xref: /freebsd/sys/vm/vm_glue.c (revision b52b9d56d4e96089873a75f9e29062eec19fabba)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_glue.c	8.6 (Berkeley) 1/5/94
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  *
62  * $FreeBSD$
63  */
64 
65 #include "opt_vm.h"
66 
67 #include <sys/param.h>
68 #include <sys/systm.h>
69 #include <sys/lock.h>
70 #include <sys/mutex.h>
71 #include <sys/proc.h>
72 #include <sys/resourcevar.h>
73 #include <sys/shm.h>
74 #include <sys/vmmeter.h>
75 #include <sys/sx.h>
76 #include <sys/sysctl.h>
77 
78 #include <sys/kernel.h>
79 #include <sys/ktr.h>
80 #include <sys/unistd.h>
81 
82 #include <machine/limits.h>
83 
84 #include <vm/vm.h>
85 #include <vm/vm_param.h>
86 #include <vm/pmap.h>
87 #include <vm/vm_map.h>
88 #include <vm/vm_page.h>
89 #include <vm/vm_pageout.h>
90 #include <vm/vm_object.h>
91 #include <vm/vm_kern.h>
92 #include <vm/vm_extern.h>
93 #include <vm/vm_pager.h>
94 
95 #include <sys/user.h>
96 
97 extern int maxslp;
98 
99 /*
100  * System initialization
101  *
102  * Note: proc0 from proc.h
103  */
104 static void vm_init_limits(void *);
105 SYSINIT(vm_limits, SI_SUB_VM_CONF, SI_ORDER_FIRST, vm_init_limits, &proc0)
106 
107 /*
108  * THIS MUST BE THE LAST INITIALIZATION ITEM!!!
109  *
110  * Note: run scheduling should be divorced from the vm system.
111  */
112 static void scheduler(void *);
113 SYSINIT(scheduler, SI_SUB_RUN_SCHEDULER, SI_ORDER_FIRST, scheduler, NULL)
114 
115 #ifndef NO_SWAPPING
116 static void swapout(struct proc *);
117 static void vm_proc_swapin(struct proc *p);
118 static void vm_proc_swapout(struct proc *p);
119 #endif
120 
121 /*
122  * MPSAFE
123  */
124 int
125 kernacc(addr, len, rw)
126 	caddr_t addr;
127 	int len, rw;
128 {
129 	boolean_t rv;
130 	vm_offset_t saddr, eaddr;
131 	vm_prot_t prot;
132 
133 	KASSERT((rw & ~VM_PROT_ALL) == 0,
134 	    ("illegal ``rw'' argument to kernacc (%x)\n", rw));
135 	prot = rw;
136 	saddr = trunc_page((vm_offset_t)addr);
137 	eaddr = round_page((vm_offset_t)addr + len);
138 	rv = vm_map_check_protection(kernel_map, saddr, eaddr, prot);
139 	return (rv == TRUE);
140 }
141 
142 /*
143  * MPSAFE
144  */
145 int
146 useracc(addr, len, rw)
147 	caddr_t addr;
148 	int len, rw;
149 {
150 	boolean_t rv;
151 	vm_prot_t prot;
152 
153 	KASSERT((rw & ~VM_PROT_ALL) == 0,
154 	    ("illegal ``rw'' argument to useracc (%x)\n", rw));
155 	prot = rw;
156 	/*
157 	 * XXX - check separately to disallow access to user area and user
158 	 * page tables - they are in the map.
159 	 *
160 	 * XXX - VM_MAXUSER_ADDRESS is an end address, not a max.  It was once
161 	 * only used (as an end address) in trap.c.  Use it as an end address
162 	 * here too.  This bogusness has spread.  I just fixed where it was
163 	 * used as a max in vm_mmap.c.
164 	 */
165 	if ((vm_offset_t) addr + len > /* XXX */ VM_MAXUSER_ADDRESS
166 	    || (vm_offset_t) addr + len < (vm_offset_t) addr) {
167 		return (FALSE);
168 	}
169 	rv = vm_map_check_protection(&curproc->p_vmspace->vm_map,
170 	    trunc_page((vm_offset_t)addr), round_page((vm_offset_t)addr + len),
171 	    prot);
172 	return (rv == TRUE);
173 }
174 
175 /*
176  * MPSAFE
177  */
178 void
179 vslock(addr, len)
180 	caddr_t addr;
181 	u_int len;
182 {
183 
184 	vm_map_wire(&curproc->p_vmspace->vm_map, trunc_page((vm_offset_t)addr),
185 	    round_page((vm_offset_t)addr + len), FALSE);
186 }
187 
188 /*
189  * MPSAFE
190  */
191 void
192 vsunlock(addr, len)
193 	caddr_t addr;
194 	u_int len;
195 {
196 
197 	vm_map_unwire(&curproc->p_vmspace->vm_map,
198 	    trunc_page((vm_offset_t)addr),
199 	    round_page((vm_offset_t)addr + len), FALSE);
200 }
201 
202 /*
203  * Create the U area for a new process.
204  * This routine directly affects the fork perf for a process.
205  */
206 void
207 vm_proc_new(struct proc *p)
208 {
209 	vm_page_t ma[UAREA_PAGES];
210 	vm_object_t upobj;
211 	vm_offset_t up;
212 	vm_page_t m;
213 	u_int i;
214 
215 	/*
216 	 * Allocate object for the upage.
217 	 */
218 	upobj = vm_object_allocate(OBJT_DEFAULT, UAREA_PAGES);
219 	p->p_upages_obj = upobj;
220 
221 	/*
222 	 * Get a kernel virtual address for the U area for this process.
223 	 */
224 	up = kmem_alloc_nofault(kernel_map, UAREA_PAGES * PAGE_SIZE);
225 	if (up == 0)
226 		panic("vm_proc_new: upage allocation failed");
227 	p->p_uarea = (struct user *)up;
228 
229 	for (i = 0; i < UAREA_PAGES; i++) {
230 		/*
231 		 * Get a uarea page.
232 		 */
233 		m = vm_page_grab(upobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
234 		ma[i] = m;
235 
236 		/*
237 		 * Wire the page.
238 		 */
239 		m->wire_count++;
240 		cnt.v_wire_count++;
241 
242 		vm_page_wakeup(m);
243 		vm_page_flag_clear(m, PG_ZERO);
244 		vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE);
245 		m->valid = VM_PAGE_BITS_ALL;
246 	}
247 
248 	/*
249 	 * Enter the pages into the kernel address space.
250 	 */
251 	pmap_qenter(up, ma, UAREA_PAGES);
252 }
253 
254 /*
255  * Dispose the U area for a process that has exited.
256  * This routine directly impacts the exit perf of a process.
257  * XXX proc_zone is marked UMA_ZONE_NOFREE, so this should never be called.
258  */
259 void
260 vm_proc_dispose(struct proc *p)
261 {
262 	vm_object_t upobj;
263 	vm_offset_t up;
264 	vm_page_t m;
265 
266 	upobj = p->p_upages_obj;
267 	if (upobj->resident_page_count != UAREA_PAGES)
268 		panic("vm_proc_dispose: incorrect number of pages in upobj");
269 	vm_page_lock_queues();
270 	while ((m = TAILQ_FIRST(&upobj->memq)) != NULL) {
271 		vm_page_busy(m);
272 		vm_page_unwire(m, 0);
273 		vm_page_free(m);
274 	}
275 	vm_page_unlock_queues();
276 	up = (vm_offset_t)p->p_uarea;
277 	pmap_qremove(up, UAREA_PAGES);
278 	kmem_free(kernel_map, up, UAREA_PAGES * PAGE_SIZE);
279 	vm_object_deallocate(upobj);
280 }
281 
282 #ifndef NO_SWAPPING
283 /*
284  * Allow the U area for a process to be prejudicially paged out.
285  */
286 void
287 vm_proc_swapout(struct proc *p)
288 {
289 	vm_object_t upobj;
290 	vm_offset_t up;
291 	vm_page_t m;
292 
293 	upobj = p->p_upages_obj;
294 	if (upobj->resident_page_count != UAREA_PAGES)
295 		panic("vm_proc_dispose: incorrect number of pages in upobj");
296 	vm_page_lock_queues();
297 	TAILQ_FOREACH(m, &upobj->memq, listq) {
298 		vm_page_dirty(m);
299 		vm_page_unwire(m, 0);
300 	}
301 	vm_page_unlock_queues();
302 	up = (vm_offset_t)p->p_uarea;
303 	pmap_qremove(up, UAREA_PAGES);
304 }
305 
306 /*
307  * Bring the U area for a specified process back in.
308  */
309 void
310 vm_proc_swapin(struct proc *p)
311 {
312 	vm_page_t ma[UAREA_PAGES];
313 	vm_object_t upobj;
314 	vm_offset_t up;
315 	vm_page_t m;
316 	int rv;
317 	int i;
318 
319 	upobj = p->p_upages_obj;
320 	for (i = 0; i < UAREA_PAGES; i++) {
321 		m = vm_page_grab(upobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
322 		if (m->valid != VM_PAGE_BITS_ALL) {
323 			rv = vm_pager_get_pages(upobj, &m, 1, 0);
324 			if (rv != VM_PAGER_OK)
325 				panic("vm_proc_swapin: cannot get upage");
326 		}
327 		ma[i] = m;
328 	}
329 	if (upobj->resident_page_count != UAREA_PAGES)
330 		panic("vm_proc_swapin: lost pages from upobj");
331 	vm_page_lock_queues();
332 	TAILQ_FOREACH(m, &upobj->memq, listq) {
333 		m->valid = VM_PAGE_BITS_ALL;
334 		vm_page_wire(m);
335 		vm_page_wakeup(m);
336 		vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE);
337 	}
338 	vm_page_unlock_queues();
339 	up = (vm_offset_t)p->p_uarea;
340 	pmap_qenter(up, ma, UAREA_PAGES);
341 }
342 #endif
343 
344 /*
345  * Implement fork's actions on an address space.
346  * Here we arrange for the address space to be copied or referenced,
347  * allocate a user struct (pcb and kernel stack), then call the
348  * machine-dependent layer to fill those in and make the new process
349  * ready to run.  The new process is set up so that it returns directly
350  * to user mode to avoid stack copying and relocation problems.
351  */
352 void
353 vm_forkproc(td, p2, td2, flags)
354 	struct thread *td;
355 	struct proc *p2;
356 	struct thread *td2;
357 	int flags;
358 {
359 	struct proc *p1 = td->td_proc;
360 	struct user *up;
361 
362 	GIANT_REQUIRED;
363 
364 	if ((flags & RFPROC) == 0) {
365 		/*
366 		 * Divorce the memory, if it is shared, essentially
367 		 * this changes shared memory amongst threads, into
368 		 * COW locally.
369 		 */
370 		if ((flags & RFMEM) == 0) {
371 			if (p1->p_vmspace->vm_refcnt > 1) {
372 				vmspace_unshare(p1);
373 			}
374 		}
375 		cpu_fork(td, p2, td2, flags);
376 		return;
377 	}
378 
379 	if (flags & RFMEM) {
380 		p2->p_vmspace = p1->p_vmspace;
381 		p1->p_vmspace->vm_refcnt++;
382 	}
383 
384 	while (vm_page_count_severe()) {
385 		VM_WAIT;
386 	}
387 
388 	if ((flags & RFMEM) == 0) {
389 		p2->p_vmspace = vmspace_fork(p1->p_vmspace);
390 
391 		pmap_pinit2(vmspace_pmap(p2->p_vmspace));
392 
393 		if (p1->p_vmspace->vm_shm)
394 			shmfork(p1, p2);
395 	}
396 
397 	/* XXXKSE this is unsatisfactory but should be adequate */
398 	up = p2->p_uarea;
399 
400 	/*
401 	 * p_stats currently points at fields in the user struct
402 	 * but not at &u, instead at p_addr. Copy parts of
403 	 * p_stats; zero the rest of p_stats (statistics).
404 	 *
405 	 * If procsig->ps_refcnt is 1 and p2->p_sigacts is NULL we dont' need
406 	 * to share sigacts, so we use the up->u_sigacts.
407 	 */
408 	p2->p_stats = &up->u_stats;
409 	if (p2->p_sigacts == NULL) {
410 		if (p2->p_procsig->ps_refcnt != 1)
411 			printf ("PID:%d NULL sigacts with refcnt not 1!\n",p2->p_pid);
412 		p2->p_sigacts = &up->u_sigacts;
413 		up->u_sigacts = *p1->p_sigacts;
414 	}
415 
416 	bzero(&up->u_stats.pstat_startzero,
417 	    (unsigned) ((caddr_t) &up->u_stats.pstat_endzero -
418 		(caddr_t) &up->u_stats.pstat_startzero));
419 	bcopy(&p1->p_stats->pstat_startcopy, &up->u_stats.pstat_startcopy,
420 	    ((caddr_t) &up->u_stats.pstat_endcopy -
421 		(caddr_t) &up->u_stats.pstat_startcopy));
422 
423 
424 	/*
425 	 * cpu_fork will copy and update the pcb, set up the kernel stack,
426 	 * and make the child ready to run.
427 	 */
428 	cpu_fork(td, p2, td2, flags);
429 }
430 
431 /*
432  * Called after process has been wait(2)'ed apon and is being reaped.
433  * The idea is to reclaim resources that we could not reclaim while
434  * the process was still executing.
435  */
436 void
437 vm_waitproc(p)
438 	struct proc *p;
439 {
440 	struct thread *td;
441 
442 	GIANT_REQUIRED;
443 	cpu_wait(p);
444 /* XXXKSE by here there should not be any threads left! */
445 	FOREACH_THREAD_IN_PROC(p, td) {
446 		panic("vm_waitproc: Survivor thread!");
447 	}
448 	vmspace_exitfree(p);		/* and clean-out the vmspace */
449 }
450 
451 /*
452  * Set default limits for VM system.
453  * Called for proc 0, and then inherited by all others.
454  *
455  * XXX should probably act directly on proc0.
456  */
457 static void
458 vm_init_limits(udata)
459 	void *udata;
460 {
461 	struct proc *p = udata;
462 	int rss_limit;
463 
464 	/*
465 	 * Set up the initial limits on process VM. Set the maximum resident
466 	 * set size to be half of (reasonably) available memory.  Since this
467 	 * is a soft limit, it comes into effect only when the system is out
468 	 * of memory - half of main memory helps to favor smaller processes,
469 	 * and reduces thrashing of the object cache.
470 	 */
471 	p->p_rlimit[RLIMIT_STACK].rlim_cur = dflssiz;
472 	p->p_rlimit[RLIMIT_STACK].rlim_max = maxssiz;
473 	p->p_rlimit[RLIMIT_DATA].rlim_cur = dfldsiz;
474 	p->p_rlimit[RLIMIT_DATA].rlim_max = maxdsiz;
475 	/* limit the limit to no less than 2MB */
476 	rss_limit = max(cnt.v_free_count, 512);
477 	p->p_rlimit[RLIMIT_RSS].rlim_cur = ptoa(rss_limit);
478 	p->p_rlimit[RLIMIT_RSS].rlim_max = RLIM_INFINITY;
479 }
480 
481 void
482 faultin(p)
483 	struct proc *p;
484 {
485 
486 	GIANT_REQUIRED;
487 	PROC_LOCK_ASSERT(p, MA_OWNED);
488 	mtx_lock_spin(&sched_lock);
489 #ifdef NO_SWAPPING
490 	if ((p->p_sflag & PS_INMEM) == 0)
491 		panic("faultin: proc swapped out with NO_SWAPPING!");
492 #else
493 	if ((p->p_sflag & PS_INMEM) == 0) {
494 		struct thread *td;
495 
496 		++p->p_lock;
497 		mtx_unlock_spin(&sched_lock);
498 		PROC_UNLOCK(p);
499 
500 		vm_proc_swapin(p);
501 		FOREACH_THREAD_IN_PROC (p, td)
502 			pmap_swapin_thread(td);
503 
504 		PROC_LOCK(p);
505 		mtx_lock_spin(&sched_lock);
506 		FOREACH_THREAD_IN_PROC (p, td)
507 			if (td->td_state == TDS_RUNQ) {	/* XXXKSE */
508 				/* XXXKSE TDS_RUNQ causes assertion failure. */
509 				td->td_state = TDS_UNQUEUED;
510 				setrunqueue(td);
511 			}
512 
513 		p->p_sflag |= PS_INMEM;
514 
515 		/* undo the effect of setting SLOCK above */
516 		--p->p_lock;
517 	}
518 #endif
519 	mtx_unlock_spin(&sched_lock);
520 }
521 
522 /*
523  * This swapin algorithm attempts to swap-in processes only if there
524  * is enough space for them.  Of course, if a process waits for a long
525  * time, it will be swapped in anyway.
526  *
527  *  XXXKSE - process with the thread with highest priority counts..
528  *
529  * Giant is still held at this point, to be released in tsleep.
530  */
531 /* ARGSUSED*/
532 static void
533 scheduler(dummy)
534 	void *dummy;
535 {
536 	struct proc *p;
537 	struct thread *td;
538 	int pri;
539 	struct proc *pp;
540 	int ppri;
541 
542 	mtx_assert(&Giant, MA_OWNED | MA_NOTRECURSED);
543 	/* GIANT_REQUIRED */
544 
545 loop:
546 	if (vm_page_count_min()) {
547 		VM_WAIT;
548 		goto loop;
549 	}
550 
551 	pp = NULL;
552 	ppri = INT_MIN;
553 	sx_slock(&allproc_lock);
554 	FOREACH_PROC_IN_SYSTEM(p) {
555 		struct ksegrp *kg;
556 		if (p->p_sflag & (PS_INMEM | PS_SWAPPING)) {
557 			continue;
558 		}
559 		mtx_lock_spin(&sched_lock);
560 		FOREACH_THREAD_IN_PROC(p, td) {
561 			/* Only consider runnable threads */
562 			if (td->td_state == TDS_RUNQ) {
563 				kg = td->td_ksegrp;
564 				pri = p->p_swtime + kg->kg_slptime;
565 				if ((p->p_sflag & PS_SWAPINREQ) == 0) {
566 					pri -= kg->kg_nice * 8;
567 				}
568 
569 				/*
570 				 * if this ksegrp is higher priority
571 				 * and there is enough space, then select
572 				 * this process instead of the previous
573 				 * selection.
574 				 */
575 				if (pri > ppri) {
576 					pp = p;
577 					ppri = pri;
578 				}
579 			}
580 		}
581 		mtx_unlock_spin(&sched_lock);
582 	}
583 	sx_sunlock(&allproc_lock);
584 
585 	/*
586 	 * Nothing to do, back to sleep.
587 	 */
588 	if ((p = pp) == NULL) {
589 		tsleep(&proc0, PVM, "sched", maxslp * hz / 2);
590 		goto loop;
591 	}
592 	mtx_lock_spin(&sched_lock);
593 	p->p_sflag &= ~PS_SWAPINREQ;
594 	mtx_unlock_spin(&sched_lock);
595 
596 	/*
597 	 * We would like to bring someone in. (only if there is space).
598 	 * [What checks the space? ]
599 	 */
600 	PROC_LOCK(p);
601 	faultin(p);
602 	PROC_UNLOCK(p);
603 	mtx_lock_spin(&sched_lock);
604 	p->p_swtime = 0;
605 	mtx_unlock_spin(&sched_lock);
606 	goto loop;
607 }
608 
609 #ifndef NO_SWAPPING
610 
611 /*
612  * Swap_idle_threshold1 is the guaranteed swapped in time for a process
613  */
614 static int swap_idle_threshold1 = 2;
615 SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold1,
616 	CTLFLAG_RW, &swap_idle_threshold1, 0, "");
617 
618 /*
619  * Swap_idle_threshold2 is the time that a process can be idle before
620  * it will be swapped out, if idle swapping is enabled.
621  */
622 static int swap_idle_threshold2 = 10;
623 SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold2,
624 	CTLFLAG_RW, &swap_idle_threshold2, 0, "");
625 
626 /*
627  * Swapout is driven by the pageout daemon.  Very simple, we find eligible
628  * procs and unwire their u-areas.  We try to always "swap" at least one
629  * process in case we need the room for a swapin.
630  * If any procs have been sleeping/stopped for at least maxslp seconds,
631  * they are swapped.  Else, we swap the longest-sleeping or stopped process,
632  * if any, otherwise the longest-resident process.
633  */
634 void
635 swapout_procs(action)
636 int action;
637 {
638 	struct proc *p;
639 	struct thread *td;
640 	struct ksegrp *kg;
641 	struct proc *outp, *outp2;
642 	int outpri, outpri2;
643 	int didswap = 0;
644 
645 	GIANT_REQUIRED;
646 
647 	outp = outp2 = NULL;
648 	outpri = outpri2 = INT_MIN;
649 retry:
650 	sx_slock(&allproc_lock);
651 	FOREACH_PROC_IN_SYSTEM(p) {
652 		struct vmspace *vm;
653 		int minslptime = 100000;
654 
655 		PROC_LOCK(p);
656 		if (p->p_lock != 0 ||
657 		    (p->p_flag & (P_STOPPED_SNGL|P_TRACED|P_SYSTEM|P_WEXIT)) != 0) {
658 			PROC_UNLOCK(p);
659 			continue;
660 		}
661 		/*
662 		 * only aiod changes vmspace, however it will be
663 		 * skipped because of the if statement above checking
664 		 * for P_SYSTEM
665 		 */
666 		vm = p->p_vmspace;
667 		mtx_lock_spin(&sched_lock);
668 		if ((p->p_sflag & (PS_INMEM|PS_SWAPPING)) != PS_INMEM) {
669 			mtx_unlock_spin(&sched_lock);
670 			PROC_UNLOCK(p);
671 			continue;
672 		}
673 
674 		switch (p->p_state) {
675 		default:
676 			/* Don't swap out processes in any sort
677 			 * of 'special' state. */
678 			mtx_unlock_spin(&sched_lock);
679 			PROC_UNLOCK(p);
680 			continue;
681 
682 		case PRS_NORMAL:
683 			/*
684 			 * do not swapout a realtime process
685 			 * Check all the thread groups..
686 			 */
687 			FOREACH_KSEGRP_IN_PROC(p, kg) {
688 				if (PRI_IS_REALTIME(kg->kg_pri_class)) {
689 					mtx_unlock_spin(&sched_lock);
690 					PROC_UNLOCK(p);
691 					goto nextproc;
692 				}
693 
694 				/*
695 				 * Do not swapout a process waiting
696 				 * on a critical event of some kind.
697 				 * Also guarantee swap_idle_threshold1
698 				 * time in memory.
699 				 */
700 				if (kg->kg_slptime < swap_idle_threshold1) {
701 					mtx_unlock_spin(&sched_lock);
702 					PROC_UNLOCK(p);
703 					goto nextproc;
704 				}
705 				FOREACH_THREAD_IN_PROC(p, td) {
706 					if ((td->td_priority) < PSOCK) {
707 						mtx_unlock_spin(&sched_lock);
708 						PROC_UNLOCK(p);
709 						goto nextproc;
710 					}
711 				}
712 				/*
713 				 * If the system is under memory stress,
714 				 * or if we are swapping
715 				 * idle processes >= swap_idle_threshold2,
716 				 * then swap the process out.
717 				 */
718 				if (((action & VM_SWAP_NORMAL) == 0) &&
719 				    (((action & VM_SWAP_IDLE) == 0) ||
720 				    (kg->kg_slptime < swap_idle_threshold2))) {
721 					mtx_unlock_spin(&sched_lock);
722 					PROC_UNLOCK(p);
723 					goto nextproc;
724 				}
725 				if (minslptime > kg->kg_slptime)
726 					minslptime = kg->kg_slptime;
727 			}
728 
729 			mtx_unlock_spin(&sched_lock);
730 			++vm->vm_refcnt;
731 			/*
732 			 * do not swapout a process that
733 			 * is waiting for VM
734 			 * data structures there is a
735 			 * possible deadlock.
736 			 */
737 			if (!vm_map_trylock(&vm->vm_map)) {
738 				vmspace_free(vm);
739 				PROC_UNLOCK(p);
740 				goto nextproc;
741 			}
742 			vm_map_unlock(&vm->vm_map);
743 			/*
744 			 * If the process has been asleep for awhile and had
745 			 * most of its pages taken away already, swap it out.
746 			 */
747 			if ((action & VM_SWAP_NORMAL) ||
748 				((action & VM_SWAP_IDLE) &&
749 				 (minslptime > swap_idle_threshold2))) {
750 				sx_sunlock(&allproc_lock);
751 				swapout(p);
752 				vmspace_free(vm);
753 				didswap++;
754 				goto retry;
755 			}
756 			PROC_UNLOCK(p);
757 			vmspace_free(vm);
758 		}
759 nextproc:
760 		continue;
761 	}
762 	sx_sunlock(&allproc_lock);
763 	/*
764 	 * If we swapped something out, and another process needed memory,
765 	 * then wakeup the sched process.
766 	 */
767 	if (didswap)
768 		wakeup(&proc0);
769 }
770 
771 static void
772 swapout(p)
773 	struct proc *p;
774 {
775 	struct thread *td;
776 
777 	PROC_LOCK_ASSERT(p, MA_OWNED);
778 #if defined(SWAP_DEBUG)
779 	printf("swapping out %d\n", p->p_pid);
780 #endif
781 	++p->p_stats->p_ru.ru_nswap;
782 	/*
783 	 * remember the process resident count
784 	 */
785 	p->p_vmspace->vm_swrss = vmspace_resident_count(p->p_vmspace);
786 
787 	mtx_lock_spin(&sched_lock);
788 	p->p_sflag &= ~PS_INMEM;
789 	p->p_sflag |= PS_SWAPPING;
790 	PROC_UNLOCK(p);
791 	FOREACH_THREAD_IN_PROC (p, td)
792 		if (td->td_state == TDS_RUNQ)	/* XXXKSE */
793 			remrunqueue(td);	/* XXXKSE */
794 	mtx_unlock_spin(&sched_lock);
795 
796 	vm_proc_swapout(p);
797 	FOREACH_THREAD_IN_PROC(p, td)
798 		pmap_swapout_thread(td);
799 	mtx_lock_spin(&sched_lock);
800 	p->p_sflag &= ~PS_SWAPPING;
801 	p->p_swtime = 0;
802 	mtx_unlock_spin(&sched_lock);
803 }
804 #endif /* !NO_SWAPPING */
805