1 /*- 2 * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU) 3 * 4 * Copyright (c) 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * The Mach Operating System project at Carnegie-Mellon University. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * from: @(#)vm_glue.c 8.6 (Berkeley) 1/5/94 35 * 36 * 37 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 38 * All rights reserved. 39 * 40 * Permission to use, copy, modify and distribute this software and 41 * its documentation is hereby granted, provided that both the copyright 42 * notice and this permission notice appear in all copies of the 43 * software, derivative works or modified versions, and any portions 44 * thereof, and that both notices appear in supporting documentation. 45 * 46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 47 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 49 * 50 * Carnegie Mellon requests users of this software to return to 51 * 52 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 53 * School of Computer Science 54 * Carnegie Mellon University 55 * Pittsburgh PA 15213-3890 56 * 57 * any improvements or extensions that they make and grant Carnegie the 58 * rights to redistribute these changes. 59 */ 60 61 #include <sys/cdefs.h> 62 __FBSDID("$FreeBSD$"); 63 64 #include "opt_vm.h" 65 #include "opt_kstack_pages.h" 66 #include "opt_kstack_max_pages.h" 67 #include "opt_kstack_usage_prof.h" 68 69 #include <sys/param.h> 70 #include <sys/systm.h> 71 #include <sys/limits.h> 72 #include <sys/lock.h> 73 #include <sys/malloc.h> 74 #include <sys/mutex.h> 75 #include <sys/proc.h> 76 #include <sys/racct.h> 77 #include <sys/resourcevar.h> 78 #include <sys/rwlock.h> 79 #include <sys/sched.h> 80 #include <sys/sf_buf.h> 81 #include <sys/shm.h> 82 #include <sys/vmmeter.h> 83 #include <sys/vmem.h> 84 #include <sys/sx.h> 85 #include <sys/sysctl.h> 86 #include <sys/_kstack_cache.h> 87 #include <sys/eventhandler.h> 88 #include <sys/kernel.h> 89 #include <sys/ktr.h> 90 #include <sys/unistd.h> 91 92 #include <vm/vm.h> 93 #include <vm/vm_param.h> 94 #include <vm/pmap.h> 95 #include <vm/vm_map.h> 96 #include <vm/vm_page.h> 97 #include <vm/vm_pageout.h> 98 #include <vm/vm_object.h> 99 #include <vm/vm_kern.h> 100 #include <vm/vm_extern.h> 101 #include <vm/vm_pager.h> 102 #include <vm/swap_pager.h> 103 104 #include <machine/cpu.h> 105 106 /* 107 * MPSAFE 108 * 109 * WARNING! This code calls vm_map_check_protection() which only checks 110 * the associated vm_map_entry range. It does not determine whether the 111 * contents of the memory is actually readable or writable. In most cases 112 * just checking the vm_map_entry is sufficient within the kernel's address 113 * space. 114 */ 115 int 116 kernacc(void *addr, int len, int rw) 117 { 118 boolean_t rv; 119 vm_offset_t saddr, eaddr; 120 vm_prot_t prot; 121 122 KASSERT((rw & ~VM_PROT_ALL) == 0, 123 ("illegal ``rw'' argument to kernacc (%x)\n", rw)); 124 125 if ((vm_offset_t)addr + len > kernel_map->max_offset || 126 (vm_offset_t)addr + len < (vm_offset_t)addr) 127 return (FALSE); 128 129 prot = rw; 130 saddr = trunc_page((vm_offset_t)addr); 131 eaddr = round_page((vm_offset_t)addr + len); 132 vm_map_lock_read(kernel_map); 133 rv = vm_map_check_protection(kernel_map, saddr, eaddr, prot); 134 vm_map_unlock_read(kernel_map); 135 return (rv == TRUE); 136 } 137 138 /* 139 * MPSAFE 140 * 141 * WARNING! This code calls vm_map_check_protection() which only checks 142 * the associated vm_map_entry range. It does not determine whether the 143 * contents of the memory is actually readable or writable. vmapbuf(), 144 * vm_fault_quick(), or copyin()/copout()/su*()/fu*() functions should be 145 * used in conjunction with this call. 146 */ 147 int 148 useracc(void *addr, int len, int rw) 149 { 150 boolean_t rv; 151 vm_prot_t prot; 152 vm_map_t map; 153 154 KASSERT((rw & ~VM_PROT_ALL) == 0, 155 ("illegal ``rw'' argument to useracc (%x)\n", rw)); 156 prot = rw; 157 map = &curproc->p_vmspace->vm_map; 158 if ((vm_offset_t)addr + len > vm_map_max(map) || 159 (vm_offset_t)addr + len < (vm_offset_t)addr) { 160 return (FALSE); 161 } 162 vm_map_lock_read(map); 163 rv = vm_map_check_protection(map, trunc_page((vm_offset_t)addr), 164 round_page((vm_offset_t)addr + len), prot); 165 vm_map_unlock_read(map); 166 return (rv == TRUE); 167 } 168 169 int 170 vslock(void *addr, size_t len) 171 { 172 vm_offset_t end, last, start; 173 vm_size_t npages; 174 int error; 175 176 last = (vm_offset_t)addr + len; 177 start = trunc_page((vm_offset_t)addr); 178 end = round_page(last); 179 if (last < (vm_offset_t)addr || end < (vm_offset_t)addr) 180 return (EINVAL); 181 npages = atop(end - start); 182 if (npages > vm_page_max_wired) 183 return (ENOMEM); 184 #if 0 185 /* 186 * XXX - not yet 187 * 188 * The limit for transient usage of wired pages should be 189 * larger than for "permanent" wired pages (mlock()). 190 * 191 * Also, the sysctl code, which is the only present user 192 * of vslock(), does a hard loop on EAGAIN. 193 */ 194 if (npages + vm_cnt.v_wire_count > vm_page_max_wired) 195 return (EAGAIN); 196 #endif 197 error = vm_map_wire(&curproc->p_vmspace->vm_map, start, end, 198 VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES); 199 /* 200 * Return EFAULT on error to match copy{in,out}() behaviour 201 * rather than returning ENOMEM like mlock() would. 202 */ 203 return (error == KERN_SUCCESS ? 0 : EFAULT); 204 } 205 206 void 207 vsunlock(void *addr, size_t len) 208 { 209 210 /* Rely on the parameter sanity checks performed by vslock(). */ 211 (void)vm_map_unwire(&curproc->p_vmspace->vm_map, 212 trunc_page((vm_offset_t)addr), round_page((vm_offset_t)addr + len), 213 VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES); 214 } 215 216 /* 217 * Pin the page contained within the given object at the given offset. If the 218 * page is not resident, allocate and load it using the given object's pager. 219 * Return the pinned page if successful; otherwise, return NULL. 220 */ 221 static vm_page_t 222 vm_imgact_hold_page(vm_object_t object, vm_ooffset_t offset) 223 { 224 vm_page_t m; 225 vm_pindex_t pindex; 226 int rv; 227 228 VM_OBJECT_WLOCK(object); 229 pindex = OFF_TO_IDX(offset); 230 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY); 231 if (m->valid != VM_PAGE_BITS_ALL) { 232 vm_page_xbusy(m); 233 rv = vm_pager_get_pages(object, &m, 1, NULL, NULL); 234 if (rv != VM_PAGER_OK) { 235 vm_page_lock(m); 236 vm_page_free(m); 237 vm_page_unlock(m); 238 m = NULL; 239 goto out; 240 } 241 vm_page_xunbusy(m); 242 } 243 vm_page_lock(m); 244 vm_page_hold(m); 245 vm_page_activate(m); 246 vm_page_unlock(m); 247 out: 248 VM_OBJECT_WUNLOCK(object); 249 return (m); 250 } 251 252 /* 253 * Return a CPU private mapping to the page at the given offset within the 254 * given object. The page is pinned before it is mapped. 255 */ 256 struct sf_buf * 257 vm_imgact_map_page(vm_object_t object, vm_ooffset_t offset) 258 { 259 vm_page_t m; 260 261 m = vm_imgact_hold_page(object, offset); 262 if (m == NULL) 263 return (NULL); 264 sched_pin(); 265 return (sf_buf_alloc(m, SFB_CPUPRIVATE)); 266 } 267 268 /* 269 * Destroy the given CPU private mapping and unpin the page that it mapped. 270 */ 271 void 272 vm_imgact_unmap_page(struct sf_buf *sf) 273 { 274 vm_page_t m; 275 276 m = sf_buf_page(sf); 277 sf_buf_free(sf); 278 sched_unpin(); 279 vm_page_lock(m); 280 vm_page_unhold(m); 281 vm_page_unlock(m); 282 } 283 284 void 285 vm_sync_icache(vm_map_t map, vm_offset_t va, vm_offset_t sz) 286 { 287 288 pmap_sync_icache(map->pmap, va, sz); 289 } 290 291 struct kstack_cache_entry *kstack_cache; 292 static int kstack_cache_size = 128; 293 static int kstacks; 294 static struct mtx kstack_cache_mtx; 295 MTX_SYSINIT(kstack_cache, &kstack_cache_mtx, "kstkch", MTX_DEF); 296 297 SYSCTL_INT(_vm, OID_AUTO, kstack_cache_size, CTLFLAG_RW, &kstack_cache_size, 0, 298 ""); 299 SYSCTL_INT(_vm, OID_AUTO, kstacks, CTLFLAG_RD, &kstacks, 0, 300 ""); 301 302 /* 303 * Create the kernel stack (including pcb for i386) for a new thread. 304 * This routine directly affects the fork perf for a process and 305 * create performance for a thread. 306 */ 307 int 308 vm_thread_new(struct thread *td, int pages) 309 { 310 vm_object_t ksobj; 311 vm_offset_t ks; 312 vm_page_t ma[KSTACK_MAX_PAGES]; 313 struct kstack_cache_entry *ks_ce; 314 int i; 315 316 /* Bounds check */ 317 if (pages <= 1) 318 pages = kstack_pages; 319 else if (pages > KSTACK_MAX_PAGES) 320 pages = KSTACK_MAX_PAGES; 321 322 if (pages == kstack_pages) { 323 mtx_lock(&kstack_cache_mtx); 324 if (kstack_cache != NULL) { 325 ks_ce = kstack_cache; 326 kstack_cache = ks_ce->next_ks_entry; 327 mtx_unlock(&kstack_cache_mtx); 328 329 td->td_kstack_obj = ks_ce->ksobj; 330 td->td_kstack = (vm_offset_t)ks_ce; 331 td->td_kstack_pages = kstack_pages; 332 return (1); 333 } 334 mtx_unlock(&kstack_cache_mtx); 335 } 336 337 /* 338 * Allocate an object for the kstack. 339 */ 340 ksobj = vm_object_allocate(OBJT_DEFAULT, pages); 341 342 /* 343 * Get a kernel virtual address for this thread's kstack. 344 */ 345 #if defined(__mips__) 346 /* 347 * We need to align the kstack's mapped address to fit within 348 * a single TLB entry. 349 */ 350 if (vmem_xalloc(kernel_arena, (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE, 351 PAGE_SIZE * 2, 0, 0, VMEM_ADDR_MIN, VMEM_ADDR_MAX, 352 M_BESTFIT | M_NOWAIT, &ks)) { 353 ks = 0; 354 } 355 #else 356 ks = kva_alloc((pages + KSTACK_GUARD_PAGES) * PAGE_SIZE); 357 #endif 358 if (ks == 0) { 359 printf("vm_thread_new: kstack allocation failed\n"); 360 vm_object_deallocate(ksobj); 361 return (0); 362 } 363 364 atomic_add_int(&kstacks, 1); 365 if (KSTACK_GUARD_PAGES != 0) { 366 pmap_qremove(ks, KSTACK_GUARD_PAGES); 367 ks += KSTACK_GUARD_PAGES * PAGE_SIZE; 368 } 369 td->td_kstack_obj = ksobj; 370 td->td_kstack = ks; 371 /* 372 * Knowing the number of pages allocated is useful when you 373 * want to deallocate them. 374 */ 375 td->td_kstack_pages = pages; 376 /* 377 * For the length of the stack, link in a real page of ram for each 378 * page of stack. 379 */ 380 VM_OBJECT_WLOCK(ksobj); 381 (void)vm_page_grab_pages(ksobj, 0, VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY | 382 VM_ALLOC_WIRED, ma, pages); 383 for (i = 0; i < pages; i++) 384 ma[i]->valid = VM_PAGE_BITS_ALL; 385 VM_OBJECT_WUNLOCK(ksobj); 386 pmap_qenter(ks, ma, pages); 387 return (1); 388 } 389 390 static void 391 vm_thread_stack_dispose(vm_object_t ksobj, vm_offset_t ks, int pages) 392 { 393 vm_page_t m; 394 int i; 395 396 atomic_add_int(&kstacks, -1); 397 pmap_qremove(ks, pages); 398 VM_OBJECT_WLOCK(ksobj); 399 for (i = 0; i < pages; i++) { 400 m = vm_page_lookup(ksobj, i); 401 if (m == NULL) 402 panic("vm_thread_dispose: kstack already missing?"); 403 vm_page_lock(m); 404 vm_page_unwire(m, PQ_NONE); 405 vm_page_free(m); 406 vm_page_unlock(m); 407 } 408 VM_OBJECT_WUNLOCK(ksobj); 409 vm_object_deallocate(ksobj); 410 kva_free(ks - (KSTACK_GUARD_PAGES * PAGE_SIZE), 411 (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE); 412 } 413 414 /* 415 * Dispose of a thread's kernel stack. 416 */ 417 void 418 vm_thread_dispose(struct thread *td) 419 { 420 vm_object_t ksobj; 421 vm_offset_t ks; 422 struct kstack_cache_entry *ks_ce; 423 int pages; 424 425 pages = td->td_kstack_pages; 426 ksobj = td->td_kstack_obj; 427 ks = td->td_kstack; 428 td->td_kstack = 0; 429 td->td_kstack_pages = 0; 430 if (pages == kstack_pages && kstacks <= kstack_cache_size) { 431 ks_ce = (struct kstack_cache_entry *)ks; 432 ks_ce->ksobj = ksobj; 433 mtx_lock(&kstack_cache_mtx); 434 ks_ce->next_ks_entry = kstack_cache; 435 kstack_cache = ks_ce; 436 mtx_unlock(&kstack_cache_mtx); 437 return; 438 } 439 vm_thread_stack_dispose(ksobj, ks, pages); 440 } 441 442 static void 443 vm_thread_stack_lowmem(void *nulll) 444 { 445 struct kstack_cache_entry *ks_ce, *ks_ce1; 446 447 mtx_lock(&kstack_cache_mtx); 448 ks_ce = kstack_cache; 449 kstack_cache = NULL; 450 mtx_unlock(&kstack_cache_mtx); 451 452 while (ks_ce != NULL) { 453 ks_ce1 = ks_ce; 454 ks_ce = ks_ce->next_ks_entry; 455 456 vm_thread_stack_dispose(ks_ce1->ksobj, (vm_offset_t)ks_ce1, 457 kstack_pages); 458 } 459 } 460 461 static void 462 kstack_cache_init(void *nulll) 463 { 464 465 EVENTHANDLER_REGISTER(vm_lowmem, vm_thread_stack_lowmem, NULL, 466 EVENTHANDLER_PRI_ANY); 467 } 468 469 SYSINIT(vm_kstacks, SI_SUB_KTHREAD_INIT, SI_ORDER_ANY, kstack_cache_init, NULL); 470 471 #ifdef KSTACK_USAGE_PROF 472 /* 473 * Track maximum stack used by a thread in kernel. 474 */ 475 static int max_kstack_used; 476 477 SYSCTL_INT(_debug, OID_AUTO, max_kstack_used, CTLFLAG_RD, 478 &max_kstack_used, 0, 479 "Maxiumum stack depth used by a thread in kernel"); 480 481 void 482 intr_prof_stack_use(struct thread *td, struct trapframe *frame) 483 { 484 vm_offset_t stack_top; 485 vm_offset_t current; 486 int used, prev_used; 487 488 /* 489 * Testing for interrupted kernel mode isn't strictly 490 * needed. It optimizes the execution, since interrupts from 491 * usermode will have only the trap frame on the stack. 492 */ 493 if (TRAPF_USERMODE(frame)) 494 return; 495 496 stack_top = td->td_kstack + td->td_kstack_pages * PAGE_SIZE; 497 current = (vm_offset_t)(uintptr_t)&stack_top; 498 499 /* 500 * Try to detect if interrupt is using kernel thread stack. 501 * Hardware could use a dedicated stack for interrupt handling. 502 */ 503 if (stack_top <= current || current < td->td_kstack) 504 return; 505 506 used = stack_top - current; 507 for (;;) { 508 prev_used = max_kstack_used; 509 if (prev_used >= used) 510 break; 511 if (atomic_cmpset_int(&max_kstack_used, prev_used, used)) 512 break; 513 } 514 } 515 #endif /* KSTACK_USAGE_PROF */ 516 517 /* 518 * Implement fork's actions on an address space. 519 * Here we arrange for the address space to be copied or referenced, 520 * allocate a user struct (pcb and kernel stack), then call the 521 * machine-dependent layer to fill those in and make the new process 522 * ready to run. The new process is set up so that it returns directly 523 * to user mode to avoid stack copying and relocation problems. 524 */ 525 int 526 vm_forkproc(struct thread *td, struct proc *p2, struct thread *td2, 527 struct vmspace *vm2, int flags) 528 { 529 struct proc *p1 = td->td_proc; 530 int error; 531 532 if ((flags & RFPROC) == 0) { 533 /* 534 * Divorce the memory, if it is shared, essentially 535 * this changes shared memory amongst threads, into 536 * COW locally. 537 */ 538 if ((flags & RFMEM) == 0) { 539 if (p1->p_vmspace->vm_refcnt > 1) { 540 error = vmspace_unshare(p1); 541 if (error) 542 return (error); 543 } 544 } 545 cpu_fork(td, p2, td2, flags); 546 return (0); 547 } 548 549 if (flags & RFMEM) { 550 p2->p_vmspace = p1->p_vmspace; 551 atomic_add_int(&p1->p_vmspace->vm_refcnt, 1); 552 } 553 554 while (vm_page_count_severe()) { 555 VM_WAIT; 556 } 557 558 if ((flags & RFMEM) == 0) { 559 p2->p_vmspace = vm2; 560 if (p1->p_vmspace->vm_shm) 561 shmfork(p1, p2); 562 } 563 564 /* 565 * cpu_fork will copy and update the pcb, set up the kernel stack, 566 * and make the child ready to run. 567 */ 568 cpu_fork(td, p2, td2, flags); 569 return (0); 570 } 571 572 /* 573 * Called after process has been wait(2)'ed upon and is being reaped. 574 * The idea is to reclaim resources that we could not reclaim while 575 * the process was still executing. 576 */ 577 void 578 vm_waitproc(p) 579 struct proc *p; 580 { 581 582 vmspace_exitfree(p); /* and clean-out the vmspace */ 583 } 584 585 void 586 kick_proc0(void) 587 { 588 589 wakeup(&proc0); 590 } 591