xref: /freebsd/sys/vm/vm_glue.c (revision e0c4386e7e71d93b0edc0c8fa156263fc4a8b0b6)
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Permission to use, copy, modify and distribute this software and
39  * its documentation is hereby granted, provided that both the copyright
40  * notice and this permission notice appear in all copies of the
41  * software, derivative works or modified versions, and any portions
42  * thereof, and that both notices appear in supporting documentation.
43  *
44  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
45  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
46  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
47  *
48  * Carnegie Mellon requests users of this software to return to
49  *
50  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
51  *  School of Computer Science
52  *  Carnegie Mellon University
53  *  Pittsburgh PA 15213-3890
54  *
55  * any improvements or extensions that they make and grant Carnegie the
56  * rights to redistribute these changes.
57  */
58 
59 #include <sys/cdefs.h>
60 #include "opt_vm.h"
61 #include "opt_kstack_pages.h"
62 #include "opt_kstack_max_pages.h"
63 #include "opt_kstack_usage_prof.h"
64 
65 #include <sys/param.h>
66 #include <sys/systm.h>
67 #include <sys/asan.h>
68 #include <sys/domainset.h>
69 #include <sys/limits.h>
70 #include <sys/lock.h>
71 #include <sys/malloc.h>
72 #include <sys/msan.h>
73 #include <sys/mutex.h>
74 #include <sys/proc.h>
75 #include <sys/racct.h>
76 #include <sys/refcount.h>
77 #include <sys/resourcevar.h>
78 #include <sys/rwlock.h>
79 #include <sys/sched.h>
80 #include <sys/sf_buf.h>
81 #include <sys/shm.h>
82 #include <sys/smp.h>
83 #include <sys/vmmeter.h>
84 #include <sys/vmem.h>
85 #include <sys/sx.h>
86 #include <sys/sysctl.h>
87 #include <sys/kernel.h>
88 #include <sys/ktr.h>
89 #include <sys/unistd.h>
90 
91 #include <vm/uma.h>
92 #include <vm/vm.h>
93 #include <vm/vm_param.h>
94 #include <vm/pmap.h>
95 #include <vm/vm_domainset.h>
96 #include <vm/vm_map.h>
97 #include <vm/vm_page.h>
98 #include <vm/vm_pageout.h>
99 #include <vm/vm_object.h>
100 #include <vm/vm_kern.h>
101 #include <vm/vm_extern.h>
102 #include <vm/vm_pager.h>
103 #include <vm/swap_pager.h>
104 
105 #include <machine/cpu.h>
106 
107 /*
108  * MPSAFE
109  *
110  * WARNING!  This code calls vm_map_check_protection() which only checks
111  * the associated vm_map_entry range.  It does not determine whether the
112  * contents of the memory is actually readable or writable.  In most cases
113  * just checking the vm_map_entry is sufficient within the kernel's address
114  * space.
115  */
116 int
117 kernacc(void *addr, int len, int rw)
118 {
119 	boolean_t rv;
120 	vm_offset_t saddr, eaddr;
121 	vm_prot_t prot;
122 
123 	KASSERT((rw & ~VM_PROT_ALL) == 0,
124 	    ("illegal ``rw'' argument to kernacc (%x)\n", rw));
125 
126 	if ((vm_offset_t)addr + len > vm_map_max(kernel_map) ||
127 	    (vm_offset_t)addr + len < (vm_offset_t)addr)
128 		return (FALSE);
129 
130 	prot = rw;
131 	saddr = trunc_page((vm_offset_t)addr);
132 	eaddr = round_page((vm_offset_t)addr + len);
133 	vm_map_lock_read(kernel_map);
134 	rv = vm_map_check_protection(kernel_map, saddr, eaddr, prot);
135 	vm_map_unlock_read(kernel_map);
136 	return (rv == TRUE);
137 }
138 
139 /*
140  * MPSAFE
141  *
142  * WARNING!  This code calls vm_map_check_protection() which only checks
143  * the associated vm_map_entry range.  It does not determine whether the
144  * contents of the memory is actually readable or writable.  vmapbuf(),
145  * vm_fault_quick(), or copyin()/copout()/su*()/fu*() functions should be
146  * used in conjunction with this call.
147  */
148 int
149 useracc(void *addr, int len, int rw)
150 {
151 	boolean_t rv;
152 	vm_prot_t prot;
153 	vm_map_t map;
154 
155 	KASSERT((rw & ~VM_PROT_ALL) == 0,
156 	    ("illegal ``rw'' argument to useracc (%x)\n", rw));
157 	prot = rw;
158 	map = &curproc->p_vmspace->vm_map;
159 	if ((vm_offset_t)addr + len > vm_map_max(map) ||
160 	    (vm_offset_t)addr + len < (vm_offset_t)addr) {
161 		return (FALSE);
162 	}
163 	vm_map_lock_read(map);
164 	rv = vm_map_check_protection(map, trunc_page((vm_offset_t)addr),
165 	    round_page((vm_offset_t)addr + len), prot);
166 	vm_map_unlock_read(map);
167 	return (rv == TRUE);
168 }
169 
170 int
171 vslock(void *addr, size_t len)
172 {
173 	vm_offset_t end, last, start;
174 	vm_size_t npages;
175 	int error;
176 
177 	last = (vm_offset_t)addr + len;
178 	start = trunc_page((vm_offset_t)addr);
179 	end = round_page(last);
180 	if (last < (vm_offset_t)addr || end < (vm_offset_t)addr)
181 		return (EINVAL);
182 	npages = atop(end - start);
183 	if (npages > vm_page_max_user_wired)
184 		return (ENOMEM);
185 	error = vm_map_wire(&curproc->p_vmspace->vm_map, start, end,
186 	    VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
187 	if (error == KERN_SUCCESS) {
188 		curthread->td_vslock_sz += len;
189 		return (0);
190 	}
191 
192 	/*
193 	 * Return EFAULT on error to match copy{in,out}() behaviour
194 	 * rather than returning ENOMEM like mlock() would.
195 	 */
196 	return (EFAULT);
197 }
198 
199 void
200 vsunlock(void *addr, size_t len)
201 {
202 
203 	/* Rely on the parameter sanity checks performed by vslock(). */
204 	MPASS(curthread->td_vslock_sz >= len);
205 	curthread->td_vslock_sz -= len;
206 	(void)vm_map_unwire(&curproc->p_vmspace->vm_map,
207 	    trunc_page((vm_offset_t)addr), round_page((vm_offset_t)addr + len),
208 	    VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
209 }
210 
211 /*
212  * Pin the page contained within the given object at the given offset.  If the
213  * page is not resident, allocate and load it using the given object's pager.
214  * Return the pinned page if successful; otherwise, return NULL.
215  */
216 static vm_page_t
217 vm_imgact_hold_page(vm_object_t object, vm_ooffset_t offset)
218 {
219 	vm_page_t m;
220 	vm_pindex_t pindex;
221 
222 	pindex = OFF_TO_IDX(offset);
223 	(void)vm_page_grab_valid_unlocked(&m, object, pindex,
224 	    VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY | VM_ALLOC_WIRED);
225 	return (m);
226 }
227 
228 /*
229  * Return a CPU private mapping to the page at the given offset within the
230  * given object.  The page is pinned before it is mapped.
231  */
232 struct sf_buf *
233 vm_imgact_map_page(vm_object_t object, vm_ooffset_t offset)
234 {
235 	vm_page_t m;
236 
237 	m = vm_imgact_hold_page(object, offset);
238 	if (m == NULL)
239 		return (NULL);
240 	sched_pin();
241 	return (sf_buf_alloc(m, SFB_CPUPRIVATE));
242 }
243 
244 /*
245  * Destroy the given CPU private mapping and unpin the page that it mapped.
246  */
247 void
248 vm_imgact_unmap_page(struct sf_buf *sf)
249 {
250 	vm_page_t m;
251 
252 	m = sf_buf_page(sf);
253 	sf_buf_free(sf);
254 	sched_unpin();
255 	vm_page_unwire(m, PQ_ACTIVE);
256 }
257 
258 void
259 vm_sync_icache(vm_map_t map, vm_offset_t va, vm_offset_t sz)
260 {
261 
262 	pmap_sync_icache(map->pmap, va, sz);
263 }
264 
265 vm_object_t kstack_object;
266 static uma_zone_t kstack_cache;
267 static int kstack_cache_size;
268 
269 static int
270 sysctl_kstack_cache_size(SYSCTL_HANDLER_ARGS)
271 {
272 	int error, oldsize;
273 
274 	oldsize = kstack_cache_size;
275 	error = sysctl_handle_int(oidp, arg1, arg2, req);
276 	if (error == 0 && req->newptr && oldsize != kstack_cache_size)
277 		uma_zone_set_maxcache(kstack_cache, kstack_cache_size);
278 	return (error);
279 }
280 SYSCTL_PROC(_vm, OID_AUTO, kstack_cache_size,
281     CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &kstack_cache_size, 0,
282     sysctl_kstack_cache_size, "IU", "Maximum number of cached kernel stacks");
283 
284 /*
285  * Create the kernel stack (including pcb for i386) for a new thread.
286  */
287 static vm_offset_t
288 vm_thread_stack_create(struct domainset *ds, int pages)
289 {
290 	vm_page_t ma[KSTACK_MAX_PAGES];
291 	vm_offset_t ks;
292 	int i;
293 
294 	/*
295 	 * Get a kernel virtual address for this thread's kstack.
296 	 */
297 	ks = kva_alloc((pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
298 	if (ks == 0) {
299 		printf("%s: kstack allocation failed\n", __func__);
300 		return (0);
301 	}
302 
303 	if (KSTACK_GUARD_PAGES != 0) {
304 		pmap_qremove(ks, KSTACK_GUARD_PAGES);
305 		ks += KSTACK_GUARD_PAGES * PAGE_SIZE;
306 	}
307 
308 	/*
309 	 * Allocate physical pages to back the stack.
310 	 */
311 	vm_thread_stack_back(ds, ks, ma, pages, VM_ALLOC_NORMAL);
312 	for (i = 0; i < pages; i++)
313 		vm_page_valid(ma[i]);
314 	pmap_qenter(ks, ma, pages);
315 
316 	return (ks);
317 }
318 
319 static void
320 vm_thread_stack_dispose(vm_offset_t ks, int pages)
321 {
322 	vm_page_t m;
323 	vm_pindex_t pindex;
324 	int i;
325 
326 	pindex = atop(ks - VM_MIN_KERNEL_ADDRESS);
327 
328 	pmap_qremove(ks, pages);
329 	VM_OBJECT_WLOCK(kstack_object);
330 	for (i = 0; i < pages; i++) {
331 		m = vm_page_lookup(kstack_object, pindex + i);
332 		if (m == NULL)
333 			panic("%s: kstack already missing?", __func__);
334 		vm_page_xbusy_claim(m);
335 		vm_page_unwire_noq(m);
336 		vm_page_free(m);
337 	}
338 	VM_OBJECT_WUNLOCK(kstack_object);
339 	kasan_mark((void *)ks, ptoa(pages), ptoa(pages), 0);
340 	kva_free(ks - (KSTACK_GUARD_PAGES * PAGE_SIZE),
341 	    (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
342 }
343 
344 /*
345  * Allocate the kernel stack for a new thread.
346  */
347 int
348 vm_thread_new(struct thread *td, int pages)
349 {
350 	vm_offset_t ks;
351 
352 	/* Bounds check */
353 	if (pages <= 1)
354 		pages = kstack_pages;
355 	else if (pages > KSTACK_MAX_PAGES)
356 		pages = KSTACK_MAX_PAGES;
357 
358 	ks = 0;
359 	if (pages == kstack_pages && kstack_cache != NULL)
360 		ks = (vm_offset_t)uma_zalloc(kstack_cache, M_NOWAIT);
361 
362 	/*
363 	 * Ensure that kstack objects can draw pages from any memory
364 	 * domain.  Otherwise a local memory shortage can block a process
365 	 * swap-in.
366 	 */
367 	if (ks == 0)
368 		ks = vm_thread_stack_create(DOMAINSET_PREF(PCPU_GET(domain)),
369 		    pages);
370 	if (ks == 0)
371 		return (0);
372 	td->td_kstack = ks;
373 	td->td_kstack_pages = pages;
374 	kasan_mark((void *)ks, ptoa(pages), ptoa(pages), 0);
375 	kmsan_mark((void *)ks, ptoa(pages), KMSAN_STATE_UNINIT);
376 	return (1);
377 }
378 
379 /*
380  * Dispose of a thread's kernel stack.
381  */
382 void
383 vm_thread_dispose(struct thread *td)
384 {
385 	vm_offset_t ks;
386 	int pages;
387 
388 	pages = td->td_kstack_pages;
389 	ks = td->td_kstack;
390 	td->td_kstack = 0;
391 	td->td_kstack_pages = 0;
392 	kasan_mark((void *)ks, 0, ptoa(pages), KASAN_KSTACK_FREED);
393 	if (pages == kstack_pages)
394 		uma_zfree(kstack_cache, (void *)ks);
395 	else
396 		vm_thread_stack_dispose(ks, pages);
397 }
398 
399 /*
400  * Allocate physical pages, following the specified NUMA policy, to back a
401  * kernel stack.
402  */
403 void
404 vm_thread_stack_back(struct domainset *ds, vm_offset_t ks, vm_page_t ma[],
405     int npages, int req_class)
406 {
407 	vm_pindex_t pindex;
408 	int n;
409 
410 	pindex = atop(ks - VM_MIN_KERNEL_ADDRESS);
411 
412 	VM_OBJECT_WLOCK(kstack_object);
413 	for (n = 0; n < npages;) {
414 		if (vm_ndomains > 1)
415 			kstack_object->domain.dr_policy = ds;
416 
417 		/*
418 		 * Use WAITFAIL to force a reset of the domain selection policy
419 		 * if we had to sleep for pages.
420 		 */
421 		n += vm_page_grab_pages(kstack_object, pindex + n,
422 		    req_class | VM_ALLOC_WIRED | VM_ALLOC_WAITFAIL,
423 		    &ma[n], npages - n);
424 	}
425 	VM_OBJECT_WUNLOCK(kstack_object);
426 }
427 
428 static int
429 kstack_import(void *arg, void **store, int cnt, int domain, int flags)
430 {
431 	struct domainset *ds;
432 	int i;
433 
434 	if (domain == UMA_ANYDOMAIN)
435 		ds = DOMAINSET_RR();
436 	else
437 		ds = DOMAINSET_PREF(domain);
438 
439 	for (i = 0; i < cnt; i++) {
440 		store[i] = (void *)vm_thread_stack_create(ds, kstack_pages);
441 		if (store[i] == NULL)
442 			break;
443 	}
444 	return (i);
445 }
446 
447 static void
448 kstack_release(void *arg, void **store, int cnt)
449 {
450 	vm_offset_t ks;
451 	int i;
452 
453 	for (i = 0; i < cnt; i++) {
454 		ks = (vm_offset_t)store[i];
455 		vm_thread_stack_dispose(ks, kstack_pages);
456 	}
457 }
458 
459 static void
460 kstack_cache_init(void *null)
461 {
462 	kstack_object = vm_object_allocate(OBJT_SWAP,
463 	    atop(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS));
464 	kstack_cache = uma_zcache_create("kstack_cache",
465 	    kstack_pages * PAGE_SIZE, NULL, NULL, NULL, NULL,
466 	    kstack_import, kstack_release, NULL,
467 	    UMA_ZONE_FIRSTTOUCH);
468 	kstack_cache_size = imax(128, mp_ncpus * 4);
469 	uma_zone_set_maxcache(kstack_cache, kstack_cache_size);
470 }
471 SYSINIT(vm_kstacks, SI_SUB_KMEM, SI_ORDER_ANY, kstack_cache_init, NULL);
472 
473 #ifdef KSTACK_USAGE_PROF
474 /*
475  * Track maximum stack used by a thread in kernel.
476  */
477 static int max_kstack_used;
478 
479 SYSCTL_INT(_debug, OID_AUTO, max_kstack_used, CTLFLAG_RD,
480     &max_kstack_used, 0,
481     "Maximum stack depth used by a thread in kernel");
482 
483 void
484 intr_prof_stack_use(struct thread *td, struct trapframe *frame)
485 {
486 	vm_offset_t stack_top;
487 	vm_offset_t current;
488 	int used, prev_used;
489 
490 	/*
491 	 * Testing for interrupted kernel mode isn't strictly
492 	 * needed. It optimizes the execution, since interrupts from
493 	 * usermode will have only the trap frame on the stack.
494 	 */
495 	if (TRAPF_USERMODE(frame))
496 		return;
497 
498 	stack_top = td->td_kstack + td->td_kstack_pages * PAGE_SIZE;
499 	current = (vm_offset_t)(uintptr_t)&stack_top;
500 
501 	/*
502 	 * Try to detect if interrupt is using kernel thread stack.
503 	 * Hardware could use a dedicated stack for interrupt handling.
504 	 */
505 	if (stack_top <= current || current < td->td_kstack)
506 		return;
507 
508 	used = stack_top - current;
509 	for (;;) {
510 		prev_used = max_kstack_used;
511 		if (prev_used >= used)
512 			break;
513 		if (atomic_cmpset_int(&max_kstack_used, prev_used, used))
514 			break;
515 	}
516 }
517 #endif /* KSTACK_USAGE_PROF */
518 
519 /*
520  * Implement fork's actions on an address space.
521  * Here we arrange for the address space to be copied or referenced,
522  * allocate a user struct (pcb and kernel stack), then call the
523  * machine-dependent layer to fill those in and make the new process
524  * ready to run.  The new process is set up so that it returns directly
525  * to user mode to avoid stack copying and relocation problems.
526  */
527 int
528 vm_forkproc(struct thread *td, struct proc *p2, struct thread *td2,
529     struct vmspace *vm2, int flags)
530 {
531 	struct proc *p1 = td->td_proc;
532 	struct domainset *dset;
533 	int error;
534 
535 	if ((flags & RFPROC) == 0) {
536 		/*
537 		 * Divorce the memory, if it is shared, essentially
538 		 * this changes shared memory amongst threads, into
539 		 * COW locally.
540 		 */
541 		if ((flags & RFMEM) == 0) {
542 			error = vmspace_unshare(p1);
543 			if (error)
544 				return (error);
545 		}
546 		cpu_fork(td, p2, td2, flags);
547 		return (0);
548 	}
549 
550 	if (flags & RFMEM) {
551 		p2->p_vmspace = p1->p_vmspace;
552 		refcount_acquire(&p1->p_vmspace->vm_refcnt);
553 	}
554 	dset = td2->td_domain.dr_policy;
555 	while (vm_page_count_severe_set(&dset->ds_mask)) {
556 		vm_wait_doms(&dset->ds_mask, 0);
557 	}
558 
559 	if ((flags & RFMEM) == 0) {
560 		p2->p_vmspace = vm2;
561 		if (p1->p_vmspace->vm_shm)
562 			shmfork(p1, p2);
563 	}
564 
565 	/*
566 	 * cpu_fork will copy and update the pcb, set up the kernel stack,
567 	 * and make the child ready to run.
568 	 */
569 	cpu_fork(td, p2, td2, flags);
570 	return (0);
571 }
572 
573 /*
574  * Called after process has been wait(2)'ed upon and is being reaped.
575  * The idea is to reclaim resources that we could not reclaim while
576  * the process was still executing.
577  */
578 void
579 vm_waitproc(struct proc *p)
580 {
581 
582 	vmspace_exitfree(p);		/* and clean-out the vmspace */
583 }
584 
585 void
586 kick_proc0(void)
587 {
588 
589 	wakeup(&proc0);
590 }
591