xref: /freebsd/sys/vm/vm_glue.c (revision 9f0c02d4255b2036f652c924d3df4fa88c7c721a)
1 /*-
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)vm_glue.c	8.6 (Berkeley) 1/5/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Permission to use, copy, modify and distribute this software and
39  * its documentation is hereby granted, provided that both the copyright
40  * notice and this permission notice appear in all copies of the
41  * software, derivative works or modified versions, and any portions
42  * thereof, and that both notices appear in supporting documentation.
43  *
44  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
45  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
46  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
47  *
48  * Carnegie Mellon requests users of this software to return to
49  *
50  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
51  *  School of Computer Science
52  *  Carnegie Mellon University
53  *  Pittsburgh PA 15213-3890
54  *
55  * any improvements or extensions that they make and grant Carnegie the
56  * rights to redistribute these changes.
57  */
58 
59 #include <sys/cdefs.h>
60 __FBSDID("$FreeBSD$");
61 
62 #include "opt_vm.h"
63 #include "opt_kstack_pages.h"
64 #include "opt_kstack_max_pages.h"
65 
66 #include <sys/param.h>
67 #include <sys/systm.h>
68 #include <sys/limits.h>
69 #include <sys/lock.h>
70 #include <sys/mutex.h>
71 #include <sys/proc.h>
72 #include <sys/resourcevar.h>
73 #include <sys/sched.h>
74 #include <sys/sf_buf.h>
75 #include <sys/shm.h>
76 #include <sys/vmmeter.h>
77 #include <sys/sx.h>
78 #include <sys/sysctl.h>
79 
80 #include <sys/kernel.h>
81 #include <sys/ktr.h>
82 #include <sys/unistd.h>
83 
84 #include <vm/vm.h>
85 #include <vm/vm_param.h>
86 #include <vm/pmap.h>
87 #include <vm/vm_map.h>
88 #include <vm/vm_page.h>
89 #include <vm/vm_pageout.h>
90 #include <vm/vm_object.h>
91 #include <vm/vm_kern.h>
92 #include <vm/vm_extern.h>
93 #include <vm/vm_pager.h>
94 #include <vm/swap_pager.h>
95 
96 extern int maxslp;
97 
98 /*
99  * System initialization
100  *
101  * Note: proc0 from proc.h
102  */
103 static void vm_init_limits(void *);
104 SYSINIT(vm_limits, SI_SUB_VM_CONF, SI_ORDER_FIRST, vm_init_limits, &proc0)
105 
106 /*
107  * THIS MUST BE THE LAST INITIALIZATION ITEM!!!
108  *
109  * Note: run scheduling should be divorced from the vm system.
110  */
111 static void scheduler(void *);
112 SYSINIT(scheduler, SI_SUB_RUN_SCHEDULER, SI_ORDER_ANY, scheduler, NULL)
113 
114 #ifndef NO_SWAPPING
115 static int swapout(struct proc *);
116 static void swapclear(struct proc *);
117 #endif
118 
119 
120 static volatile int proc0_rescan;
121 
122 
123 /*
124  * MPSAFE
125  *
126  * WARNING!  This code calls vm_map_check_protection() which only checks
127  * the associated vm_map_entry range.  It does not determine whether the
128  * contents of the memory is actually readable or writable.  In most cases
129  * just checking the vm_map_entry is sufficient within the kernel's address
130  * space.
131  */
132 int
133 kernacc(addr, len, rw)
134 	void *addr;
135 	int len, rw;
136 {
137 	boolean_t rv;
138 	vm_offset_t saddr, eaddr;
139 	vm_prot_t prot;
140 
141 	KASSERT((rw & ~VM_PROT_ALL) == 0,
142 	    ("illegal ``rw'' argument to kernacc (%x)\n", rw));
143 
144 	if ((vm_offset_t)addr + len > kernel_map->max_offset ||
145 	    (vm_offset_t)addr + len < (vm_offset_t)addr)
146 		return (FALSE);
147 
148 	prot = rw;
149 	saddr = trunc_page((vm_offset_t)addr);
150 	eaddr = round_page((vm_offset_t)addr + len);
151 	vm_map_lock_read(kernel_map);
152 	rv = vm_map_check_protection(kernel_map, saddr, eaddr, prot);
153 	vm_map_unlock_read(kernel_map);
154 	return (rv == TRUE);
155 }
156 
157 /*
158  * MPSAFE
159  *
160  * WARNING!  This code calls vm_map_check_protection() which only checks
161  * the associated vm_map_entry range.  It does not determine whether the
162  * contents of the memory is actually readable or writable.  vmapbuf(),
163  * vm_fault_quick(), or copyin()/copout()/su*()/fu*() functions should be
164  * used in conjuction with this call.
165  */
166 int
167 useracc(addr, len, rw)
168 	void *addr;
169 	int len, rw;
170 {
171 	boolean_t rv;
172 	vm_prot_t prot;
173 	vm_map_t map;
174 
175 	KASSERT((rw & ~VM_PROT_ALL) == 0,
176 	    ("illegal ``rw'' argument to useracc (%x)\n", rw));
177 	prot = rw;
178 	map = &curproc->p_vmspace->vm_map;
179 	if ((vm_offset_t)addr + len > vm_map_max(map) ||
180 	    (vm_offset_t)addr + len < (vm_offset_t)addr) {
181 		return (FALSE);
182 	}
183 	vm_map_lock_read(map);
184 	rv = vm_map_check_protection(map, trunc_page((vm_offset_t)addr),
185 	    round_page((vm_offset_t)addr + len), prot);
186 	vm_map_unlock_read(map);
187 	return (rv == TRUE);
188 }
189 
190 int
191 vslock(void *addr, size_t len)
192 {
193 	vm_offset_t end, last, start;
194 	vm_size_t npages;
195 	int error;
196 
197 	last = (vm_offset_t)addr + len;
198 	start = trunc_page((vm_offset_t)addr);
199 	end = round_page(last);
200 	if (last < (vm_offset_t)addr || end < (vm_offset_t)addr)
201 		return (EINVAL);
202 	npages = atop(end - start);
203 	if (npages > vm_page_max_wired)
204 		return (ENOMEM);
205 	PROC_LOCK(curproc);
206 	if (ptoa(npages +
207 	    pmap_wired_count(vm_map_pmap(&curproc->p_vmspace->vm_map))) >
208 	    lim_cur(curproc, RLIMIT_MEMLOCK)) {
209 		PROC_UNLOCK(curproc);
210 		return (ENOMEM);
211 	}
212 	PROC_UNLOCK(curproc);
213 #if 0
214 	/*
215 	 * XXX - not yet
216 	 *
217 	 * The limit for transient usage of wired pages should be
218 	 * larger than for "permanent" wired pages (mlock()).
219 	 *
220 	 * Also, the sysctl code, which is the only present user
221 	 * of vslock(), does a hard loop on EAGAIN.
222 	 */
223 	if (npages + cnt.v_wire_count > vm_page_max_wired)
224 		return (EAGAIN);
225 #endif
226 	error = vm_map_wire(&curproc->p_vmspace->vm_map, start, end,
227 	    VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
228 	/*
229 	 * Return EFAULT on error to match copy{in,out}() behaviour
230 	 * rather than returning ENOMEM like mlock() would.
231 	 */
232 	return (error == KERN_SUCCESS ? 0 : EFAULT);
233 }
234 
235 void
236 vsunlock(void *addr, size_t len)
237 {
238 
239 	/* Rely on the parameter sanity checks performed by vslock(). */
240 	(void)vm_map_unwire(&curproc->p_vmspace->vm_map,
241 	    trunc_page((vm_offset_t)addr), round_page((vm_offset_t)addr + len),
242 	    VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
243 }
244 
245 /*
246  * Pin the page contained within the given object at the given offset.  If the
247  * page is not resident, allocate and load it using the given object's pager.
248  * Return the pinned page if successful; otherwise, return NULL.
249  */
250 static vm_page_t
251 vm_imgact_hold_page(vm_object_t object, vm_ooffset_t offset)
252 {
253 	vm_page_t m, ma[1];
254 	vm_pindex_t pindex;
255 	int rv;
256 
257 	VM_OBJECT_LOCK(object);
258 	pindex = OFF_TO_IDX(offset);
259 	m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
260 	if ((m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) {
261 		ma[0] = m;
262 		rv = vm_pager_get_pages(object, ma, 1, 0);
263 		m = vm_page_lookup(object, pindex);
264 		if (m == NULL)
265 			goto out;
266 		if (m->valid == 0 || rv != VM_PAGER_OK) {
267 			vm_page_lock_queues();
268 			vm_page_free(m);
269 			vm_page_unlock_queues();
270 			m = NULL;
271 			goto out;
272 		}
273 	}
274 	vm_page_lock_queues();
275 	vm_page_hold(m);
276 	vm_page_unlock_queues();
277 	vm_page_wakeup(m);
278 out:
279 	VM_OBJECT_UNLOCK(object);
280 	return (m);
281 }
282 
283 /*
284  * Return a CPU private mapping to the page at the given offset within the
285  * given object.  The page is pinned before it is mapped.
286  */
287 struct sf_buf *
288 vm_imgact_map_page(vm_object_t object, vm_ooffset_t offset)
289 {
290 	vm_page_t m;
291 
292 	m = vm_imgact_hold_page(object, offset);
293 	if (m == NULL)
294 		return (NULL);
295 	sched_pin();
296 	return (sf_buf_alloc(m, SFB_CPUPRIVATE));
297 }
298 
299 /*
300  * Destroy the given CPU private mapping and unpin the page that it mapped.
301  */
302 void
303 vm_imgact_unmap_page(struct sf_buf *sf)
304 {
305 	vm_page_t m;
306 
307 	m = sf_buf_page(sf);
308 	sf_buf_free(sf);
309 	sched_unpin();
310 	vm_page_lock_queues();
311 	vm_page_unhold(m);
312 	vm_page_unlock_queues();
313 }
314 
315 #ifndef KSTACK_MAX_PAGES
316 #define KSTACK_MAX_PAGES 32
317 #endif
318 
319 /*
320  * Create the kernel stack (including pcb for i386) for a new thread.
321  * This routine directly affects the fork perf for a process and
322  * create performance for a thread.
323  */
324 int
325 vm_thread_new(struct thread *td, int pages)
326 {
327 	vm_object_t ksobj;
328 	vm_offset_t ks;
329 	vm_page_t m, ma[KSTACK_MAX_PAGES];
330 	int i;
331 
332 	/* Bounds check */
333 	if (pages <= 1)
334 		pages = KSTACK_PAGES;
335 	else if (pages > KSTACK_MAX_PAGES)
336 		pages = KSTACK_MAX_PAGES;
337 	/*
338 	 * Allocate an object for the kstack.
339 	 */
340 	ksobj = vm_object_allocate(OBJT_DEFAULT, pages);
341 	/*
342 	 * Get a kernel virtual address for this thread's kstack.
343 	 */
344 	ks = kmem_alloc_nofault(kernel_map,
345 	   (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
346 	if (ks == 0) {
347 		printf("vm_thread_new: kstack allocation failed\n");
348 		vm_object_deallocate(ksobj);
349 		return (0);
350 	}
351 
352 	if (KSTACK_GUARD_PAGES != 0) {
353 		pmap_qremove(ks, KSTACK_GUARD_PAGES);
354 		ks += KSTACK_GUARD_PAGES * PAGE_SIZE;
355 	}
356 	td->td_kstack_obj = ksobj;
357 	td->td_kstack = ks;
358 	/*
359 	 * Knowing the number of pages allocated is useful when you
360 	 * want to deallocate them.
361 	 */
362 	td->td_kstack_pages = pages;
363 	/*
364 	 * For the length of the stack, link in a real page of ram for each
365 	 * page of stack.
366 	 */
367 	VM_OBJECT_LOCK(ksobj);
368 	for (i = 0; i < pages; i++) {
369 		/*
370 		 * Get a kernel stack page.
371 		 */
372 		m = vm_page_grab(ksobj, i, VM_ALLOC_NOBUSY |
373 		    VM_ALLOC_NORMAL | VM_ALLOC_RETRY | VM_ALLOC_WIRED);
374 		ma[i] = m;
375 		m->valid = VM_PAGE_BITS_ALL;
376 	}
377 	VM_OBJECT_UNLOCK(ksobj);
378 	pmap_qenter(ks, ma, pages);
379 	return (1);
380 }
381 
382 /*
383  * Dispose of a thread's kernel stack.
384  */
385 void
386 vm_thread_dispose(struct thread *td)
387 {
388 	vm_object_t ksobj;
389 	vm_offset_t ks;
390 	vm_page_t m;
391 	int i, pages;
392 
393 	pages = td->td_kstack_pages;
394 	ksobj = td->td_kstack_obj;
395 	ks = td->td_kstack;
396 	pmap_qremove(ks, pages);
397 	VM_OBJECT_LOCK(ksobj);
398 	for (i = 0; i < pages; i++) {
399 		m = vm_page_lookup(ksobj, i);
400 		if (m == NULL)
401 			panic("vm_thread_dispose: kstack already missing?");
402 		vm_page_lock_queues();
403 		vm_page_unwire(m, 0);
404 		vm_page_free(m);
405 		vm_page_unlock_queues();
406 	}
407 	VM_OBJECT_UNLOCK(ksobj);
408 	vm_object_deallocate(ksobj);
409 	kmem_free(kernel_map, ks - (KSTACK_GUARD_PAGES * PAGE_SIZE),
410 	    (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
411 	td->td_kstack = 0;
412 }
413 
414 /*
415  * Allow a thread's kernel stack to be paged out.
416  */
417 void
418 vm_thread_swapout(struct thread *td)
419 {
420 	vm_object_t ksobj;
421 	vm_page_t m;
422 	int i, pages;
423 
424 	cpu_thread_swapout(td);
425 	pages = td->td_kstack_pages;
426 	ksobj = td->td_kstack_obj;
427 	pmap_qremove(td->td_kstack, pages);
428 	VM_OBJECT_LOCK(ksobj);
429 	for (i = 0; i < pages; i++) {
430 		m = vm_page_lookup(ksobj, i);
431 		if (m == NULL)
432 			panic("vm_thread_swapout: kstack already missing?");
433 		vm_page_lock_queues();
434 		vm_page_dirty(m);
435 		vm_page_unwire(m, 0);
436 		vm_page_unlock_queues();
437 	}
438 	VM_OBJECT_UNLOCK(ksobj);
439 }
440 
441 /*
442  * Bring the kernel stack for a specified thread back in.
443  */
444 void
445 vm_thread_swapin(struct thread *td)
446 {
447 	vm_object_t ksobj;
448 	vm_page_t m, ma[KSTACK_MAX_PAGES];
449 	int i, pages, rv;
450 
451 	pages = td->td_kstack_pages;
452 	ksobj = td->td_kstack_obj;
453 	VM_OBJECT_LOCK(ksobj);
454 	for (i = 0; i < pages; i++) {
455 		m = vm_page_grab(ksobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
456 		if (m->valid != VM_PAGE_BITS_ALL) {
457 			rv = vm_pager_get_pages(ksobj, &m, 1, 0);
458 			if (rv != VM_PAGER_OK)
459 				panic("vm_thread_swapin: cannot get kstack for proc: %d", td->td_proc->p_pid);
460 			m = vm_page_lookup(ksobj, i);
461 			m->valid = VM_PAGE_BITS_ALL;
462 		}
463 		ma[i] = m;
464 		vm_page_lock_queues();
465 		vm_page_wire(m);
466 		vm_page_unlock_queues();
467 		vm_page_wakeup(m);
468 	}
469 	VM_OBJECT_UNLOCK(ksobj);
470 	pmap_qenter(td->td_kstack, ma, pages);
471 	cpu_thread_swapin(td);
472 }
473 
474 /*
475  * Set up a variable-sized alternate kstack.
476  */
477 int
478 vm_thread_new_altkstack(struct thread *td, int pages)
479 {
480 
481 	td->td_altkstack = td->td_kstack;
482 	td->td_altkstack_obj = td->td_kstack_obj;
483 	td->td_altkstack_pages = td->td_kstack_pages;
484 
485 	return (vm_thread_new(td, pages));
486 }
487 
488 /*
489  * Restore the original kstack.
490  */
491 void
492 vm_thread_dispose_altkstack(struct thread *td)
493 {
494 
495 	vm_thread_dispose(td);
496 
497 	td->td_kstack = td->td_altkstack;
498 	td->td_kstack_obj = td->td_altkstack_obj;
499 	td->td_kstack_pages = td->td_altkstack_pages;
500 	td->td_altkstack = 0;
501 	td->td_altkstack_obj = NULL;
502 	td->td_altkstack_pages = 0;
503 }
504 
505 /*
506  * Implement fork's actions on an address space.
507  * Here we arrange for the address space to be copied or referenced,
508  * allocate a user struct (pcb and kernel stack), then call the
509  * machine-dependent layer to fill those in and make the new process
510  * ready to run.  The new process is set up so that it returns directly
511  * to user mode to avoid stack copying and relocation problems.
512  */
513 int
514 vm_forkproc(td, p2, td2, vm2, flags)
515 	struct thread *td;
516 	struct proc *p2;
517 	struct thread *td2;
518 	struct vmspace *vm2;
519 	int flags;
520 {
521 	struct proc *p1 = td->td_proc;
522 	int error;
523 
524 	if ((flags & RFPROC) == 0) {
525 		/*
526 		 * Divorce the memory, if it is shared, essentially
527 		 * this changes shared memory amongst threads, into
528 		 * COW locally.
529 		 */
530 		if ((flags & RFMEM) == 0) {
531 			if (p1->p_vmspace->vm_refcnt > 1) {
532 				error = vmspace_unshare(p1);
533 				if (error)
534 					return (error);
535 			}
536 		}
537 		cpu_fork(td, p2, td2, flags);
538 		return (0);
539 	}
540 
541 	if (flags & RFMEM) {
542 		p2->p_vmspace = p1->p_vmspace;
543 		atomic_add_int(&p1->p_vmspace->vm_refcnt, 1);
544 	}
545 
546 	while (vm_page_count_severe()) {
547 		VM_WAIT;
548 	}
549 
550 	if ((flags & RFMEM) == 0) {
551 		p2->p_vmspace = vm2;
552 		if (p1->p_vmspace->vm_shm)
553 			shmfork(p1, p2);
554 	}
555 
556 	/*
557 	 * cpu_fork will copy and update the pcb, set up the kernel stack,
558 	 * and make the child ready to run.
559 	 */
560 	cpu_fork(td, p2, td2, flags);
561 	return (0);
562 }
563 
564 /*
565  * Called after process has been wait(2)'ed apon and is being reaped.
566  * The idea is to reclaim resources that we could not reclaim while
567  * the process was still executing.
568  */
569 void
570 vm_waitproc(p)
571 	struct proc *p;
572 {
573 
574 	vmspace_exitfree(p);		/* and clean-out the vmspace */
575 }
576 
577 /*
578  * Set default limits for VM system.
579  * Called for proc 0, and then inherited by all others.
580  *
581  * XXX should probably act directly on proc0.
582  */
583 static void
584 vm_init_limits(udata)
585 	void *udata;
586 {
587 	struct proc *p = udata;
588 	struct plimit *limp;
589 	int rss_limit;
590 
591 	/*
592 	 * Set up the initial limits on process VM. Set the maximum resident
593 	 * set size to be half of (reasonably) available memory.  Since this
594 	 * is a soft limit, it comes into effect only when the system is out
595 	 * of memory - half of main memory helps to favor smaller processes,
596 	 * and reduces thrashing of the object cache.
597 	 */
598 	limp = p->p_limit;
599 	limp->pl_rlimit[RLIMIT_STACK].rlim_cur = dflssiz;
600 	limp->pl_rlimit[RLIMIT_STACK].rlim_max = maxssiz;
601 	limp->pl_rlimit[RLIMIT_DATA].rlim_cur = dfldsiz;
602 	limp->pl_rlimit[RLIMIT_DATA].rlim_max = maxdsiz;
603 	/* limit the limit to no less than 2MB */
604 	rss_limit = max(cnt.v_free_count, 512);
605 	limp->pl_rlimit[RLIMIT_RSS].rlim_cur = ptoa(rss_limit);
606 	limp->pl_rlimit[RLIMIT_RSS].rlim_max = RLIM_INFINITY;
607 }
608 
609 void
610 faultin(p)
611 	struct proc *p;
612 {
613 #ifdef NO_SWAPPING
614 
615 	PROC_LOCK_ASSERT(p, MA_OWNED);
616 	if ((p->p_flag & P_INMEM) == 0)
617 		panic("faultin: proc swapped out with NO_SWAPPING!");
618 #else /* !NO_SWAPPING */
619 	struct thread *td;
620 
621 	PROC_LOCK_ASSERT(p, MA_OWNED);
622 	/*
623 	 * If another process is swapping in this process,
624 	 * just wait until it finishes.
625 	 */
626 	if (p->p_flag & P_SWAPPINGIN) {
627 		while (p->p_flag & P_SWAPPINGIN)
628 			msleep(&p->p_flag, &p->p_mtx, PVM, "faultin", 0);
629 		return;
630 	}
631 	if ((p->p_flag & P_INMEM) == 0) {
632 		/*
633 		 * Don't let another thread swap process p out while we are
634 		 * busy swapping it in.
635 		 */
636 		++p->p_lock;
637 		p->p_flag |= P_SWAPPINGIN;
638 		PROC_UNLOCK(p);
639 
640 		/*
641 		 * We hold no lock here because the list of threads
642 		 * can not change while all threads in the process are
643 		 * swapped out.
644 		 */
645 		FOREACH_THREAD_IN_PROC(p, td)
646 			vm_thread_swapin(td);
647 		PROC_LOCK(p);
648 		PROC_SLOCK(p);
649 		swapclear(p);
650 		p->p_swtick = ticks;
651 		PROC_SUNLOCK(p);
652 
653 		wakeup(&p->p_flag);
654 
655 		/* Allow other threads to swap p out now. */
656 		--p->p_lock;
657 	}
658 #endif /* NO_SWAPPING */
659 }
660 
661 /*
662  * This swapin algorithm attempts to swap-in processes only if there
663  * is enough space for them.  Of course, if a process waits for a long
664  * time, it will be swapped in anyway.
665  *
666  *  XXXKSE - process with the thread with highest priority counts..
667  *
668  * Giant is held on entry.
669  */
670 /* ARGSUSED*/
671 static void
672 scheduler(dummy)
673 	void *dummy;
674 {
675 	struct proc *p;
676 	struct thread *td;
677 	struct proc *pp;
678 	int slptime;
679 	int swtime;
680 	int ppri;
681 	int pri;
682 
683 	mtx_assert(&Giant, MA_OWNED | MA_NOTRECURSED);
684 	mtx_unlock(&Giant);
685 
686 loop:
687 	if (vm_page_count_min()) {
688 		VM_WAIT;
689 		thread_lock(&thread0);
690 		proc0_rescan = 0;
691 		thread_unlock(&thread0);
692 		goto loop;
693 	}
694 
695 	pp = NULL;
696 	ppri = INT_MIN;
697 	sx_slock(&allproc_lock);
698 	FOREACH_PROC_IN_SYSTEM(p) {
699 		PROC_LOCK(p);
700 		if (p->p_flag & (P_SWAPPINGOUT | P_SWAPPINGIN | P_INMEM)) {
701 			PROC_UNLOCK(p);
702 			continue;
703 		}
704 		swtime = (ticks - p->p_swtick) / hz;
705 		PROC_SLOCK(p);
706 		FOREACH_THREAD_IN_PROC(p, td) {
707 			/*
708 			 * An otherwise runnable thread of a process
709 			 * swapped out has only the TDI_SWAPPED bit set.
710 			 *
711 			 */
712 			thread_lock(td);
713 			if (td->td_inhibitors == TDI_SWAPPED) {
714 				slptime = (ticks - td->td_slptick) / hz;
715 				pri = swtime + slptime;
716 				if ((td->td_flags & TDF_SWAPINREQ) == 0)
717 					pri -= p->p_nice * 8;
718 				/*
719 				 * if this thread is higher priority
720 				 * and there is enough space, then select
721 				 * this process instead of the previous
722 				 * selection.
723 				 */
724 				if (pri > ppri) {
725 					pp = p;
726 					ppri = pri;
727 				}
728 			}
729 			thread_unlock(td);
730 		}
731 		PROC_SUNLOCK(p);
732 		PROC_UNLOCK(p);
733 	}
734 	sx_sunlock(&allproc_lock);
735 
736 	/*
737 	 * Nothing to do, back to sleep.
738 	 */
739 	if ((p = pp) == NULL) {
740 		thread_lock(&thread0);
741 		if (!proc0_rescan) {
742 			TD_SET_IWAIT(&thread0);
743 			mi_switch(SW_VOL, NULL);
744 		}
745 		proc0_rescan = 0;
746 		thread_unlock(&thread0);
747 		goto loop;
748 	}
749 	PROC_LOCK(p);
750 
751 	/*
752 	 * Another process may be bringing or may have already
753 	 * brought this process in while we traverse all threads.
754 	 * Or, this process may even be being swapped out again.
755 	 */
756 	if (p->p_flag & (P_INMEM | P_SWAPPINGOUT | P_SWAPPINGIN)) {
757 		PROC_UNLOCK(p);
758 		thread_lock(&thread0);
759 		proc0_rescan = 0;
760 		thread_unlock(&thread0);
761 		goto loop;
762 	}
763 
764 	/*
765 	 * We would like to bring someone in. (only if there is space).
766 	 * [What checks the space? ]
767 	 */
768 	faultin(p);
769 	PROC_UNLOCK(p);
770 	thread_lock(&thread0);
771 	proc0_rescan = 0;
772 	thread_unlock(&thread0);
773 	goto loop;
774 }
775 
776 void kick_proc0(void)
777 {
778 	struct thread *td = &thread0;
779 
780 	/* XXX This will probably cause a LOR in some cases */
781 	thread_lock(td);
782 	if (TD_AWAITING_INTR(td)) {
783 		CTR2(KTR_INTR, "%s: sched_add %d", __func__, 0);
784 		TD_CLR_IWAIT(td);
785 		sched_add(td, SRQ_INTR);
786 	} else {
787 		proc0_rescan = 1;
788 		CTR2(KTR_INTR, "%s: state %d",
789 		    __func__, td->td_state);
790 	}
791 	thread_unlock(td);
792 
793 }
794 
795 
796 #ifndef NO_SWAPPING
797 
798 /*
799  * Swap_idle_threshold1 is the guaranteed swapped in time for a process
800  */
801 static int swap_idle_threshold1 = 2;
802 SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold1, CTLFLAG_RW,
803     &swap_idle_threshold1, 0, "Guaranteed swapped in time for a process");
804 
805 /*
806  * Swap_idle_threshold2 is the time that a process can be idle before
807  * it will be swapped out, if idle swapping is enabled.
808  */
809 static int swap_idle_threshold2 = 10;
810 SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold2, CTLFLAG_RW,
811     &swap_idle_threshold2, 0, "Time before a process will be swapped out");
812 
813 /*
814  * Swapout is driven by the pageout daemon.  Very simple, we find eligible
815  * procs and swap out their stacks.  We try to always "swap" at least one
816  * process in case we need the room for a swapin.
817  * If any procs have been sleeping/stopped for at least maxslp seconds,
818  * they are swapped.  Else, we swap the longest-sleeping or stopped process,
819  * if any, otherwise the longest-resident process.
820  */
821 void
822 swapout_procs(action)
823 int action;
824 {
825 	struct proc *p;
826 	struct thread *td;
827 	int didswap = 0;
828 
829 retry:
830 	sx_slock(&allproc_lock);
831 	FOREACH_PROC_IN_SYSTEM(p) {
832 		struct vmspace *vm;
833 		int minslptime = 100000;
834 		int slptime;
835 
836 		/*
837 		 * Watch out for a process in
838 		 * creation.  It may have no
839 		 * address space or lock yet.
840 		 */
841 		if (p->p_state == PRS_NEW)
842 			continue;
843 		/*
844 		 * An aio daemon switches its
845 		 * address space while running.
846 		 * Perform a quick check whether
847 		 * a process has P_SYSTEM.
848 		 */
849 		if ((p->p_flag & P_SYSTEM) != 0)
850 			continue;
851 		/*
852 		 * Do not swapout a process that
853 		 * is waiting for VM data
854 		 * structures as there is a possible
855 		 * deadlock.  Test this first as
856 		 * this may block.
857 		 *
858 		 * Lock the map until swapout
859 		 * finishes, or a thread of this
860 		 * process may attempt to alter
861 		 * the map.
862 		 */
863 		vm = vmspace_acquire_ref(p);
864 		if (vm == NULL)
865 			continue;
866 		if (!vm_map_trylock(&vm->vm_map))
867 			goto nextproc1;
868 
869 		PROC_LOCK(p);
870 		if (p->p_lock != 0 ||
871 		    (p->p_flag & (P_STOPPED_SINGLE|P_TRACED|P_SYSTEM|P_WEXIT)
872 		    ) != 0) {
873 			goto nextproc2;
874 		}
875 		/*
876 		 * only aiod changes vmspace, however it will be
877 		 * skipped because of the if statement above checking
878 		 * for P_SYSTEM
879 		 */
880 		if ((p->p_flag & (P_INMEM|P_SWAPPINGOUT|P_SWAPPINGIN)) != P_INMEM)
881 			goto nextproc2;
882 
883 		switch (p->p_state) {
884 		default:
885 			/* Don't swap out processes in any sort
886 			 * of 'special' state. */
887 			break;
888 
889 		case PRS_NORMAL:
890 			PROC_SLOCK(p);
891 			/*
892 			 * do not swapout a realtime process
893 			 * Check all the thread groups..
894 			 */
895 			FOREACH_THREAD_IN_PROC(p, td) {
896 				thread_lock(td);
897 				if (PRI_IS_REALTIME(td->td_pri_class)) {
898 					thread_unlock(td);
899 					goto nextproc;
900 				}
901 				slptime = (ticks - td->td_slptick) / hz;
902 				/*
903 				 * Guarantee swap_idle_threshold1
904 				 * time in memory.
905 				 */
906 				if (slptime < swap_idle_threshold1) {
907 					thread_unlock(td);
908 					goto nextproc;
909 				}
910 
911 				/*
912 				 * Do not swapout a process if it is
913 				 * waiting on a critical event of some
914 				 * kind or there is a thread whose
915 				 * pageable memory may be accessed.
916 				 *
917 				 * This could be refined to support
918 				 * swapping out a thread.
919 				 */
920 				if ((td->td_priority) < PSOCK ||
921 				    !thread_safetoswapout(td)) {
922 					thread_unlock(td);
923 					goto nextproc;
924 				}
925 				/*
926 				 * If the system is under memory stress,
927 				 * or if we are swapping
928 				 * idle processes >= swap_idle_threshold2,
929 				 * then swap the process out.
930 				 */
931 				if (((action & VM_SWAP_NORMAL) == 0) &&
932 				    (((action & VM_SWAP_IDLE) == 0) ||
933 				    (slptime < swap_idle_threshold2))) {
934 					thread_unlock(td);
935 					goto nextproc;
936 				}
937 
938 				if (minslptime > slptime)
939 					minslptime = slptime;
940 				thread_unlock(td);
941 			}
942 
943 			/*
944 			 * If the pageout daemon didn't free enough pages,
945 			 * or if this process is idle and the system is
946 			 * configured to swap proactively, swap it out.
947 			 */
948 			if ((action & VM_SWAP_NORMAL) ||
949 				((action & VM_SWAP_IDLE) &&
950 				 (minslptime > swap_idle_threshold2))) {
951 				if (swapout(p) == 0)
952 					didswap++;
953 				PROC_SUNLOCK(p);
954 				PROC_UNLOCK(p);
955 				vm_map_unlock(&vm->vm_map);
956 				vmspace_free(vm);
957 				sx_sunlock(&allproc_lock);
958 				goto retry;
959 			}
960 nextproc:
961 			PROC_SUNLOCK(p);
962 		}
963 nextproc2:
964 		PROC_UNLOCK(p);
965 		vm_map_unlock(&vm->vm_map);
966 nextproc1:
967 		vmspace_free(vm);
968 		continue;
969 	}
970 	sx_sunlock(&allproc_lock);
971 	/*
972 	 * If we swapped something out, and another process needed memory,
973 	 * then wakeup the sched process.
974 	 */
975 	if (didswap)
976 		wakeup(&proc0);
977 }
978 
979 static void
980 swapclear(p)
981 	struct proc *p;
982 {
983 	struct thread *td;
984 
985 	PROC_LOCK_ASSERT(p, MA_OWNED);
986 	PROC_SLOCK_ASSERT(p, MA_OWNED);
987 
988 	FOREACH_THREAD_IN_PROC(p, td) {
989 		thread_lock(td);
990 		td->td_flags |= TDF_INMEM;
991 		td->td_flags &= ~TDF_SWAPINREQ;
992 		TD_CLR_SWAPPED(td);
993 		if (TD_CAN_RUN(td))
994 			setrunnable(td);
995 		thread_unlock(td);
996 	}
997 	p->p_flag &= ~(P_SWAPPINGIN|P_SWAPPINGOUT);
998 	p->p_flag |= P_INMEM;
999 }
1000 
1001 static int
1002 swapout(p)
1003 	struct proc *p;
1004 {
1005 	struct thread *td;
1006 
1007 	PROC_LOCK_ASSERT(p, MA_OWNED);
1008 	PROC_SLOCK_ASSERT(p, MA_OWNED | MA_NOTRECURSED);
1009 #if defined(SWAP_DEBUG)
1010 	printf("swapping out %d\n", p->p_pid);
1011 #endif
1012 
1013 	/*
1014 	 * The states of this process and its threads may have changed
1015 	 * by now.  Assuming that there is only one pageout daemon thread,
1016 	 * this process should still be in memory.
1017 	 */
1018 	KASSERT((p->p_flag & (P_INMEM|P_SWAPPINGOUT|P_SWAPPINGIN)) == P_INMEM,
1019 		("swapout: lost a swapout race?"));
1020 
1021 	/*
1022 	 * remember the process resident count
1023 	 */
1024 	p->p_vmspace->vm_swrss = vmspace_resident_count(p->p_vmspace);
1025 	/*
1026 	 * Check and mark all threads before we proceed.
1027 	 */
1028 	p->p_flag &= ~P_INMEM;
1029 	p->p_flag |= P_SWAPPINGOUT;
1030 	FOREACH_THREAD_IN_PROC(p, td) {
1031 		thread_lock(td);
1032 		if (!thread_safetoswapout(td)) {
1033 			thread_unlock(td);
1034 			swapclear(p);
1035 			return (EBUSY);
1036 		}
1037 		td->td_flags &= ~TDF_INMEM;
1038 		TD_SET_SWAPPED(td);
1039 		thread_unlock(td);
1040 	}
1041 	td = FIRST_THREAD_IN_PROC(p);
1042 	++td->td_ru.ru_nswap;
1043 	PROC_SUNLOCK(p);
1044 	PROC_UNLOCK(p);
1045 
1046 	/*
1047 	 * This list is stable because all threads are now prevented from
1048 	 * running.  The list is only modified in the context of a running
1049 	 * thread in this process.
1050 	 */
1051 	FOREACH_THREAD_IN_PROC(p, td)
1052 		vm_thread_swapout(td);
1053 
1054 	PROC_LOCK(p);
1055 	p->p_flag &= ~P_SWAPPINGOUT;
1056 	PROC_SLOCK(p);
1057 	p->p_swtick = ticks;
1058 	return (0);
1059 }
1060 #endif /* !NO_SWAPPING */
1061