	 * wired_count == 0.
366 	 */
367 	if (!vm_map_lookup_entry(map, addr, &entry) ||
368 	    entry->start != addr || entry->end != addr + size ||
369 	    entry->wired_count)
370 		panic("kmem_malloc: entry not found or misaligned");
371 	entry->wired_count++;
372 
373 	/*
374 	 * Loop thru pages, entering them in the pmap. (We cannot add them to
375 	 * the wired count without wrapping the vm_page_queue_lock in
376 	 * splimp...)
377 	 */
378 	for (i = 0; i < size; i += PAGE_SIZE) {
379 		m = vm_page_lookup(kmem_object, OFF_TO_IDX(offset + i));
380 		vm_page_wire(m);
381 		pmap_kenter(addr + i, VM_PAGE_TO_PHYS(m));
382 	}
383 	vm_map_unlock(map);
384 
385 	vm_map_simplify(map, addr);
386 	return (addr);
387 }
388 
389 /*
390  *	kmem_alloc_wait
391  *
392  *	Allocates pageable memory from a sub-map of the kernel.  If the submap
393  *	has no room, the caller sleeps waiting for more memory in the submap.
394  *
395  */
396 vm_offset_t
397 kmem_alloc_wait(map, size)
398 	vm_map_t map;
399 	vm_size_t size;
400 {
401 	vm_offset_t addr;
402 
403 	size = round_page(size);
404 
405 	for (;;) {
406 		/*
407 		 * To make this work for more than one map, use the map's lock
408 		 * to lock out sleepers/wakers.
409 		 */
410 		vm_map_lock(map);
411 		if (vm_map_findspace(map, 0, size, &addr) == 0)
412 			break;
413 		/* no space now; see if we can ever get space */
414 		if (vm_map_max(map) - vm_map_min(map) < size) {
415 			vm_map_unlock(map);
416 			return (0);
417 		}
418 		vm_map_unlock(map);
419 		tsleep(map, PVM, "kmaw", 0);
420 	}
421 	vm_map_insert(map, NULL, (vm_offset_t) 0, addr, addr + size, VM_PROT_ALL, VM_PROT_ALL, 0);
422 	vm_map_unlock(map);
423 	return (addr);
424 }
425 
426 /*
427  *	kmem_free_wakeup
428  *
429  *	Returns memory to a submap of the kernel, and wakes up any processes
430  *	waiting for memory in that map.
431  */
432 void
433 kmem_free_wakeup(map, addr, size)
434 	vm_map_t map;
435 	vm_offset_t addr;
436 	vm_size_t size;
437 {
438 	vm_map_lock(map);
439 	(void) vm_map_delete(map, trunc_page(addr), round_page(addr + size));
440 	wakeup(map);
441 	vm_map_unlock(map);
442 }
443 
444 /*
445  * Create the kernel map; insert a mapping covering kernel text, data, bss,
446  * and all space allocated thus far (`boostrap' data).  The new map will thus
447  * map the range between VM_MIN_KERNEL_ADDRESS and `start' as allocated, and
448  * the range between `start' and `end' as free.
449  */
450 void
451 kmem_init(start, end)
452 	vm_offset_t start, end;
453 {
454 	register vm_map_t m;
455 
456 	m = vm_map_create(kernel_pmap, VM_MIN_KERNEL_ADDRESS, end, FALSE);
457 	vm_map_lock(m);
458 	/* N.B.: cannot use kgdb to debug, starting with this assignment ... */
459 	kernel_map = m;
460 	(void) vm_map_insert(m, NULL, (vm_offset_t) 0,
461 	    VM_MIN_KERNEL_ADDRESS, start, VM_PROT_ALL, VM_PROT_ALL, 0);
462 	/* ... and ending with the completion of the above `insert' */
463 	vm_map_unlock(m);
464 }
465