xref: /freebsd/sys/vm/vm_glue.c (revision eb9da1ada8b6b2c74378a5c17029ec5a7fb199e6)
1 /*-
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)vm_glue.c	8.6 (Berkeley) 1/5/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Permission to use, copy, modify and distribute this software and
39  * its documentation is hereby granted, provided that both the copyright
40  * notice and this permission notice appear in all copies of the
41  * software, derivative works or modified versions, and any portions
42  * thereof, and that both notices appear in supporting documentation.
43  *
44  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
45  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
46  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
47  *
48  * Carnegie Mellon requests users of this software to return to
49  *
50  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
51  *  School of Computer Science
52  *  Carnegie Mellon University
53  *  Pittsburgh PA 15213-3890
54  *
55  * any improvements or extensions that they make and grant Carnegie the
56  * rights to redistribute these changes.
57  */
58 
59 #include <sys/cdefs.h>
60 __FBSDID("$FreeBSD$");
61 
62 #include "opt_vm.h"
63 #include "opt_kstack_pages.h"
64 #include "opt_kstack_max_pages.h"
65 #include "opt_kstack_usage_prof.h"
66 
67 #include <sys/param.h>
68 #include <sys/systm.h>
69 #include <sys/limits.h>
70 #include <sys/lock.h>
71 #include <sys/malloc.h>
72 #include <sys/mutex.h>
73 #include <sys/proc.h>
74 #include <sys/racct.h>
75 #include <sys/resourcevar.h>
76 #include <sys/rwlock.h>
77 #include <sys/sched.h>
78 #include <sys/sf_buf.h>
79 #include <sys/shm.h>
80 #include <sys/vmmeter.h>
81 #include <sys/vmem.h>
82 #include <sys/sx.h>
83 #include <sys/sysctl.h>
84 #include <sys/_kstack_cache.h>
85 #include <sys/eventhandler.h>
86 #include <sys/kernel.h>
87 #include <sys/ktr.h>
88 #include <sys/unistd.h>
89 
90 #include <vm/vm.h>
91 #include <vm/vm_param.h>
92 #include <vm/pmap.h>
93 #include <vm/vm_map.h>
94 #include <vm/vm_page.h>
95 #include <vm/vm_pageout.h>
96 #include <vm/vm_object.h>
97 #include <vm/vm_kern.h>
98 #include <vm/vm_extern.h>
99 #include <vm/vm_pager.h>
100 #include <vm/swap_pager.h>
101 
102 #include <machine/cpu.h>
103 
104 #ifndef NO_SWAPPING
105 static int swapout(struct proc *);
106 static void swapclear(struct proc *);
107 static void vm_thread_swapin(struct thread *td);
108 static void vm_thread_swapout(struct thread *td);
109 #endif
110 
111 /*
112  * MPSAFE
113  *
114  * WARNING!  This code calls vm_map_check_protection() which only checks
115  * the associated vm_map_entry range.  It does not determine whether the
116  * contents of the memory is actually readable or writable.  In most cases
117  * just checking the vm_map_entry is sufficient within the kernel's address
118  * space.
119  */
120 int
121 kernacc(addr, len, rw)
122 	void *addr;
123 	int len, rw;
124 {
125 	boolean_t rv;
126 	vm_offset_t saddr, eaddr;
127 	vm_prot_t prot;
128 
129 	KASSERT((rw & ~VM_PROT_ALL) == 0,
130 	    ("illegal ``rw'' argument to kernacc (%x)\n", rw));
131 
132 	if ((vm_offset_t)addr + len > kernel_map->max_offset ||
133 	    (vm_offset_t)addr + len < (vm_offset_t)addr)
134 		return (FALSE);
135 
136 	prot = rw;
137 	saddr = trunc_page((vm_offset_t)addr);
138 	eaddr = round_page((vm_offset_t)addr + len);
139 	vm_map_lock_read(kernel_map);
140 	rv = vm_map_check_protection(kernel_map, saddr, eaddr, prot);
141 	vm_map_unlock_read(kernel_map);
142 	return (rv == TRUE);
143 }
144 
145 /*
146  * MPSAFE
147  *
148  * WARNING!  This code calls vm_map_check_protection() which only checks
149  * the associated vm_map_entry range.  It does not determine whether the
150  * contents of the memory is actually readable or writable.  vmapbuf(),
151  * vm_fault_quick(), or copyin()/copout()/su*()/fu*() functions should be
152  * used in conjunction with this call.
153  */
154 int
155 useracc(addr, len, rw)
156 	void *addr;
157 	int len, rw;
158 {
159 	boolean_t rv;
160 	vm_prot_t prot;
161 	vm_map_t map;
162 
163 	KASSERT((rw & ~VM_PROT_ALL) == 0,
164 	    ("illegal ``rw'' argument to useracc (%x)\n", rw));
165 	prot = rw;
166 	map = &curproc->p_vmspace->vm_map;
167 	if ((vm_offset_t)addr + len > vm_map_max(map) ||
168 	    (vm_offset_t)addr + len < (vm_offset_t)addr) {
169 		return (FALSE);
170 	}
171 	vm_map_lock_read(map);
172 	rv = vm_map_check_protection(map, trunc_page((vm_offset_t)addr),
173 	    round_page((vm_offset_t)addr + len), prot);
174 	vm_map_unlock_read(map);
175 	return (rv == TRUE);
176 }
177 
178 int
179 vslock(void *addr, size_t len)
180 {
181 	vm_offset_t end, last, start;
182 	vm_size_t npages;
183 	int error;
184 
185 	last = (vm_offset_t)addr + len;
186 	start = trunc_page((vm_offset_t)addr);
187 	end = round_page(last);
188 	if (last < (vm_offset_t)addr || end < (vm_offset_t)addr)
189 		return (EINVAL);
190 	npages = atop(end - start);
191 	if (npages > vm_page_max_wired)
192 		return (ENOMEM);
193 #if 0
194 	/*
195 	 * XXX - not yet
196 	 *
197 	 * The limit for transient usage of wired pages should be
198 	 * larger than for "permanent" wired pages (mlock()).
199 	 *
200 	 * Also, the sysctl code, which is the only present user
201 	 * of vslock(), does a hard loop on EAGAIN.
202 	 */
203 	if (npages + vm_cnt.v_wire_count > vm_page_max_wired)
204 		return (EAGAIN);
205 #endif
206 	error = vm_map_wire(&curproc->p_vmspace->vm_map, start, end,
207 	    VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
208 	/*
209 	 * Return EFAULT on error to match copy{in,out}() behaviour
210 	 * rather than returning ENOMEM like mlock() would.
211 	 */
212 	return (error == KERN_SUCCESS ? 0 : EFAULT);
213 }
214 
215 void
216 vsunlock(void *addr, size_t len)
217 {
218 
219 	/* Rely on the parameter sanity checks performed by vslock(). */
220 	(void)vm_map_unwire(&curproc->p_vmspace->vm_map,
221 	    trunc_page((vm_offset_t)addr), round_page((vm_offset_t)addr + len),
222 	    VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
223 }
224 
225 /*
226  * Pin the page contained within the given object at the given offset.  If the
227  * page is not resident, allocate and load it using the given object's pager.
228  * Return the pinned page if successful; otherwise, return NULL.
229  */
230 static vm_page_t
231 vm_imgact_hold_page(vm_object_t object, vm_ooffset_t offset)
232 {
233 	vm_page_t m;
234 	vm_pindex_t pindex;
235 	int rv;
236 
237 	VM_OBJECT_WLOCK(object);
238 	pindex = OFF_TO_IDX(offset);
239 	m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL);
240 	if (m->valid != VM_PAGE_BITS_ALL) {
241 		rv = vm_pager_get_pages(object, &m, 1, NULL, NULL);
242 		if (rv != VM_PAGER_OK) {
243 			vm_page_lock(m);
244 			vm_page_free(m);
245 			vm_page_unlock(m);
246 			m = NULL;
247 			goto out;
248 		}
249 	}
250 	vm_page_xunbusy(m);
251 	vm_page_lock(m);
252 	vm_page_hold(m);
253 	vm_page_activate(m);
254 	vm_page_unlock(m);
255 out:
256 	VM_OBJECT_WUNLOCK(object);
257 	return (m);
258 }
259 
260 /*
261  * Return a CPU private mapping to the page at the given offset within the
262  * given object.  The page is pinned before it is mapped.
263  */
264 struct sf_buf *
265 vm_imgact_map_page(vm_object_t object, vm_ooffset_t offset)
266 {
267 	vm_page_t m;
268 
269 	m = vm_imgact_hold_page(object, offset);
270 	if (m == NULL)
271 		return (NULL);
272 	sched_pin();
273 	return (sf_buf_alloc(m, SFB_CPUPRIVATE));
274 }
275 
276 /*
277  * Destroy the given CPU private mapping and unpin the page that it mapped.
278  */
279 void
280 vm_imgact_unmap_page(struct sf_buf *sf)
281 {
282 	vm_page_t m;
283 
284 	m = sf_buf_page(sf);
285 	sf_buf_free(sf);
286 	sched_unpin();
287 	vm_page_lock(m);
288 	vm_page_unhold(m);
289 	vm_page_unlock(m);
290 }
291 
292 void
293 vm_sync_icache(vm_map_t map, vm_offset_t va, vm_offset_t sz)
294 {
295 
296 	pmap_sync_icache(map->pmap, va, sz);
297 }
298 
299 struct kstack_cache_entry *kstack_cache;
300 static int kstack_cache_size = 128;
301 static int kstacks;
302 static struct mtx kstack_cache_mtx;
303 MTX_SYSINIT(kstack_cache, &kstack_cache_mtx, "kstkch", MTX_DEF);
304 
305 SYSCTL_INT(_vm, OID_AUTO, kstack_cache_size, CTLFLAG_RW, &kstack_cache_size, 0,
306     "");
307 SYSCTL_INT(_vm, OID_AUTO, kstacks, CTLFLAG_RD, &kstacks, 0,
308     "");
309 
310 #ifndef KSTACK_MAX_PAGES
311 #define KSTACK_MAX_PAGES 32
312 #endif
313 
314 /*
315  * Create the kernel stack (including pcb for i386) for a new thread.
316  * This routine directly affects the fork perf for a process and
317  * create performance for a thread.
318  */
319 int
320 vm_thread_new(struct thread *td, int pages)
321 {
322 	vm_object_t ksobj;
323 	vm_offset_t ks;
324 	vm_page_t m, ma[KSTACK_MAX_PAGES];
325 	struct kstack_cache_entry *ks_ce;
326 	int i;
327 
328 	/* Bounds check */
329 	if (pages <= 1)
330 		pages = kstack_pages;
331 	else if (pages > KSTACK_MAX_PAGES)
332 		pages = KSTACK_MAX_PAGES;
333 
334 	if (pages == kstack_pages) {
335 		mtx_lock(&kstack_cache_mtx);
336 		if (kstack_cache != NULL) {
337 			ks_ce = kstack_cache;
338 			kstack_cache = ks_ce->next_ks_entry;
339 			mtx_unlock(&kstack_cache_mtx);
340 
341 			td->td_kstack_obj = ks_ce->ksobj;
342 			td->td_kstack = (vm_offset_t)ks_ce;
343 			td->td_kstack_pages = kstack_pages;
344 			return (1);
345 		}
346 		mtx_unlock(&kstack_cache_mtx);
347 	}
348 
349 	/*
350 	 * Allocate an object for the kstack.
351 	 */
352 	ksobj = vm_object_allocate(OBJT_DEFAULT, pages);
353 
354 	/*
355 	 * Get a kernel virtual address for this thread's kstack.
356 	 */
357 #if defined(__mips__)
358 	/*
359 	 * We need to align the kstack's mapped address to fit within
360 	 * a single TLB entry.
361 	 */
362 	if (vmem_xalloc(kernel_arena, (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE,
363 	    PAGE_SIZE * 2, 0, 0, VMEM_ADDR_MIN, VMEM_ADDR_MAX,
364 	    M_BESTFIT | M_NOWAIT, &ks)) {
365 		ks = 0;
366 	}
367 #else
368 	ks = kva_alloc((pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
369 #endif
370 	if (ks == 0) {
371 		printf("vm_thread_new: kstack allocation failed\n");
372 		vm_object_deallocate(ksobj);
373 		return (0);
374 	}
375 
376 	atomic_add_int(&kstacks, 1);
377 	if (KSTACK_GUARD_PAGES != 0) {
378 		pmap_qremove(ks, KSTACK_GUARD_PAGES);
379 		ks += KSTACK_GUARD_PAGES * PAGE_SIZE;
380 	}
381 	td->td_kstack_obj = ksobj;
382 	td->td_kstack = ks;
383 	/*
384 	 * Knowing the number of pages allocated is useful when you
385 	 * want to deallocate them.
386 	 */
387 	td->td_kstack_pages = pages;
388 	/*
389 	 * For the length of the stack, link in a real page of ram for each
390 	 * page of stack.
391 	 */
392 	VM_OBJECT_WLOCK(ksobj);
393 	for (i = 0; i < pages; i++) {
394 		/*
395 		 * Get a kernel stack page.
396 		 */
397 		m = vm_page_grab(ksobj, i, VM_ALLOC_NOBUSY |
398 		    VM_ALLOC_NORMAL | VM_ALLOC_WIRED);
399 		ma[i] = m;
400 		m->valid = VM_PAGE_BITS_ALL;
401 	}
402 	VM_OBJECT_WUNLOCK(ksobj);
403 	pmap_qenter(ks, ma, pages);
404 	return (1);
405 }
406 
407 static void
408 vm_thread_stack_dispose(vm_object_t ksobj, vm_offset_t ks, int pages)
409 {
410 	vm_page_t m;
411 	int i;
412 
413 	atomic_add_int(&kstacks, -1);
414 	pmap_qremove(ks, pages);
415 	VM_OBJECT_WLOCK(ksobj);
416 	for (i = 0; i < pages; i++) {
417 		m = vm_page_lookup(ksobj, i);
418 		if (m == NULL)
419 			panic("vm_thread_dispose: kstack already missing?");
420 		vm_page_lock(m);
421 		vm_page_unwire(m, PQ_NONE);
422 		vm_page_free(m);
423 		vm_page_unlock(m);
424 	}
425 	VM_OBJECT_WUNLOCK(ksobj);
426 	vm_object_deallocate(ksobj);
427 	kva_free(ks - (KSTACK_GUARD_PAGES * PAGE_SIZE),
428 	    (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
429 }
430 
431 /*
432  * Dispose of a thread's kernel stack.
433  */
434 void
435 vm_thread_dispose(struct thread *td)
436 {
437 	vm_object_t ksobj;
438 	vm_offset_t ks;
439 	struct kstack_cache_entry *ks_ce;
440 	int pages;
441 
442 	pages = td->td_kstack_pages;
443 	ksobj = td->td_kstack_obj;
444 	ks = td->td_kstack;
445 	td->td_kstack = 0;
446 	td->td_kstack_pages = 0;
447 	if (pages == kstack_pages && kstacks <= kstack_cache_size) {
448 		ks_ce = (struct kstack_cache_entry *)ks;
449 		ks_ce->ksobj = ksobj;
450 		mtx_lock(&kstack_cache_mtx);
451 		ks_ce->next_ks_entry = kstack_cache;
452 		kstack_cache = ks_ce;
453 		mtx_unlock(&kstack_cache_mtx);
454 		return;
455 	}
456 	vm_thread_stack_dispose(ksobj, ks, pages);
457 }
458 
459 static void
460 vm_thread_stack_lowmem(void *nulll)
461 {
462 	struct kstack_cache_entry *ks_ce, *ks_ce1;
463 
464 	mtx_lock(&kstack_cache_mtx);
465 	ks_ce = kstack_cache;
466 	kstack_cache = NULL;
467 	mtx_unlock(&kstack_cache_mtx);
468 
469 	while (ks_ce != NULL) {
470 		ks_ce1 = ks_ce;
471 		ks_ce = ks_ce->next_ks_entry;
472 
473 		vm_thread_stack_dispose(ks_ce1->ksobj, (vm_offset_t)ks_ce1,
474 		    kstack_pages);
475 	}
476 }
477 
478 static void
479 kstack_cache_init(void *nulll)
480 {
481 
482 	EVENTHANDLER_REGISTER(vm_lowmem, vm_thread_stack_lowmem, NULL,
483 	    EVENTHANDLER_PRI_ANY);
484 }
485 
486 SYSINIT(vm_kstacks, SI_SUB_KTHREAD_INIT, SI_ORDER_ANY, kstack_cache_init, NULL);
487 
488 #ifdef KSTACK_USAGE_PROF
489 /*
490  * Track maximum stack used by a thread in kernel.
491  */
492 static int max_kstack_used;
493 
494 SYSCTL_INT(_debug, OID_AUTO, max_kstack_used, CTLFLAG_RD,
495     &max_kstack_used, 0,
496     "Maxiumum stack depth used by a thread in kernel");
497 
498 void
499 intr_prof_stack_use(struct thread *td, struct trapframe *frame)
500 {
501 	vm_offset_t stack_top;
502 	vm_offset_t current;
503 	int used, prev_used;
504 
505 	/*
506 	 * Testing for interrupted kernel mode isn't strictly
507 	 * needed. It optimizes the execution, since interrupts from
508 	 * usermode will have only the trap frame on the stack.
509 	 */
510 	if (TRAPF_USERMODE(frame))
511 		return;
512 
513 	stack_top = td->td_kstack + td->td_kstack_pages * PAGE_SIZE;
514 	current = (vm_offset_t)(uintptr_t)&stack_top;
515 
516 	/*
517 	 * Try to detect if interrupt is using kernel thread stack.
518 	 * Hardware could use a dedicated stack for interrupt handling.
519 	 */
520 	if (stack_top <= current || current < td->td_kstack)
521 		return;
522 
523 	used = stack_top - current;
524 	for (;;) {
525 		prev_used = max_kstack_used;
526 		if (prev_used >= used)
527 			break;
528 		if (atomic_cmpset_int(&max_kstack_used, prev_used, used))
529 			break;
530 	}
531 }
532 #endif /* KSTACK_USAGE_PROF */
533 
534 #ifndef NO_SWAPPING
535 /*
536  * Allow a thread's kernel stack to be paged out.
537  */
538 static void
539 vm_thread_swapout(struct thread *td)
540 {
541 	vm_object_t ksobj;
542 	vm_page_t m;
543 	int i, pages;
544 
545 	cpu_thread_swapout(td);
546 	pages = td->td_kstack_pages;
547 	ksobj = td->td_kstack_obj;
548 	pmap_qremove(td->td_kstack, pages);
549 	VM_OBJECT_WLOCK(ksobj);
550 	for (i = 0; i < pages; i++) {
551 		m = vm_page_lookup(ksobj, i);
552 		if (m == NULL)
553 			panic("vm_thread_swapout: kstack already missing?");
554 		vm_page_dirty(m);
555 		vm_page_lock(m);
556 		vm_page_unwire(m, PQ_INACTIVE);
557 		vm_page_unlock(m);
558 	}
559 	VM_OBJECT_WUNLOCK(ksobj);
560 }
561 
562 /*
563  * Bring the kernel stack for a specified thread back in.
564  */
565 static void
566 vm_thread_swapin(struct thread *td)
567 {
568 	vm_object_t ksobj;
569 	vm_page_t ma[KSTACK_MAX_PAGES];
570 	int pages;
571 
572 	pages = td->td_kstack_pages;
573 	ksobj = td->td_kstack_obj;
574 	VM_OBJECT_WLOCK(ksobj);
575 	for (int i = 0; i < pages; i++)
576 		ma[i] = vm_page_grab(ksobj, i, VM_ALLOC_NORMAL |
577 		    VM_ALLOC_WIRED);
578 	for (int i = 0; i < pages;) {
579 		int j, a, count, rv;
580 
581 		vm_page_assert_xbusied(ma[i]);
582 		if (ma[i]->valid == VM_PAGE_BITS_ALL) {
583 			vm_page_xunbusy(ma[i]);
584 			i++;
585 			continue;
586 		}
587 		vm_object_pip_add(ksobj, 1);
588 		for (j = i + 1; j < pages; j++)
589 			if (ma[j]->valid == VM_PAGE_BITS_ALL)
590 				break;
591 		rv = vm_pager_has_page(ksobj, ma[i]->pindex, NULL, &a);
592 		KASSERT(rv == 1, ("%s: missing page %p", __func__, ma[i]));
593 		count = min(a + 1, j - i);
594 		rv = vm_pager_get_pages(ksobj, ma + i, count, NULL, NULL);
595 		KASSERT(rv == VM_PAGER_OK, ("%s: cannot get kstack for proc %d",
596 		    __func__, td->td_proc->p_pid));
597 		vm_object_pip_wakeup(ksobj);
598 		for (j = i; j < i + count; j++)
599 			vm_page_xunbusy(ma[j]);
600 		i += count;
601 	}
602 	VM_OBJECT_WUNLOCK(ksobj);
603 	pmap_qenter(td->td_kstack, ma, pages);
604 	cpu_thread_swapin(td);
605 }
606 #endif /* !NO_SWAPPING */
607 
608 /*
609  * Implement fork's actions on an address space.
610  * Here we arrange for the address space to be copied or referenced,
611  * allocate a user struct (pcb and kernel stack), then call the
612  * machine-dependent layer to fill those in and make the new process
613  * ready to run.  The new process is set up so that it returns directly
614  * to user mode to avoid stack copying and relocation problems.
615  */
616 int
617 vm_forkproc(td, p2, td2, vm2, flags)
618 	struct thread *td;
619 	struct proc *p2;
620 	struct thread *td2;
621 	struct vmspace *vm2;
622 	int flags;
623 {
624 	struct proc *p1 = td->td_proc;
625 	int error;
626 
627 	if ((flags & RFPROC) == 0) {
628 		/*
629 		 * Divorce the memory, if it is shared, essentially
630 		 * this changes shared memory amongst threads, into
631 		 * COW locally.
632 		 */
633 		if ((flags & RFMEM) == 0) {
634 			if (p1->p_vmspace->vm_refcnt > 1) {
635 				error = vmspace_unshare(p1);
636 				if (error)
637 					return (error);
638 			}
639 		}
640 		cpu_fork(td, p2, td2, flags);
641 		return (0);
642 	}
643 
644 	if (flags & RFMEM) {
645 		p2->p_vmspace = p1->p_vmspace;
646 		atomic_add_int(&p1->p_vmspace->vm_refcnt, 1);
647 	}
648 
649 	while (vm_page_count_severe()) {
650 		VM_WAIT;
651 	}
652 
653 	if ((flags & RFMEM) == 0) {
654 		p2->p_vmspace = vm2;
655 		if (p1->p_vmspace->vm_shm)
656 			shmfork(p1, p2);
657 	}
658 
659 	/*
660 	 * cpu_fork will copy and update the pcb, set up the kernel stack,
661 	 * and make the child ready to run.
662 	 */
663 	cpu_fork(td, p2, td2, flags);
664 	return (0);
665 }
666 
667 /*
668  * Called after process has been wait(2)'ed upon and is being reaped.
669  * The idea is to reclaim resources that we could not reclaim while
670  * the process was still executing.
671  */
672 void
673 vm_waitproc(p)
674 	struct proc *p;
675 {
676 
677 	vmspace_exitfree(p);		/* and clean-out the vmspace */
678 }
679 
680 void
681 faultin(p)
682 	struct proc *p;
683 {
684 #ifdef NO_SWAPPING
685 
686 	PROC_LOCK_ASSERT(p, MA_OWNED);
687 	if ((p->p_flag & P_INMEM) == 0)
688 		panic("faultin: proc swapped out with NO_SWAPPING!");
689 #else /* !NO_SWAPPING */
690 	struct thread *td;
691 
692 	PROC_LOCK_ASSERT(p, MA_OWNED);
693 	/*
694 	 * If another process is swapping in this process,
695 	 * just wait until it finishes.
696 	 */
697 	if (p->p_flag & P_SWAPPINGIN) {
698 		while (p->p_flag & P_SWAPPINGIN)
699 			msleep(&p->p_flag, &p->p_mtx, PVM, "faultin", 0);
700 		return;
701 	}
702 	if ((p->p_flag & P_INMEM) == 0) {
703 		/*
704 		 * Don't let another thread swap process p out while we are
705 		 * busy swapping it in.
706 		 */
707 		++p->p_lock;
708 		p->p_flag |= P_SWAPPINGIN;
709 		PROC_UNLOCK(p);
710 
711 		/*
712 		 * We hold no lock here because the list of threads
713 		 * can not change while all threads in the process are
714 		 * swapped out.
715 		 */
716 		FOREACH_THREAD_IN_PROC(p, td)
717 			vm_thread_swapin(td);
718 		PROC_LOCK(p);
719 		swapclear(p);
720 		p->p_swtick = ticks;
721 
722 		wakeup(&p->p_flag);
723 
724 		/* Allow other threads to swap p out now. */
725 		--p->p_lock;
726 	}
727 #endif /* NO_SWAPPING */
728 }
729 
730 /*
731  * This swapin algorithm attempts to swap-in processes only if there
732  * is enough space for them.  Of course, if a process waits for a long
733  * time, it will be swapped in anyway.
734  */
735 void
736 swapper(void)
737 {
738 	struct proc *p;
739 	struct thread *td;
740 	struct proc *pp;
741 	int slptime;
742 	int swtime;
743 	int ppri;
744 	int pri;
745 
746 loop:
747 	if (vm_page_count_min()) {
748 		VM_WAIT;
749 		goto loop;
750 	}
751 
752 	pp = NULL;
753 	ppri = INT_MIN;
754 	sx_slock(&allproc_lock);
755 	FOREACH_PROC_IN_SYSTEM(p) {
756 		PROC_LOCK(p);
757 		if (p->p_state == PRS_NEW ||
758 		    p->p_flag & (P_SWAPPINGOUT | P_SWAPPINGIN | P_INMEM)) {
759 			PROC_UNLOCK(p);
760 			continue;
761 		}
762 		swtime = (ticks - p->p_swtick) / hz;
763 		FOREACH_THREAD_IN_PROC(p, td) {
764 			/*
765 			 * An otherwise runnable thread of a process
766 			 * swapped out has only the TDI_SWAPPED bit set.
767 			 *
768 			 */
769 			thread_lock(td);
770 			if (td->td_inhibitors == TDI_SWAPPED) {
771 				slptime = (ticks - td->td_slptick) / hz;
772 				pri = swtime + slptime;
773 				if ((td->td_flags & TDF_SWAPINREQ) == 0)
774 					pri -= p->p_nice * 8;
775 				/*
776 				 * if this thread is higher priority
777 				 * and there is enough space, then select
778 				 * this process instead of the previous
779 				 * selection.
780 				 */
781 				if (pri > ppri) {
782 					pp = p;
783 					ppri = pri;
784 				}
785 			}
786 			thread_unlock(td);
787 		}
788 		PROC_UNLOCK(p);
789 	}
790 	sx_sunlock(&allproc_lock);
791 
792 	/*
793 	 * Nothing to do, back to sleep.
794 	 */
795 	if ((p = pp) == NULL) {
796 		tsleep(&proc0, PVM, "swapin", MAXSLP * hz / 2);
797 		goto loop;
798 	}
799 	PROC_LOCK(p);
800 
801 	/*
802 	 * Another process may be bringing or may have already
803 	 * brought this process in while we traverse all threads.
804 	 * Or, this process may even be being swapped out again.
805 	 */
806 	if (p->p_flag & (P_INMEM | P_SWAPPINGOUT | P_SWAPPINGIN)) {
807 		PROC_UNLOCK(p);
808 		goto loop;
809 	}
810 
811 	/*
812 	 * We would like to bring someone in. (only if there is space).
813 	 * [What checks the space? ]
814 	 */
815 	faultin(p);
816 	PROC_UNLOCK(p);
817 	goto loop;
818 }
819 
820 void
821 kick_proc0(void)
822 {
823 
824 	wakeup(&proc0);
825 }
826 
827 #ifndef NO_SWAPPING
828 
829 /*
830  * Swap_idle_threshold1 is the guaranteed swapped in time for a process
831  */
832 static int swap_idle_threshold1 = 2;
833 SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold1, CTLFLAG_RW,
834     &swap_idle_threshold1, 0, "Guaranteed swapped in time for a process");
835 
836 /*
837  * Swap_idle_threshold2 is the time that a process can be idle before
838  * it will be swapped out, if idle swapping is enabled.
839  */
840 static int swap_idle_threshold2 = 10;
841 SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold2, CTLFLAG_RW,
842     &swap_idle_threshold2, 0, "Time before a process will be swapped out");
843 
844 /*
845  * First, if any processes have been sleeping or stopped for at least
846  * "swap_idle_threshold1" seconds, they are swapped out.  If, however,
847  * no such processes exist, then the longest-sleeping or stopped
848  * process is swapped out.  Finally, and only as a last resort, if
849  * there are no sleeping or stopped processes, the longest-resident
850  * process is swapped out.
851  */
852 void
853 swapout_procs(action)
854 int action;
855 {
856 	struct proc *p;
857 	struct thread *td;
858 	int didswap = 0;
859 
860 retry:
861 	sx_slock(&allproc_lock);
862 	FOREACH_PROC_IN_SYSTEM(p) {
863 		struct vmspace *vm;
864 		int minslptime = 100000;
865 		int slptime;
866 
867 		PROC_LOCK(p);
868 		/*
869 		 * Watch out for a process in
870 		 * creation.  It may have no
871 		 * address space or lock yet.
872 		 */
873 		if (p->p_state == PRS_NEW) {
874 			PROC_UNLOCK(p);
875 			continue;
876 		}
877 		/*
878 		 * An aio daemon switches its
879 		 * address space while running.
880 		 * Perform a quick check whether
881 		 * a process has P_SYSTEM.
882 		 * Filter out exiting processes.
883 		 */
884 		if ((p->p_flag & (P_SYSTEM | P_WEXIT)) != 0) {
885 			PROC_UNLOCK(p);
886 			continue;
887 		}
888 		_PHOLD_LITE(p);
889 		PROC_UNLOCK(p);
890 		sx_sunlock(&allproc_lock);
891 
892 		/*
893 		 * Do not swapout a process that
894 		 * is waiting for VM data
895 		 * structures as there is a possible
896 		 * deadlock.  Test this first as
897 		 * this may block.
898 		 *
899 		 * Lock the map until swapout
900 		 * finishes, or a thread of this
901 		 * process may attempt to alter
902 		 * the map.
903 		 */
904 		vm = vmspace_acquire_ref(p);
905 		if (vm == NULL)
906 			goto nextproc2;
907 		if (!vm_map_trylock(&vm->vm_map))
908 			goto nextproc1;
909 
910 		PROC_LOCK(p);
911 		if (p->p_lock != 1 || (p->p_flag & (P_STOPPED_SINGLE |
912 		    P_TRACED | P_SYSTEM)) != 0)
913 			goto nextproc;
914 
915 		/*
916 		 * only aiod changes vmspace, however it will be
917 		 * skipped because of the if statement above checking
918 		 * for P_SYSTEM
919 		 */
920 		if ((p->p_flag & (P_INMEM|P_SWAPPINGOUT|P_SWAPPINGIN)) != P_INMEM)
921 			goto nextproc;
922 
923 		switch (p->p_state) {
924 		default:
925 			/* Don't swap out processes in any sort
926 			 * of 'special' state. */
927 			break;
928 
929 		case PRS_NORMAL:
930 			/*
931 			 * do not swapout a realtime process
932 			 * Check all the thread groups..
933 			 */
934 			FOREACH_THREAD_IN_PROC(p, td) {
935 				thread_lock(td);
936 				if (PRI_IS_REALTIME(td->td_pri_class)) {
937 					thread_unlock(td);
938 					goto nextproc;
939 				}
940 				slptime = (ticks - td->td_slptick) / hz;
941 				/*
942 				 * Guarantee swap_idle_threshold1
943 				 * time in memory.
944 				 */
945 				if (slptime < swap_idle_threshold1) {
946 					thread_unlock(td);
947 					goto nextproc;
948 				}
949 
950 				/*
951 				 * Do not swapout a process if it is
952 				 * waiting on a critical event of some
953 				 * kind or there is a thread whose
954 				 * pageable memory may be accessed.
955 				 *
956 				 * This could be refined to support
957 				 * swapping out a thread.
958 				 */
959 				if (!thread_safetoswapout(td)) {
960 					thread_unlock(td);
961 					goto nextproc;
962 				}
963 				/*
964 				 * If the system is under memory stress,
965 				 * or if we are swapping
966 				 * idle processes >= swap_idle_threshold2,
967 				 * then swap the process out.
968 				 */
969 				if (((action & VM_SWAP_NORMAL) == 0) &&
970 				    (((action & VM_SWAP_IDLE) == 0) ||
971 				    (slptime < swap_idle_threshold2))) {
972 					thread_unlock(td);
973 					goto nextproc;
974 				}
975 
976 				if (minslptime > slptime)
977 					minslptime = slptime;
978 				thread_unlock(td);
979 			}
980 
981 			/*
982 			 * If the pageout daemon didn't free enough pages,
983 			 * or if this process is idle and the system is
984 			 * configured to swap proactively, swap it out.
985 			 */
986 			if ((action & VM_SWAP_NORMAL) ||
987 				((action & VM_SWAP_IDLE) &&
988 				 (minslptime > swap_idle_threshold2))) {
989 				_PRELE(p);
990 				if (swapout(p) == 0)
991 					didswap++;
992 				PROC_UNLOCK(p);
993 				vm_map_unlock(&vm->vm_map);
994 				vmspace_free(vm);
995 				goto retry;
996 			}
997 		}
998 nextproc:
999 		PROC_UNLOCK(p);
1000 		vm_map_unlock(&vm->vm_map);
1001 nextproc1:
1002 		vmspace_free(vm);
1003 nextproc2:
1004 		sx_slock(&allproc_lock);
1005 		PRELE(p);
1006 	}
1007 	sx_sunlock(&allproc_lock);
1008 	/*
1009 	 * If we swapped something out, and another process needed memory,
1010 	 * then wakeup the sched process.
1011 	 */
1012 	if (didswap)
1013 		wakeup(&proc0);
1014 }
1015 
1016 static void
1017 swapclear(p)
1018 	struct proc *p;
1019 {
1020 	struct thread *td;
1021 
1022 	PROC_LOCK_ASSERT(p, MA_OWNED);
1023 
1024 	FOREACH_THREAD_IN_PROC(p, td) {
1025 		thread_lock(td);
1026 		td->td_flags |= TDF_INMEM;
1027 		td->td_flags &= ~TDF_SWAPINREQ;
1028 		TD_CLR_SWAPPED(td);
1029 		if (TD_CAN_RUN(td))
1030 			if (setrunnable(td)) {
1031 #ifdef INVARIANTS
1032 				/*
1033 				 * XXX: We just cleared TDI_SWAPPED
1034 				 * above and set TDF_INMEM, so this
1035 				 * should never happen.
1036 				 */
1037 				panic("not waking up swapper");
1038 #endif
1039 			}
1040 		thread_unlock(td);
1041 	}
1042 	p->p_flag &= ~(P_SWAPPINGIN|P_SWAPPINGOUT);
1043 	p->p_flag |= P_INMEM;
1044 }
1045 
1046 static int
1047 swapout(p)
1048 	struct proc *p;
1049 {
1050 	struct thread *td;
1051 
1052 	PROC_LOCK_ASSERT(p, MA_OWNED);
1053 #if defined(SWAP_DEBUG)
1054 	printf("swapping out %d\n", p->p_pid);
1055 #endif
1056 
1057 	/*
1058 	 * The states of this process and its threads may have changed
1059 	 * by now.  Assuming that there is only one pageout daemon thread,
1060 	 * this process should still be in memory.
1061 	 */
1062 	KASSERT((p->p_flag & (P_INMEM|P_SWAPPINGOUT|P_SWAPPINGIN)) == P_INMEM,
1063 		("swapout: lost a swapout race?"));
1064 
1065 	/*
1066 	 * remember the process resident count
1067 	 */
1068 	p->p_vmspace->vm_swrss = vmspace_resident_count(p->p_vmspace);
1069 	/*
1070 	 * Check and mark all threads before we proceed.
1071 	 */
1072 	p->p_flag &= ~P_INMEM;
1073 	p->p_flag |= P_SWAPPINGOUT;
1074 	FOREACH_THREAD_IN_PROC(p, td) {
1075 		thread_lock(td);
1076 		if (!thread_safetoswapout(td)) {
1077 			thread_unlock(td);
1078 			swapclear(p);
1079 			return (EBUSY);
1080 		}
1081 		td->td_flags &= ~TDF_INMEM;
1082 		TD_SET_SWAPPED(td);
1083 		thread_unlock(td);
1084 	}
1085 	td = FIRST_THREAD_IN_PROC(p);
1086 	++td->td_ru.ru_nswap;
1087 	PROC_UNLOCK(p);
1088 
1089 	/*
1090 	 * This list is stable because all threads are now prevented from
1091 	 * running.  The list is only modified in the context of a running
1092 	 * thread in this process.
1093 	 */
1094 	FOREACH_THREAD_IN_PROC(p, td)
1095 		vm_thread_swapout(td);
1096 
1097 	PROC_LOCK(p);
1098 	p->p_flag &= ~P_SWAPPINGOUT;
1099 	p->p_swtick = ticks;
1100 	return (0);
1101 }
1102 #endif /* !NO_SWAPPING */
1103