xref: /freebsd/sys/vm/vm_glue.c (revision c1cdf6a42f0d951ba720688dfc6ce07608b02f6e)
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	from: @(#)vm_glue.c	8.6 (Berkeley) 1/5/94
35  *
36  *
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60 
61 #include <sys/cdefs.h>
62 __FBSDID("$FreeBSD$");
63 
64 #include "opt_vm.h"
65 #include "opt_kstack_pages.h"
66 #include "opt_kstack_max_pages.h"
67 #include "opt_kstack_usage_prof.h"
68 
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/limits.h>
72 #include <sys/lock.h>
73 #include <sys/malloc.h>
74 #include <sys/mutex.h>
75 #include <sys/proc.h>
76 #include <sys/racct.h>
77 #include <sys/resourcevar.h>
78 #include <sys/rwlock.h>
79 #include <sys/sched.h>
80 #include <sys/sf_buf.h>
81 #include <sys/shm.h>
82 #include <sys/vmmeter.h>
83 #include <sys/vmem.h>
84 #include <sys/sx.h>
85 #include <sys/sysctl.h>
86 #include <sys/_kstack_cache.h>
87 #include <sys/eventhandler.h>
88 #include <sys/kernel.h>
89 #include <sys/ktr.h>
90 #include <sys/unistd.h>
91 
92 #include <vm/vm.h>
93 #include <vm/vm_param.h>
94 #include <vm/pmap.h>
95 #include <vm/vm_domainset.h>
96 #include <vm/vm_map.h>
97 #include <vm/vm_page.h>
98 #include <vm/vm_pageout.h>
99 #include <vm/vm_object.h>
100 #include <vm/vm_kern.h>
101 #include <vm/vm_extern.h>
102 #include <vm/vm_pager.h>
103 #include <vm/swap_pager.h>
104 
105 #include <machine/cpu.h>
106 
107 /*
108  * MPSAFE
109  *
110  * WARNING!  This code calls vm_map_check_protection() which only checks
111  * the associated vm_map_entry range.  It does not determine whether the
112  * contents of the memory is actually readable or writable.  In most cases
113  * just checking the vm_map_entry is sufficient within the kernel's address
114  * space.
115  */
116 int
117 kernacc(void *addr, int len, int rw)
118 {
119 	boolean_t rv;
120 	vm_offset_t saddr, eaddr;
121 	vm_prot_t prot;
122 
123 	KASSERT((rw & ~VM_PROT_ALL) == 0,
124 	    ("illegal ``rw'' argument to kernacc (%x)\n", rw));
125 
126 	if ((vm_offset_t)addr + len > vm_map_max(kernel_map) ||
127 	    (vm_offset_t)addr + len < (vm_offset_t)addr)
128 		return (FALSE);
129 
130 	prot = rw;
131 	saddr = trunc_page((vm_offset_t)addr);
132 	eaddr = round_page((vm_offset_t)addr + len);
133 	vm_map_lock_read(kernel_map);
134 	rv = vm_map_check_protection(kernel_map, saddr, eaddr, prot);
135 	vm_map_unlock_read(kernel_map);
136 	return (rv == TRUE);
137 }
138 
139 /*
140  * MPSAFE
141  *
142  * WARNING!  This code calls vm_map_check_protection() which only checks
143  * the associated vm_map_entry range.  It does not determine whether the
144  * contents of the memory is actually readable or writable.  vmapbuf(),
145  * vm_fault_quick(), or copyin()/copout()/su*()/fu*() functions should be
146  * used in conjunction with this call.
147  */
148 int
149 useracc(void *addr, int len, int rw)
150 {
151 	boolean_t rv;
152 	vm_prot_t prot;
153 	vm_map_t map;
154 
155 	KASSERT((rw & ~VM_PROT_ALL) == 0,
156 	    ("illegal ``rw'' argument to useracc (%x)\n", rw));
157 	prot = rw;
158 	map = &curproc->p_vmspace->vm_map;
159 	if ((vm_offset_t)addr + len > vm_map_max(map) ||
160 	    (vm_offset_t)addr + len < (vm_offset_t)addr) {
161 		return (FALSE);
162 	}
163 	vm_map_lock_read(map);
164 	rv = vm_map_check_protection(map, trunc_page((vm_offset_t)addr),
165 	    round_page((vm_offset_t)addr + len), prot);
166 	vm_map_unlock_read(map);
167 	return (rv == TRUE);
168 }
169 
170 int
171 vslock(void *addr, size_t len)
172 {
173 	vm_offset_t end, last, start;
174 	vm_size_t npages;
175 	int error;
176 
177 	last = (vm_offset_t)addr + len;
178 	start = trunc_page((vm_offset_t)addr);
179 	end = round_page(last);
180 	if (last < (vm_offset_t)addr || end < (vm_offset_t)addr)
181 		return (EINVAL);
182 	npages = atop(end - start);
183 	if (npages > vm_page_max_wired)
184 		return (ENOMEM);
185 #if 0
186 	/*
187 	 * XXX - not yet
188 	 *
189 	 * The limit for transient usage of wired pages should be
190 	 * larger than for "permanent" wired pages (mlock()).
191 	 *
192 	 * Also, the sysctl code, which is the only present user
193 	 * of vslock(), does a hard loop on EAGAIN.
194 	 */
195 	if (npages + vm_wire_count() > vm_page_max_wired)
196 		return (EAGAIN);
197 #endif
198 	error = vm_map_wire(&curproc->p_vmspace->vm_map, start, end,
199 	    VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
200 	if (error == KERN_SUCCESS) {
201 		curthread->td_vslock_sz += len;
202 		return (0);
203 	}
204 
205 	/*
206 	 * Return EFAULT on error to match copy{in,out}() behaviour
207 	 * rather than returning ENOMEM like mlock() would.
208 	 */
209 	return (EFAULT);
210 }
211 
212 void
213 vsunlock(void *addr, size_t len)
214 {
215 
216 	/* Rely on the parameter sanity checks performed by vslock(). */
217 	MPASS(curthread->td_vslock_sz >= len);
218 	curthread->td_vslock_sz -= len;
219 	(void)vm_map_unwire(&curproc->p_vmspace->vm_map,
220 	    trunc_page((vm_offset_t)addr), round_page((vm_offset_t)addr + len),
221 	    VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
222 }
223 
224 /*
225  * Pin the page contained within the given object at the given offset.  If the
226  * page is not resident, allocate and load it using the given object's pager.
227  * Return the pinned page if successful; otherwise, return NULL.
228  */
229 static vm_page_t
230 vm_imgact_hold_page(vm_object_t object, vm_ooffset_t offset)
231 {
232 	vm_page_t m;
233 	vm_pindex_t pindex;
234 	int rv;
235 
236 	VM_OBJECT_WLOCK(object);
237 	pindex = OFF_TO_IDX(offset);
238 	m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY);
239 	if (m->valid != VM_PAGE_BITS_ALL) {
240 		vm_page_xbusy(m);
241 		rv = vm_pager_get_pages(object, &m, 1, NULL, NULL);
242 		if (rv != VM_PAGER_OK) {
243 			vm_page_lock(m);
244 			vm_page_free(m);
245 			vm_page_unlock(m);
246 			m = NULL;
247 			goto out;
248 		}
249 		vm_page_xunbusy(m);
250 	}
251 	vm_page_lock(m);
252 	vm_page_hold(m);
253 	vm_page_activate(m);
254 	vm_page_unlock(m);
255 out:
256 	VM_OBJECT_WUNLOCK(object);
257 	return (m);
258 }
259 
260 /*
261  * Return a CPU private mapping to the page at the given offset within the
262  * given object.  The page is pinned before it is mapped.
263  */
264 struct sf_buf *
265 vm_imgact_map_page(vm_object_t object, vm_ooffset_t offset)
266 {
267 	vm_page_t m;
268 
269 	m = vm_imgact_hold_page(object, offset);
270 	if (m == NULL)
271 		return (NULL);
272 	sched_pin();
273 	return (sf_buf_alloc(m, SFB_CPUPRIVATE));
274 }
275 
276 /*
277  * Destroy the given CPU private mapping and unpin the page that it mapped.
278  */
279 void
280 vm_imgact_unmap_page(struct sf_buf *sf)
281 {
282 	vm_page_t m;
283 
284 	m = sf_buf_page(sf);
285 	sf_buf_free(sf);
286 	sched_unpin();
287 	vm_page_lock(m);
288 	vm_page_unhold(m);
289 	vm_page_unlock(m);
290 }
291 
292 void
293 vm_sync_icache(vm_map_t map, vm_offset_t va, vm_offset_t sz)
294 {
295 
296 	pmap_sync_icache(map->pmap, va, sz);
297 }
298 
299 struct kstack_cache_entry *kstack_cache;
300 static int kstack_cache_size = 128;
301 static int kstacks;
302 static struct mtx kstack_cache_mtx;
303 MTX_SYSINIT(kstack_cache, &kstack_cache_mtx, "kstkch", MTX_DEF);
304 
305 SYSCTL_INT(_vm, OID_AUTO, kstack_cache_size, CTLFLAG_RW, &kstack_cache_size, 0,
306     "");
307 SYSCTL_INT(_vm, OID_AUTO, kstacks, CTLFLAG_RD, &kstacks, 0,
308     "");
309 
310 /*
311  * Create the kernel stack (including pcb for i386) for a new thread.
312  * This routine directly affects the fork perf for a process and
313  * create performance for a thread.
314  */
315 int
316 vm_thread_new(struct thread *td, int pages)
317 {
318 	vm_object_t ksobj;
319 	vm_offset_t ks;
320 	vm_page_t ma[KSTACK_MAX_PAGES];
321 	struct kstack_cache_entry *ks_ce;
322 	int i;
323 
324 	/* Bounds check */
325 	if (pages <= 1)
326 		pages = kstack_pages;
327 	else if (pages > KSTACK_MAX_PAGES)
328 		pages = KSTACK_MAX_PAGES;
329 
330 	if (pages == kstack_pages && kstack_cache != NULL) {
331 		mtx_lock(&kstack_cache_mtx);
332 		if (kstack_cache != NULL) {
333 			ks_ce = kstack_cache;
334 			kstack_cache = ks_ce->next_ks_entry;
335 			mtx_unlock(&kstack_cache_mtx);
336 
337 			td->td_kstack_obj = ks_ce->ksobj;
338 			td->td_kstack = (vm_offset_t)ks_ce;
339 			td->td_kstack_pages = kstack_pages;
340 			return (1);
341 		}
342 		mtx_unlock(&kstack_cache_mtx);
343 	}
344 
345 	/*
346 	 * Allocate an object for the kstack.
347 	 */
348 	ksobj = vm_object_allocate(OBJT_DEFAULT, pages);
349 
350 	/*
351 	 * Get a kernel virtual address for this thread's kstack.
352 	 */
353 #if defined(__mips__)
354 	/*
355 	 * We need to align the kstack's mapped address to fit within
356 	 * a single TLB entry.
357 	 */
358 	if (vmem_xalloc(kernel_arena, (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE,
359 	    PAGE_SIZE * 2, 0, 0, VMEM_ADDR_MIN, VMEM_ADDR_MAX,
360 	    M_BESTFIT | M_NOWAIT, &ks)) {
361 		ks = 0;
362 	}
363 #else
364 	ks = kva_alloc((pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
365 #endif
366 	if (ks == 0) {
367 		printf("vm_thread_new: kstack allocation failed\n");
368 		vm_object_deallocate(ksobj);
369 		return (0);
370 	}
371 
372 	atomic_add_int(&kstacks, 1);
373 	if (KSTACK_GUARD_PAGES != 0) {
374 		pmap_qremove(ks, KSTACK_GUARD_PAGES);
375 		ks += KSTACK_GUARD_PAGES * PAGE_SIZE;
376 	}
377 	td->td_kstack_obj = ksobj;
378 	td->td_kstack = ks;
379 	/*
380 	 * Knowing the number of pages allocated is useful when you
381 	 * want to deallocate them.
382 	 */
383 	td->td_kstack_pages = pages;
384 	/*
385 	 * For the length of the stack, link in a real page of ram for each
386 	 * page of stack.
387 	 */
388 	VM_OBJECT_WLOCK(ksobj);
389 	(void)vm_page_grab_pages(ksobj, 0, VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY |
390 	    VM_ALLOC_WIRED, ma, pages);
391 	for (i = 0; i < pages; i++)
392 		ma[i]->valid = VM_PAGE_BITS_ALL;
393 	VM_OBJECT_WUNLOCK(ksobj);
394 	pmap_qenter(ks, ma, pages);
395 	return (1);
396 }
397 
398 static void
399 vm_thread_stack_dispose(vm_object_t ksobj, vm_offset_t ks, int pages)
400 {
401 	vm_page_t m;
402 	int i;
403 
404 	atomic_add_int(&kstacks, -1);
405 	pmap_qremove(ks, pages);
406 	VM_OBJECT_WLOCK(ksobj);
407 	for (i = 0; i < pages; i++) {
408 		m = vm_page_lookup(ksobj, i);
409 		if (m == NULL)
410 			panic("vm_thread_dispose: kstack already missing?");
411 		vm_page_lock(m);
412 		vm_page_unwire(m, PQ_NONE);
413 		vm_page_free(m);
414 		vm_page_unlock(m);
415 	}
416 	VM_OBJECT_WUNLOCK(ksobj);
417 	vm_object_deallocate(ksobj);
418 	kva_free(ks - (KSTACK_GUARD_PAGES * PAGE_SIZE),
419 	    (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
420 }
421 
422 /*
423  * Dispose of a thread's kernel stack.
424  */
425 void
426 vm_thread_dispose(struct thread *td)
427 {
428 	vm_object_t ksobj;
429 	vm_offset_t ks;
430 	struct kstack_cache_entry *ks_ce;
431 	int pages;
432 
433 	pages = td->td_kstack_pages;
434 	ksobj = td->td_kstack_obj;
435 	ks = td->td_kstack;
436 	td->td_kstack = 0;
437 	td->td_kstack_pages = 0;
438 	if (pages == kstack_pages && kstacks <= kstack_cache_size) {
439 		ks_ce = (struct kstack_cache_entry *)ks;
440 		ks_ce->ksobj = ksobj;
441 		mtx_lock(&kstack_cache_mtx);
442 		ks_ce->next_ks_entry = kstack_cache;
443 		kstack_cache = ks_ce;
444 		mtx_unlock(&kstack_cache_mtx);
445 		return;
446 	}
447 	vm_thread_stack_dispose(ksobj, ks, pages);
448 }
449 
450 static void
451 vm_thread_stack_lowmem(void *nulll)
452 {
453 	struct kstack_cache_entry *ks_ce, *ks_ce1;
454 
455 	mtx_lock(&kstack_cache_mtx);
456 	ks_ce = kstack_cache;
457 	kstack_cache = NULL;
458 	mtx_unlock(&kstack_cache_mtx);
459 
460 	while (ks_ce != NULL) {
461 		ks_ce1 = ks_ce;
462 		ks_ce = ks_ce->next_ks_entry;
463 
464 		vm_thread_stack_dispose(ks_ce1->ksobj, (vm_offset_t)ks_ce1,
465 		    kstack_pages);
466 	}
467 }
468 
469 static void
470 kstack_cache_init(void *nulll)
471 {
472 
473 	EVENTHANDLER_REGISTER(vm_lowmem, vm_thread_stack_lowmem, NULL,
474 	    EVENTHANDLER_PRI_ANY);
475 }
476 
477 SYSINIT(vm_kstacks, SI_SUB_KTHREAD_INIT, SI_ORDER_ANY, kstack_cache_init, NULL);
478 
479 #ifdef KSTACK_USAGE_PROF
480 /*
481  * Track maximum stack used by a thread in kernel.
482  */
483 static int max_kstack_used;
484 
485 SYSCTL_INT(_debug, OID_AUTO, max_kstack_used, CTLFLAG_RD,
486     &max_kstack_used, 0,
487     "Maxiumum stack depth used by a thread in kernel");
488 
489 void
490 intr_prof_stack_use(struct thread *td, struct trapframe *frame)
491 {
492 	vm_offset_t stack_top;
493 	vm_offset_t current;
494 	int used, prev_used;
495 
496 	/*
497 	 * Testing for interrupted kernel mode isn't strictly
498 	 * needed. It optimizes the execution, since interrupts from
499 	 * usermode will have only the trap frame on the stack.
500 	 */
501 	if (TRAPF_USERMODE(frame))
502 		return;
503 
504 	stack_top = td->td_kstack + td->td_kstack_pages * PAGE_SIZE;
505 	current = (vm_offset_t)(uintptr_t)&stack_top;
506 
507 	/*
508 	 * Try to detect if interrupt is using kernel thread stack.
509 	 * Hardware could use a dedicated stack for interrupt handling.
510 	 */
511 	if (stack_top <= current || current < td->td_kstack)
512 		return;
513 
514 	used = stack_top - current;
515 	for (;;) {
516 		prev_used = max_kstack_used;
517 		if (prev_used >= used)
518 			break;
519 		if (atomic_cmpset_int(&max_kstack_used, prev_used, used))
520 			break;
521 	}
522 }
523 #endif /* KSTACK_USAGE_PROF */
524 
525 /*
526  * Implement fork's actions on an address space.
527  * Here we arrange for the address space to be copied or referenced,
528  * allocate a user struct (pcb and kernel stack), then call the
529  * machine-dependent layer to fill those in and make the new process
530  * ready to run.  The new process is set up so that it returns directly
531  * to user mode to avoid stack copying and relocation problems.
532  */
533 int
534 vm_forkproc(struct thread *td, struct proc *p2, struct thread *td2,
535     struct vmspace *vm2, int flags)
536 {
537 	struct proc *p1 = td->td_proc;
538 	struct domainset *dset;
539 	int error;
540 
541 	if ((flags & RFPROC) == 0) {
542 		/*
543 		 * Divorce the memory, if it is shared, essentially
544 		 * this changes shared memory amongst threads, into
545 		 * COW locally.
546 		 */
547 		if ((flags & RFMEM) == 0) {
548 			if (p1->p_vmspace->vm_refcnt > 1) {
549 				error = vmspace_unshare(p1);
550 				if (error)
551 					return (error);
552 			}
553 		}
554 		cpu_fork(td, p2, td2, flags);
555 		return (0);
556 	}
557 
558 	if (flags & RFMEM) {
559 		p2->p_vmspace = p1->p_vmspace;
560 		atomic_add_int(&p1->p_vmspace->vm_refcnt, 1);
561 	}
562 	dset = td2->td_domain.dr_policy;
563 	while (vm_page_count_severe_set(&dset->ds_mask)) {
564 		vm_wait_doms(&dset->ds_mask);
565 	}
566 
567 	if ((flags & RFMEM) == 0) {
568 		p2->p_vmspace = vm2;
569 		if (p1->p_vmspace->vm_shm)
570 			shmfork(p1, p2);
571 	}
572 
573 	/*
574 	 * cpu_fork will copy and update the pcb, set up the kernel stack,
575 	 * and make the child ready to run.
576 	 */
577 	cpu_fork(td, p2, td2, flags);
578 	return (0);
579 }
580 
581 /*
582  * Called after process has been wait(2)'ed upon and is being reaped.
583  * The idea is to reclaim resources that we could not reclaim while
584  * the process was still executing.
585  */
586 void
587 vm_waitproc(p)
588 	struct proc *p;
589 {
590 
591 	vmspace_exitfree(p);		/* and clean-out the vmspace */
592 }
593 
594 void
595 kick_proc0(void)
596 {
597 
598 	wakeup(&proc0);
599 }
600