xref: /freebsd/sys/vm/vm_init.c (revision 1de7b4b805ddbf2429da511c053686ac4591ed89)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	from: @(#)vm_init.c	8.1 (Berkeley) 6/11/93
35  *
36  *
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62 
63 /*
64  *	Initialize the Virtual Memory subsystem.
65  */
66 
67 #include <sys/cdefs.h>
68 __FBSDID("$FreeBSD$");
69 
70 #include <sys/param.h>
71 #include <sys/kernel.h>
72 #include <sys/lock.h>
73 #include <sys/proc.h>
74 #include <sys/rwlock.h>
75 #include <sys/malloc.h>
76 #include <sys/sysctl.h>
77 #include <sys/systm.h>
78 #include <sys/selinfo.h>
79 #include <sys/smp.h>
80 #include <sys/pipe.h>
81 #include <sys/bio.h>
82 #include <sys/buf.h>
83 #include <sys/vmem.h>
84 
85 #include <vm/vm.h>
86 #include <vm/vm_param.h>
87 #include <vm/vm_kern.h>
88 #include <vm/vm_object.h>
89 #include <vm/vm_page.h>
90 #include <vm/vm_map.h>
91 #include <vm/vm_pager.h>
92 #include <vm/vm_extern.h>
93 
94 long physmem;
95 
96 /*
97  * System initialization
98  */
99 static void vm_mem_init(void *);
100 SYSINIT(vm_mem, SI_SUB_VM, SI_ORDER_FIRST, vm_mem_init, NULL);
101 
102 /*
103  * Import kva into the kernel arena.
104  */
105 static int
106 kva_import(void *unused, vmem_size_t size, int flags, vmem_addr_t *addrp)
107 {
108 	vm_offset_t addr;
109 	int result;
110 
111 	addr = vm_map_min(kernel_map);
112 	result = vm_map_find(kernel_map, NULL, 0, &addr, size, 0,
113 	    VMFS_SUPER_SPACE, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
114 	if (result != KERN_SUCCESS)
115                 return (ENOMEM);
116 
117 	*addrp = addr;
118 
119 	return (0);
120 }
121 
122 /*
123  *	vm_init initializes the virtual memory system.
124  *	This is done only by the first cpu up.
125  *
126  *	The start and end address of physical memory is passed in.
127  */
128 /* ARGSUSED*/
129 static void
130 vm_mem_init(dummy)
131 	void *dummy;
132 {
133 
134 	/*
135 	 * Initializes resident memory structures. From here on, all physical
136 	 * memory is accounted for, and we use only virtual addresses.
137 	 */
138 	vm_set_page_size();
139 	virtual_avail = vm_page_startup(virtual_avail);
140 
141 	/*
142 	 * Initialize other VM packages
143 	 */
144 	vmem_startup();
145 	vm_object_init();
146 	vm_map_startup();
147 	kmem_init(virtual_avail, virtual_end);
148 
149 	/*
150 	 * Initialize the kernel_arena.  This can grow on demand.
151 	 */
152 	vmem_init(kernel_arena, "kernel arena", 0, 0, PAGE_SIZE, 0, 0);
153 	vmem_set_import(kernel_arena, kva_import, NULL, NULL,
154 #if VM_NRESERVLEVEL > 0
155 	    1 << (VM_LEVEL_0_ORDER + PAGE_SHIFT));
156 #else
157 	    /* On non-superpage architectures want large import sizes. */
158 	    PAGE_SIZE * 1024);
159 #endif
160 
161 	kmem_init_zero_region();
162 	pmap_init();
163 	vm_pager_init();
164 }
165 
166 void
167 vm_ksubmap_init(struct kva_md_info *kmi)
168 {
169 	vm_offset_t firstaddr;
170 	caddr_t v;
171 	vm_size_t size = 0;
172 	long physmem_est;
173 	vm_offset_t minaddr;
174 	vm_offset_t maxaddr;
175 
176 	/*
177 	 * Allocate space for system data structures.
178 	 * The first available kernel virtual address is in "v".
179 	 * As pages of kernel virtual memory are allocated, "v" is incremented.
180 	 * As pages of memory are allocated and cleared,
181 	 * "firstaddr" is incremented.
182 	 */
183 
184 	/*
185 	 * Make two passes.  The first pass calculates how much memory is
186 	 * needed and allocates it.  The second pass assigns virtual
187 	 * addresses to the various data structures.
188 	 */
189 	firstaddr = 0;
190 again:
191 	v = (caddr_t)firstaddr;
192 
193 	/*
194 	 * Discount the physical memory larger than the size of kernel_map
195 	 * to avoid eating up all of KVA space.
196 	 */
197 	physmem_est = lmin(physmem, btoc(kernel_map->max_offset -
198 	    kernel_map->min_offset));
199 
200 	v = kern_vfs_bio_buffer_alloc(v, physmem_est);
201 
202 	/*
203 	 * End of first pass, size has been calculated so allocate memory
204 	 */
205 	if (firstaddr == 0) {
206 		size = (vm_size_t)v;
207 #ifdef VM_FREELIST_DMA32
208 		/*
209 		 * Try to protect 32-bit DMAable memory from the largest
210 		 * early alloc of wired mem.
211 		 */
212 		firstaddr = kmem_alloc_attr(kernel_arena, size,
213 		    M_ZERO | M_NOWAIT, (vm_paddr_t)1 << 32,
214 		    ~(vm_paddr_t)0, VM_MEMATTR_DEFAULT);
215 		if (firstaddr == 0)
216 #endif
217 			firstaddr = kmem_malloc(kernel_arena, size,
218 			    M_ZERO | M_WAITOK);
219 		if (firstaddr == 0)
220 			panic("startup: no room for tables");
221 		goto again;
222 	}
223 
224 	/*
225 	 * End of second pass, addresses have been assigned
226 	 */
227 	if ((vm_size_t)((char *)v - firstaddr) != size)
228 		panic("startup: table size inconsistency");
229 
230 	/*
231 	 * Allocate the clean map to hold all of the paging and I/O virtual
232 	 * memory.
233 	 */
234 	size = (long)nbuf * BKVASIZE + (long)nswbuf * MAXPHYS +
235 	    (long)bio_transient_maxcnt * MAXPHYS;
236 	kmi->clean_sva = firstaddr = kva_alloc(size);
237 	kmi->clean_eva = firstaddr + size;
238 
239 	/*
240 	 * Allocate the buffer arena.
241 	 *
242 	 * Enable the quantum cache if we have more than 4 cpus.  This
243 	 * avoids lock contention at the expense of some fragmentation.
244 	 */
245 	size = (long)nbuf * BKVASIZE;
246 	kmi->buffer_sva = firstaddr;
247 	kmi->buffer_eva = kmi->buffer_sva + size;
248 	vmem_init(buffer_arena, "buffer arena", kmi->buffer_sva, size,
249 	    PAGE_SIZE, (mp_ncpus > 4) ? BKVASIZE * 8 : 0, 0);
250 	firstaddr += size;
251 
252 	/*
253 	 * Now swap kva.
254 	 */
255 	swapbkva = firstaddr;
256 	size = (long)nswbuf * MAXPHYS;
257 	firstaddr += size;
258 
259 	/*
260 	 * And optionally transient bio space.
261 	 */
262 	if (bio_transient_maxcnt != 0) {
263 		size = (long)bio_transient_maxcnt * MAXPHYS;
264 		vmem_init(transient_arena, "transient arena",
265 		    firstaddr, size, PAGE_SIZE, 0, 0);
266 		firstaddr += size;
267 	}
268 	if (firstaddr != kmi->clean_eva)
269 		panic("Clean map calculation incorrect");
270 
271 	/*
272 	 * Allocate the pageable submaps.  We may cache an exec map entry per
273 	 * CPU, so we therefore need to reserve space for at least ncpu+1
274 	 * entries to avoid deadlock.  The exec map is also used by some image
275 	 * activators, so we leave a fixed number of pages for their use.
276 	 */
277 #ifdef __LP64__
278 	exec_map_entries = 8 * mp_ncpus;
279 #else
280 	exec_map_entries = 2 * mp_ncpus + 4;
281 #endif
282 	exec_map_entry_size = round_page(PATH_MAX + ARG_MAX);
283 	exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
284 	    exec_map_entries * exec_map_entry_size + 64 * PAGE_SIZE, FALSE);
285 	pipe_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr, maxpipekva,
286 	    FALSE);
287 }
288