1 /*- 2 * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU) 3 * 4 * Copyright (c) 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * The Mach Operating System project at Carnegie-Mellon University. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * from: @(#)vm_glue.c 8.6 (Berkeley) 1/5/94 35 * 36 * 37 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 38 * All rights reserved. 39 * 40 * Permission to use, copy, modify and distribute this software and 41 * its documentation is hereby granted, provided that both the copyright 42 * notice and this permission notice appear in all copies of the 43 * software, derivative works or modified versions, and any portions 44 * thereof, and that both notices appear in supporting documentation. 45 * 46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 47 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 49 * 50 * Carnegie Mellon requests users of this software to return to 51 * 52 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 53 * School of Computer Science 54 * Carnegie Mellon University 55 * Pittsburgh PA 15213-3890 56 * 57 * any improvements or extensions that they make and grant Carnegie the 58 * rights to redistribute these changes. 59 */ 60 61 #include <sys/cdefs.h> 62 __FBSDID("$FreeBSD$"); 63 64 #include "opt_vm.h" 65 #include "opt_kstack_pages.h" 66 #include "opt_kstack_max_pages.h" 67 #include "opt_kstack_usage_prof.h" 68 69 #include <sys/param.h> 70 #include <sys/systm.h> 71 #include <sys/domainset.h> 72 #include <sys/limits.h> 73 #include <sys/lock.h> 74 #include <sys/malloc.h> 75 #include <sys/mutex.h> 76 #include <sys/proc.h> 77 #include <sys/racct.h> 78 #include <sys/resourcevar.h> 79 #include <sys/rwlock.h> 80 #include <sys/sched.h> 81 #include <sys/sf_buf.h> 82 #include <sys/shm.h> 83 #include <sys/vmmeter.h> 84 #include <sys/vmem.h> 85 #include <sys/sx.h> 86 #include <sys/sysctl.h> 87 #include <sys/_kstack_cache.h> 88 #include <sys/eventhandler.h> 89 #include <sys/kernel.h> 90 #include <sys/ktr.h> 91 #include <sys/unistd.h> 92 93 #include <vm/vm.h> 94 #include <vm/vm_param.h> 95 #include <vm/pmap.h> 96 #include <vm/vm_domainset.h> 97 #include <vm/vm_map.h> 98 #include <vm/vm_page.h> 99 #include <vm/vm_pageout.h> 100 #include <vm/vm_object.h> 101 #include <vm/vm_kern.h> 102 #include <vm/vm_extern.h> 103 #include <vm/vm_pager.h> 104 #include <vm/swap_pager.h> 105 106 #include <machine/cpu.h> 107 108 /* 109 * MPSAFE 110 * 111 * WARNING! This code calls vm_map_check_protection() which only checks 112 * the associated vm_map_entry range. It does not determine whether the 113 * contents of the memory is actually readable or writable. In most cases 114 * just checking the vm_map_entry is sufficient within the kernel's address 115 * space. 116 */ 117 int 118 kernacc(void *addr, int len, int rw) 119 { 120 boolean_t rv; 121 vm_offset_t saddr, eaddr; 122 vm_prot_t prot; 123 124 KASSERT((rw & ~VM_PROT_ALL) == 0, 125 ("illegal ``rw'' argument to kernacc (%x)\n", rw)); 126 127 if ((vm_offset_t)addr + len > vm_map_max(kernel_map) || 128 (vm_offset_t)addr + len < (vm_offset_t)addr) 129 return (FALSE); 130 131 prot = rw; 132 saddr = trunc_page((vm_offset_t)addr); 133 eaddr = round_page((vm_offset_t)addr + len); 134 vm_map_lock_read(kernel_map); 135 rv = vm_map_check_protection(kernel_map, saddr, eaddr, prot); 136 vm_map_unlock_read(kernel_map); 137 return (rv == TRUE); 138 } 139 140 /* 141 * MPSAFE 142 * 143 * WARNING! This code calls vm_map_check_protection() which only checks 144 * the associated vm_map_entry range. It does not determine whether the 145 * contents of the memory is actually readable or writable. vmapbuf(), 146 * vm_fault_quick(), or copyin()/copout()/su*()/fu*() functions should be 147 * used in conjunction with this call. 148 */ 149 int 150 useracc(void *addr, int len, int rw) 151 { 152 boolean_t rv; 153 vm_prot_t prot; 154 vm_map_t map; 155 156 KASSERT((rw & ~VM_PROT_ALL) == 0, 157 ("illegal ``rw'' argument to useracc (%x)\n", rw)); 158 prot = rw; 159 map = &curproc->p_vmspace->vm_map; 160 if ((vm_offset_t)addr + len > vm_map_max(map) || 161 (vm_offset_t)addr + len < (vm_offset_t)addr) { 162 return (FALSE); 163 } 164 vm_map_lock_read(map); 165 rv = vm_map_check_protection(map, trunc_page((vm_offset_t)addr), 166 round_page((vm_offset_t)addr + len), prot); 167 vm_map_unlock_read(map); 168 return (rv == TRUE); 169 } 170 171 int 172 vslock(void *addr, size_t len) 173 { 174 vm_offset_t end, last, start; 175 vm_size_t npages; 176 int error; 177 178 last = (vm_offset_t)addr + len; 179 start = trunc_page((vm_offset_t)addr); 180 end = round_page(last); 181 if (last < (vm_offset_t)addr || end < (vm_offset_t)addr) 182 return (EINVAL); 183 npages = atop(end - start); 184 if (npages > vm_page_max_wired) 185 return (ENOMEM); 186 #if 0 187 /* 188 * XXX - not yet 189 * 190 * The limit for transient usage of wired pages should be 191 * larger than for "permanent" wired pages (mlock()). 192 * 193 * Also, the sysctl code, which is the only present user 194 * of vslock(), does a hard loop on EAGAIN. 195 */ 196 if (npages + vm_wire_count() > vm_page_max_wired) 197 return (EAGAIN); 198 #endif 199 error = vm_map_wire(&curproc->p_vmspace->vm_map, start, end, 200 VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES); 201 if (error == KERN_SUCCESS) { 202 curthread->td_vslock_sz += len; 203 return (0); 204 } 205 206 /* 207 * Return EFAULT on error to match copy{in,out}() behaviour 208 * rather than returning ENOMEM like mlock() would. 209 */ 210 return (EFAULT); 211 } 212 213 void 214 vsunlock(void *addr, size_t len) 215 { 216 217 /* Rely on the parameter sanity checks performed by vslock(). */ 218 MPASS(curthread->td_vslock_sz >= len); 219 curthread->td_vslock_sz -= len; 220 (void)vm_map_unwire(&curproc->p_vmspace->vm_map, 221 trunc_page((vm_offset_t)addr), round_page((vm_offset_t)addr + len), 222 VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES); 223 } 224 225 /* 226 * Pin the page contained within the given object at the given offset. If the 227 * page is not resident, allocate and load it using the given object's pager. 228 * Return the pinned page if successful; otherwise, return NULL. 229 */ 230 static vm_page_t 231 vm_imgact_hold_page(vm_object_t object, vm_ooffset_t offset) 232 { 233 vm_page_t m; 234 vm_pindex_t pindex; 235 int rv; 236 237 VM_OBJECT_WLOCK(object); 238 pindex = OFF_TO_IDX(offset); 239 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY); 240 if (m->valid != VM_PAGE_BITS_ALL) { 241 vm_page_xbusy(m); 242 rv = vm_pager_get_pages(object, &m, 1, NULL, NULL); 243 if (rv != VM_PAGER_OK) { 244 vm_page_lock(m); 245 vm_page_free(m); 246 vm_page_unlock(m); 247 m = NULL; 248 goto out; 249 } 250 vm_page_xunbusy(m); 251 } 252 vm_page_lock(m); 253 vm_page_hold(m); 254 vm_page_activate(m); 255 vm_page_unlock(m); 256 out: 257 VM_OBJECT_WUNLOCK(object); 258 return (m); 259 } 260 261 /* 262 * Return a CPU private mapping to the page at the given offset within the 263 * given object. The page is pinned before it is mapped. 264 */ 265 struct sf_buf * 266 vm_imgact_map_page(vm_object_t object, vm_ooffset_t offset) 267 { 268 vm_page_t m; 269 270 m = vm_imgact_hold_page(object, offset); 271 if (m == NULL) 272 return (NULL); 273 sched_pin(); 274 return (sf_buf_alloc(m, SFB_CPUPRIVATE)); 275 } 276 277 /* 278 * Destroy the given CPU private mapping and unpin the page that it mapped. 279 */ 280 void 281 vm_imgact_unmap_page(struct sf_buf *sf) 282 { 283 vm_page_t m; 284 285 m = sf_buf_page(sf); 286 sf_buf_free(sf); 287 sched_unpin(); 288 vm_page_lock(m); 289 vm_page_unhold(m); 290 vm_page_unlock(m); 291 } 292 293 void 294 vm_sync_icache(vm_map_t map, vm_offset_t va, vm_offset_t sz) 295 { 296 297 pmap_sync_icache(map->pmap, va, sz); 298 } 299 300 struct kstack_cache_entry *kstack_cache; 301 static int kstack_cache_size = 128; 302 static int kstacks, kstack_domain_iter; 303 static struct mtx kstack_cache_mtx; 304 MTX_SYSINIT(kstack_cache, &kstack_cache_mtx, "kstkch", MTX_DEF); 305 306 SYSCTL_INT(_vm, OID_AUTO, kstack_cache_size, CTLFLAG_RW, &kstack_cache_size, 0, 307 ""); 308 SYSCTL_INT(_vm, OID_AUTO, kstacks, CTLFLAG_RD, &kstacks, 0, 309 ""); 310 311 /* 312 * Create the kernel stack (including pcb for i386) for a new thread. 313 * This routine directly affects the fork perf for a process and 314 * create performance for a thread. 315 */ 316 int 317 vm_thread_new(struct thread *td, int pages) 318 { 319 vm_object_t ksobj; 320 vm_offset_t ks; 321 vm_page_t ma[KSTACK_MAX_PAGES]; 322 struct kstack_cache_entry *ks_ce; 323 int i; 324 325 /* Bounds check */ 326 if (pages <= 1) 327 pages = kstack_pages; 328 else if (pages > KSTACK_MAX_PAGES) 329 pages = KSTACK_MAX_PAGES; 330 331 if (pages == kstack_pages && kstack_cache != NULL) { 332 mtx_lock(&kstack_cache_mtx); 333 if (kstack_cache != NULL) { 334 ks_ce = kstack_cache; 335 kstack_cache = ks_ce->next_ks_entry; 336 mtx_unlock(&kstack_cache_mtx); 337 338 td->td_kstack_obj = ks_ce->ksobj; 339 td->td_kstack = (vm_offset_t)ks_ce; 340 td->td_kstack_pages = kstack_pages; 341 return (1); 342 } 343 mtx_unlock(&kstack_cache_mtx); 344 } 345 346 /* 347 * Allocate an object for the kstack. 348 */ 349 ksobj = vm_object_allocate(OBJT_DEFAULT, pages); 350 351 /* 352 * Get a kernel virtual address for this thread's kstack. 353 */ 354 #if defined(__mips__) 355 /* 356 * We need to align the kstack's mapped address to fit within 357 * a single TLB entry. 358 */ 359 if (vmem_xalloc(kernel_arena, (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE, 360 PAGE_SIZE * 2, 0, 0, VMEM_ADDR_MIN, VMEM_ADDR_MAX, 361 M_BESTFIT | M_NOWAIT, &ks)) { 362 ks = 0; 363 } 364 #else 365 ks = kva_alloc((pages + KSTACK_GUARD_PAGES) * PAGE_SIZE); 366 #endif 367 if (ks == 0) { 368 printf("vm_thread_new: kstack allocation failed\n"); 369 vm_object_deallocate(ksobj); 370 return (0); 371 } 372 373 /* 374 * Ensure that kstack objects can draw pages from any memory 375 * domain. Otherwise a local memory shortage can block a process 376 * swap-in. 377 */ 378 if (vm_ndomains > 1) { 379 ksobj->domain.dr_policy = DOMAINSET_RR(); 380 ksobj->domain.dr_iter = 381 atomic_fetchadd_int(&kstack_domain_iter, 1); 382 } 383 384 atomic_add_int(&kstacks, 1); 385 if (KSTACK_GUARD_PAGES != 0) { 386 pmap_qremove(ks, KSTACK_GUARD_PAGES); 387 ks += KSTACK_GUARD_PAGES * PAGE_SIZE; 388 } 389 td->td_kstack_obj = ksobj; 390 td->td_kstack = ks; 391 /* 392 * Knowing the number of pages allocated is useful when you 393 * want to deallocate them. 394 */ 395 td->td_kstack_pages = pages; 396 /* 397 * For the length of the stack, link in a real page of ram for each 398 * page of stack. 399 */ 400 VM_OBJECT_WLOCK(ksobj); 401 (void)vm_page_grab_pages(ksobj, 0, VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY | 402 VM_ALLOC_WIRED, ma, pages); 403 for (i = 0; i < pages; i++) 404 ma[i]->valid = VM_PAGE_BITS_ALL; 405 VM_OBJECT_WUNLOCK(ksobj); 406 pmap_qenter(ks, ma, pages); 407 return (1); 408 } 409 410 static void 411 vm_thread_stack_dispose(vm_object_t ksobj, vm_offset_t ks, int pages) 412 { 413 vm_page_t m; 414 int i; 415 416 atomic_add_int(&kstacks, -1); 417 pmap_qremove(ks, pages); 418 VM_OBJECT_WLOCK(ksobj); 419 for (i = 0; i < pages; i++) { 420 m = vm_page_lookup(ksobj, i); 421 if (m == NULL) 422 panic("vm_thread_dispose: kstack already missing?"); 423 vm_page_lock(m); 424 vm_page_unwire(m, PQ_NONE); 425 vm_page_free(m); 426 vm_page_unlock(m); 427 } 428 VM_OBJECT_WUNLOCK(ksobj); 429 vm_object_deallocate(ksobj); 430 kva_free(ks - (KSTACK_GUARD_PAGES * PAGE_SIZE), 431 (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE); 432 } 433 434 /* 435 * Dispose of a thread's kernel stack. 436 */ 437 void 438 vm_thread_dispose(struct thread *td) 439 { 440 vm_object_t ksobj; 441 vm_offset_t ks; 442 struct kstack_cache_entry *ks_ce; 443 int pages; 444 445 pages = td->td_kstack_pages; 446 ksobj = td->td_kstack_obj; 447 ks = td->td_kstack; 448 td->td_kstack = 0; 449 td->td_kstack_pages = 0; 450 if (pages == kstack_pages && kstacks <= kstack_cache_size) { 451 ks_ce = (struct kstack_cache_entry *)ks; 452 ks_ce->ksobj = ksobj; 453 mtx_lock(&kstack_cache_mtx); 454 ks_ce->next_ks_entry = kstack_cache; 455 kstack_cache = ks_ce; 456 mtx_unlock(&kstack_cache_mtx); 457 return; 458 } 459 vm_thread_stack_dispose(ksobj, ks, pages); 460 } 461 462 static void 463 vm_thread_stack_lowmem(void *nulll) 464 { 465 struct kstack_cache_entry *ks_ce, *ks_ce1; 466 467 mtx_lock(&kstack_cache_mtx); 468 ks_ce = kstack_cache; 469 kstack_cache = NULL; 470 mtx_unlock(&kstack_cache_mtx); 471 472 while (ks_ce != NULL) { 473 ks_ce1 = ks_ce; 474 ks_ce = ks_ce->next_ks_entry; 475 476 vm_thread_stack_dispose(ks_ce1->ksobj, (vm_offset_t)ks_ce1, 477 kstack_pages); 478 } 479 } 480 481 static void 482 kstack_cache_init(void *nulll) 483 { 484 485 EVENTHANDLER_REGISTER(vm_lowmem, vm_thread_stack_lowmem, NULL, 486 EVENTHANDLER_PRI_ANY); 487 } 488 489 SYSINIT(vm_kstacks, SI_SUB_KTHREAD_INIT, SI_ORDER_ANY, kstack_cache_init, NULL); 490 491 #ifdef KSTACK_USAGE_PROF 492 /* 493 * Track maximum stack used by a thread in kernel. 494 */ 495 static int max_kstack_used; 496 497 SYSCTL_INT(_debug, OID_AUTO, max_kstack_used, CTLFLAG_RD, 498 &max_kstack_used, 0, 499 "Maxiumum stack depth used by a thread in kernel"); 500 501 void 502 intr_prof_stack_use(struct thread *td, struct trapframe *frame) 503 { 504 vm_offset_t stack_top; 505 vm_offset_t current; 506 int used, prev_used; 507 508 /* 509 * Testing for interrupted kernel mode isn't strictly 510 * needed. It optimizes the execution, since interrupts from 511 * usermode will have only the trap frame on the stack. 512 */ 513 if (TRAPF_USERMODE(frame)) 514 return; 515 516 stack_top = td->td_kstack + td->td_kstack_pages * PAGE_SIZE; 517 current = (vm_offset_t)(uintptr_t)&stack_top; 518 519 /* 520 * Try to detect if interrupt is using kernel thread stack. 521 * Hardware could use a dedicated stack for interrupt handling. 522 */ 523 if (stack_top <= current || current < td->td_kstack) 524 return; 525 526 used = stack_top - current; 527 for (;;) { 528 prev_used = max_kstack_used; 529 if (prev_used >= used) 530 break; 531 if (atomic_cmpset_int(&max_kstack_used, prev_used, used)) 532 break; 533 } 534 } 535 #endif /* KSTACK_USAGE_PROF */ 536 537 /* 538 * Implement fork's actions on an address space. 539 * Here we arrange for the address space to be copied or referenced, 540 * allocate a user struct (pcb and kernel stack), then call the 541 * machine-dependent layer to fill those in and make the new process 542 * ready to run. The new process is set up so that it returns directly 543 * to user mode to avoid stack copying and relocation problems. 544 */ 545 int 546 vm_forkproc(struct thread *td, struct proc *p2, struct thread *td2, 547 struct vmspace *vm2, int flags) 548 { 549 struct proc *p1 = td->td_proc; 550 struct domainset *dset; 551 int error; 552 553 if ((flags & RFPROC) == 0) { 554 /* 555 * Divorce the memory, if it is shared, essentially 556 * this changes shared memory amongst threads, into 557 * COW locally. 558 */ 559 if ((flags & RFMEM) == 0) { 560 if (p1->p_vmspace->vm_refcnt > 1) { 561 error = vmspace_unshare(p1); 562 if (error) 563 return (error); 564 } 565 } 566 cpu_fork(td, p2, td2, flags); 567 return (0); 568 } 569 570 if (flags & RFMEM) { 571 p2->p_vmspace = p1->p_vmspace; 572 atomic_add_int(&p1->p_vmspace->vm_refcnt, 1); 573 } 574 dset = td2->td_domain.dr_policy; 575 while (vm_page_count_severe_set(&dset->ds_mask)) { 576 vm_wait_doms(&dset->ds_mask); 577 } 578 579 if ((flags & RFMEM) == 0) { 580 p2->p_vmspace = vm2; 581 if (p1->p_vmspace->vm_shm) 582 shmfork(p1, p2); 583 } 584 585 /* 586 * cpu_fork will copy and update the pcb, set up the kernel stack, 587 * and make the child ready to run. 588 */ 589 cpu_fork(td, p2, td2, flags); 590 return (0); 591 } 592 593 /* 594 * Called after process has been wait(2)'ed upon and is being reaped. 595 * The idea is to reclaim resources that we could not reclaim while 596 * the process was still executing. 597 */ 598 void 599 vm_waitproc(p) 600 struct proc *p; 601 { 602 603 vmspace_exitfree(p); /* and clean-out the vmspace */ 604 } 605 606 void 607 kick_proc0(void) 608 { 609 610 wakeup(&proc0); 611 } 612