xref: /freebsd/sys/vm/vm_glue.c (revision 7c1b51d6dc2e165ae7333373513b080f17cf79bd)
1 /*-
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)vm_glue.c	8.6 (Berkeley) 1/5/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Permission to use, copy, modify and distribute this software and
39  * its documentation is hereby granted, provided that both the copyright
40  * notice and this permission notice appear in all copies of the
41  * software, derivative works or modified versions, and any portions
42  * thereof, and that both notices appear in supporting documentation.
43  *
44  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
45  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
46  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
47  *
48  * Carnegie Mellon requests users of this software to return to
49  *
50  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
51  *  School of Computer Science
52  *  Carnegie Mellon University
53  *  Pittsburgh PA 15213-3890
54  *
55  * any improvements or extensions that they make and grant Carnegie the
56  * rights to redistribute these changes.
57  */
58 
59 #include <sys/cdefs.h>
60 __FBSDID("$FreeBSD$");
61 
62 #include "opt_vm.h"
63 #include "opt_kstack_pages.h"
64 #include "opt_kstack_max_pages.h"
65 #include "opt_kstack_usage_prof.h"
66 
67 #include <sys/param.h>
68 #include <sys/systm.h>
69 #include <sys/limits.h>
70 #include <sys/lock.h>
71 #include <sys/malloc.h>
72 #include <sys/mutex.h>
73 #include <sys/proc.h>
74 #include <sys/racct.h>
75 #include <sys/resourcevar.h>
76 #include <sys/rwlock.h>
77 #include <sys/sched.h>
78 #include <sys/sf_buf.h>
79 #include <sys/shm.h>
80 #include <sys/vmmeter.h>
81 #include <sys/vmem.h>
82 #include <sys/sx.h>
83 #include <sys/sysctl.h>
84 #include <sys/_kstack_cache.h>
85 #include <sys/eventhandler.h>
86 #include <sys/kernel.h>
87 #include <sys/ktr.h>
88 #include <sys/unistd.h>
89 
90 #include <vm/vm.h>
91 #include <vm/vm_param.h>
92 #include <vm/pmap.h>
93 #include <vm/vm_map.h>
94 #include <vm/vm_page.h>
95 #include <vm/vm_pageout.h>
96 #include <vm/vm_object.h>
97 #include <vm/vm_kern.h>
98 #include <vm/vm_extern.h>
99 #include <vm/vm_pager.h>
100 #include <vm/swap_pager.h>
101 
102 #include <machine/cpu.h>
103 
104 #ifndef NO_SWAPPING
105 static int swapout(struct proc *);
106 static void swapclear(struct proc *);
107 static void vm_thread_swapin(struct thread *td);
108 static void vm_thread_swapout(struct thread *td);
109 #endif
110 
111 /*
112  * MPSAFE
113  *
114  * WARNING!  This code calls vm_map_check_protection() which only checks
115  * the associated vm_map_entry range.  It does not determine whether the
116  * contents of the memory is actually readable or writable.  In most cases
117  * just checking the vm_map_entry is sufficient within the kernel's address
118  * space.
119  */
120 int
121 kernacc(addr, len, rw)
122 	void *addr;
123 	int len, rw;
124 {
125 	boolean_t rv;
126 	vm_offset_t saddr, eaddr;
127 	vm_prot_t prot;
128 
129 	KASSERT((rw & ~VM_PROT_ALL) == 0,
130 	    ("illegal ``rw'' argument to kernacc (%x)\n", rw));
131 
132 	if ((vm_offset_t)addr + len > kernel_map->max_offset ||
133 	    (vm_offset_t)addr + len < (vm_offset_t)addr)
134 		return (FALSE);
135 
136 	prot = rw;
137 	saddr = trunc_page((vm_offset_t)addr);
138 	eaddr = round_page((vm_offset_t)addr + len);
139 	vm_map_lock_read(kernel_map);
140 	rv = vm_map_check_protection(kernel_map, saddr, eaddr, prot);
141 	vm_map_unlock_read(kernel_map);
142 	return (rv == TRUE);
143 }
144 
145 /*
146  * MPSAFE
147  *
148  * WARNING!  This code calls vm_map_check_protection() which only checks
149  * the associated vm_map_entry range.  It does not determine whether the
150  * contents of the memory is actually readable or writable.  vmapbuf(),
151  * vm_fault_quick(), or copyin()/copout()/su*()/fu*() functions should be
152  * used in conjunction with this call.
153  */
154 int
155 useracc(addr, len, rw)
156 	void *addr;
157 	int len, rw;
158 {
159 	boolean_t rv;
160 	vm_prot_t prot;
161 	vm_map_t map;
162 
163 	KASSERT((rw & ~VM_PROT_ALL) == 0,
164 	    ("illegal ``rw'' argument to useracc (%x)\n", rw));
165 	prot = rw;
166 	map = &curproc->p_vmspace->vm_map;
167 	if ((vm_offset_t)addr + len > vm_map_max(map) ||
168 	    (vm_offset_t)addr + len < (vm_offset_t)addr) {
169 		return (FALSE);
170 	}
171 	vm_map_lock_read(map);
172 	rv = vm_map_check_protection(map, trunc_page((vm_offset_t)addr),
173 	    round_page((vm_offset_t)addr + len), prot);
174 	vm_map_unlock_read(map);
175 	return (rv == TRUE);
176 }
177 
178 int
179 vslock(void *addr, size_t len)
180 {
181 	vm_offset_t end, last, start;
182 	vm_size_t npages;
183 	int error;
184 
185 	last = (vm_offset_t)addr + len;
186 	start = trunc_page((vm_offset_t)addr);
187 	end = round_page(last);
188 	if (last < (vm_offset_t)addr || end < (vm_offset_t)addr)
189 		return (EINVAL);
190 	npages = atop(end - start);
191 	if (npages > vm_page_max_wired)
192 		return (ENOMEM);
193 #if 0
194 	/*
195 	 * XXX - not yet
196 	 *
197 	 * The limit for transient usage of wired pages should be
198 	 * larger than for "permanent" wired pages (mlock()).
199 	 *
200 	 * Also, the sysctl code, which is the only present user
201 	 * of vslock(), does a hard loop on EAGAIN.
202 	 */
203 	if (npages + vm_cnt.v_wire_count > vm_page_max_wired)
204 		return (EAGAIN);
205 #endif
206 	error = vm_map_wire(&curproc->p_vmspace->vm_map, start, end,
207 	    VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
208 	/*
209 	 * Return EFAULT on error to match copy{in,out}() behaviour
210 	 * rather than returning ENOMEM like mlock() would.
211 	 */
212 	return (error == KERN_SUCCESS ? 0 : EFAULT);
213 }
214 
215 void
216 vsunlock(void *addr, size_t len)
217 {
218 
219 	/* Rely on the parameter sanity checks performed by vslock(). */
220 	(void)vm_map_unwire(&curproc->p_vmspace->vm_map,
221 	    trunc_page((vm_offset_t)addr), round_page((vm_offset_t)addr + len),
222 	    VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
223 }
224 
225 /*
226  * Pin the page contained within the given object at the given offset.  If the
227  * page is not resident, allocate and load it using the given object's pager.
228  * Return the pinned page if successful; otherwise, return NULL.
229  */
230 static vm_page_t
231 vm_imgact_hold_page(vm_object_t object, vm_ooffset_t offset)
232 {
233 	vm_page_t m;
234 	vm_pindex_t pindex;
235 	int rv;
236 
237 	VM_OBJECT_WLOCK(object);
238 	pindex = OFF_TO_IDX(offset);
239 	m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY);
240 	if (m->valid != VM_PAGE_BITS_ALL) {
241 		vm_page_xbusy(m);
242 		rv = vm_pager_get_pages(object, &m, 1, NULL, NULL);
243 		if (rv != VM_PAGER_OK) {
244 			vm_page_lock(m);
245 			vm_page_free(m);
246 			vm_page_unlock(m);
247 			m = NULL;
248 			goto out;
249 		}
250 		vm_page_xunbusy(m);
251 	}
252 	vm_page_lock(m);
253 	vm_page_hold(m);
254 	vm_page_activate(m);
255 	vm_page_unlock(m);
256 out:
257 	VM_OBJECT_WUNLOCK(object);
258 	return (m);
259 }
260 
261 /*
262  * Return a CPU private mapping to the page at the given offset within the
263  * given object.  The page is pinned before it is mapped.
264  */
265 struct sf_buf *
266 vm_imgact_map_page(vm_object_t object, vm_ooffset_t offset)
267 {
268 	vm_page_t m;
269 
270 	m = vm_imgact_hold_page(object, offset);
271 	if (m == NULL)
272 		return (NULL);
273 	sched_pin();
274 	return (sf_buf_alloc(m, SFB_CPUPRIVATE));
275 }
276 
277 /*
278  * Destroy the given CPU private mapping and unpin the page that it mapped.
279  */
280 void
281 vm_imgact_unmap_page(struct sf_buf *sf)
282 {
283 	vm_page_t m;
284 
285 	m = sf_buf_page(sf);
286 	sf_buf_free(sf);
287 	sched_unpin();
288 	vm_page_lock(m);
289 	vm_page_unhold(m);
290 	vm_page_unlock(m);
291 }
292 
293 void
294 vm_sync_icache(vm_map_t map, vm_offset_t va, vm_offset_t sz)
295 {
296 
297 	pmap_sync_icache(map->pmap, va, sz);
298 }
299 
300 struct kstack_cache_entry *kstack_cache;
301 static int kstack_cache_size = 128;
302 static int kstacks;
303 static struct mtx kstack_cache_mtx;
304 MTX_SYSINIT(kstack_cache, &kstack_cache_mtx, "kstkch", MTX_DEF);
305 
306 SYSCTL_INT(_vm, OID_AUTO, kstack_cache_size, CTLFLAG_RW, &kstack_cache_size, 0,
307     "");
308 SYSCTL_INT(_vm, OID_AUTO, kstacks, CTLFLAG_RD, &kstacks, 0,
309     "");
310 
311 #ifndef KSTACK_MAX_PAGES
312 #define KSTACK_MAX_PAGES 32
313 #endif
314 
315 /*
316  * Create the kernel stack (including pcb for i386) for a new thread.
317  * This routine directly affects the fork perf for a process and
318  * create performance for a thread.
319  */
320 int
321 vm_thread_new(struct thread *td, int pages)
322 {
323 	vm_object_t ksobj;
324 	vm_offset_t ks;
325 	vm_page_t ma[KSTACK_MAX_PAGES];
326 	struct kstack_cache_entry *ks_ce;
327 	int i;
328 
329 	/* Bounds check */
330 	if (pages <= 1)
331 		pages = kstack_pages;
332 	else if (pages > KSTACK_MAX_PAGES)
333 		pages = KSTACK_MAX_PAGES;
334 
335 	if (pages == kstack_pages) {
336 		mtx_lock(&kstack_cache_mtx);
337 		if (kstack_cache != NULL) {
338 			ks_ce = kstack_cache;
339 			kstack_cache = ks_ce->next_ks_entry;
340 			mtx_unlock(&kstack_cache_mtx);
341 
342 			td->td_kstack_obj = ks_ce->ksobj;
343 			td->td_kstack = (vm_offset_t)ks_ce;
344 			td->td_kstack_pages = kstack_pages;
345 			return (1);
346 		}
347 		mtx_unlock(&kstack_cache_mtx);
348 	}
349 
350 	/*
351 	 * Allocate an object for the kstack.
352 	 */
353 	ksobj = vm_object_allocate(OBJT_DEFAULT, pages);
354 
355 	/*
356 	 * Get a kernel virtual address for this thread's kstack.
357 	 */
358 #if defined(__mips__)
359 	/*
360 	 * We need to align the kstack's mapped address to fit within
361 	 * a single TLB entry.
362 	 */
363 	if (vmem_xalloc(kernel_arena, (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE,
364 	    PAGE_SIZE * 2, 0, 0, VMEM_ADDR_MIN, VMEM_ADDR_MAX,
365 	    M_BESTFIT | M_NOWAIT, &ks)) {
366 		ks = 0;
367 	}
368 #else
369 	ks = kva_alloc((pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
370 #endif
371 	if (ks == 0) {
372 		printf("vm_thread_new: kstack allocation failed\n");
373 		vm_object_deallocate(ksobj);
374 		return (0);
375 	}
376 
377 	atomic_add_int(&kstacks, 1);
378 	if (KSTACK_GUARD_PAGES != 0) {
379 		pmap_qremove(ks, KSTACK_GUARD_PAGES);
380 		ks += KSTACK_GUARD_PAGES * PAGE_SIZE;
381 	}
382 	td->td_kstack_obj = ksobj;
383 	td->td_kstack = ks;
384 	/*
385 	 * Knowing the number of pages allocated is useful when you
386 	 * want to deallocate them.
387 	 */
388 	td->td_kstack_pages = pages;
389 	/*
390 	 * For the length of the stack, link in a real page of ram for each
391 	 * page of stack.
392 	 */
393 	VM_OBJECT_WLOCK(ksobj);
394 	(void)vm_page_grab_pages(ksobj, 0, VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY |
395 	    VM_ALLOC_WIRED, ma, pages);
396 	for (i = 0; i < pages; i++)
397 		ma[i]->valid = VM_PAGE_BITS_ALL;
398 	VM_OBJECT_WUNLOCK(ksobj);
399 	pmap_qenter(ks, ma, pages);
400 	return (1);
401 }
402 
403 static void
404 vm_thread_stack_dispose(vm_object_t ksobj, vm_offset_t ks, int pages)
405 {
406 	vm_page_t m;
407 	int i;
408 
409 	atomic_add_int(&kstacks, -1);
410 	pmap_qremove(ks, pages);
411 	VM_OBJECT_WLOCK(ksobj);
412 	for (i = 0; i < pages; i++) {
413 		m = vm_page_lookup(ksobj, i);
414 		if (m == NULL)
415 			panic("vm_thread_dispose: kstack already missing?");
416 		vm_page_lock(m);
417 		vm_page_unwire(m, PQ_NONE);
418 		vm_page_free(m);
419 		vm_page_unlock(m);
420 	}
421 	VM_OBJECT_WUNLOCK(ksobj);
422 	vm_object_deallocate(ksobj);
423 	kva_free(ks - (KSTACK_GUARD_PAGES * PAGE_SIZE),
424 	    (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
425 }
426 
427 /*
428  * Dispose of a thread's kernel stack.
429  */
430 void
431 vm_thread_dispose(struct thread *td)
432 {
433 	vm_object_t ksobj;
434 	vm_offset_t ks;
435 	struct kstack_cache_entry *ks_ce;
436 	int pages;
437 
438 	pages = td->td_kstack_pages;
439 	ksobj = td->td_kstack_obj;
440 	ks = td->td_kstack;
441 	td->td_kstack = 0;
442 	td->td_kstack_pages = 0;
443 	if (pages == kstack_pages && kstacks <= kstack_cache_size) {
444 		ks_ce = (struct kstack_cache_entry *)ks;
445 		ks_ce->ksobj = ksobj;
446 		mtx_lock(&kstack_cache_mtx);
447 		ks_ce->next_ks_entry = kstack_cache;
448 		kstack_cache = ks_ce;
449 		mtx_unlock(&kstack_cache_mtx);
450 		return;
451 	}
452 	vm_thread_stack_dispose(ksobj, ks, pages);
453 }
454 
455 static void
456 vm_thread_stack_lowmem(void *nulll)
457 {
458 	struct kstack_cache_entry *ks_ce, *ks_ce1;
459 
460 	mtx_lock(&kstack_cache_mtx);
461 	ks_ce = kstack_cache;
462 	kstack_cache = NULL;
463 	mtx_unlock(&kstack_cache_mtx);
464 
465 	while (ks_ce != NULL) {
466 		ks_ce1 = ks_ce;
467 		ks_ce = ks_ce->next_ks_entry;
468 
469 		vm_thread_stack_dispose(ks_ce1->ksobj, (vm_offset_t)ks_ce1,
470 		    kstack_pages);
471 	}
472 }
473 
474 static void
475 kstack_cache_init(void *nulll)
476 {
477 
478 	EVENTHANDLER_REGISTER(vm_lowmem, vm_thread_stack_lowmem, NULL,
479 	    EVENTHANDLER_PRI_ANY);
480 }
481 
482 SYSINIT(vm_kstacks, SI_SUB_KTHREAD_INIT, SI_ORDER_ANY, kstack_cache_init, NULL);
483 
484 #ifdef KSTACK_USAGE_PROF
485 /*
486  * Track maximum stack used by a thread in kernel.
487  */
488 static int max_kstack_used;
489 
490 SYSCTL_INT(_debug, OID_AUTO, max_kstack_used, CTLFLAG_RD,
491     &max_kstack_used, 0,
492     "Maxiumum stack depth used by a thread in kernel");
493 
494 void
495 intr_prof_stack_use(struct thread *td, struct trapframe *frame)
496 {
497 	vm_offset_t stack_top;
498 	vm_offset_t current;
499 	int used, prev_used;
500 
501 	/*
502 	 * Testing for interrupted kernel mode isn't strictly
503 	 * needed. It optimizes the execution, since interrupts from
504 	 * usermode will have only the trap frame on the stack.
505 	 */
506 	if (TRAPF_USERMODE(frame))
507 		return;
508 
509 	stack_top = td->td_kstack + td->td_kstack_pages * PAGE_SIZE;
510 	current = (vm_offset_t)(uintptr_t)&stack_top;
511 
512 	/*
513 	 * Try to detect if interrupt is using kernel thread stack.
514 	 * Hardware could use a dedicated stack for interrupt handling.
515 	 */
516 	if (stack_top <= current || current < td->td_kstack)
517 		return;
518 
519 	used = stack_top - current;
520 	for (;;) {
521 		prev_used = max_kstack_used;
522 		if (prev_used >= used)
523 			break;
524 		if (atomic_cmpset_int(&max_kstack_used, prev_used, used))
525 			break;
526 	}
527 }
528 #endif /* KSTACK_USAGE_PROF */
529 
530 #ifndef NO_SWAPPING
531 /*
532  * Allow a thread's kernel stack to be paged out.
533  */
534 static void
535 vm_thread_swapout(struct thread *td)
536 {
537 	vm_object_t ksobj;
538 	vm_page_t m;
539 	int i, pages;
540 
541 	cpu_thread_swapout(td);
542 	pages = td->td_kstack_pages;
543 	ksobj = td->td_kstack_obj;
544 	pmap_qremove(td->td_kstack, pages);
545 	VM_OBJECT_WLOCK(ksobj);
546 	for (i = 0; i < pages; i++) {
547 		m = vm_page_lookup(ksobj, i);
548 		if (m == NULL)
549 			panic("vm_thread_swapout: kstack already missing?");
550 		vm_page_dirty(m);
551 		vm_page_lock(m);
552 		vm_page_unwire(m, PQ_INACTIVE);
553 		vm_page_unlock(m);
554 	}
555 	VM_OBJECT_WUNLOCK(ksobj);
556 }
557 
558 /*
559  * Bring the kernel stack for a specified thread back in.
560  */
561 static void
562 vm_thread_swapin(struct thread *td)
563 {
564 	vm_object_t ksobj;
565 	vm_page_t ma[KSTACK_MAX_PAGES];
566 	int pages;
567 
568 	pages = td->td_kstack_pages;
569 	ksobj = td->td_kstack_obj;
570 	VM_OBJECT_WLOCK(ksobj);
571 	(void)vm_page_grab_pages(ksobj, 0, VM_ALLOC_NORMAL | VM_ALLOC_WIRED, ma,
572 	    pages);
573 	for (int i = 0; i < pages;) {
574 		int j, a, count, rv;
575 
576 		vm_page_assert_xbusied(ma[i]);
577 		if (ma[i]->valid == VM_PAGE_BITS_ALL) {
578 			vm_page_xunbusy(ma[i]);
579 			i++;
580 			continue;
581 		}
582 		vm_object_pip_add(ksobj, 1);
583 		for (j = i + 1; j < pages; j++)
584 			if (ma[j]->valid == VM_PAGE_BITS_ALL)
585 				break;
586 		rv = vm_pager_has_page(ksobj, ma[i]->pindex, NULL, &a);
587 		KASSERT(rv == 1, ("%s: missing page %p", __func__, ma[i]));
588 		count = min(a + 1, j - i);
589 		rv = vm_pager_get_pages(ksobj, ma + i, count, NULL, NULL);
590 		KASSERT(rv == VM_PAGER_OK, ("%s: cannot get kstack for proc %d",
591 		    __func__, td->td_proc->p_pid));
592 		vm_object_pip_wakeup(ksobj);
593 		for (j = i; j < i + count; j++)
594 			vm_page_xunbusy(ma[j]);
595 		i += count;
596 	}
597 	VM_OBJECT_WUNLOCK(ksobj);
598 	pmap_qenter(td->td_kstack, ma, pages);
599 	cpu_thread_swapin(td);
600 }
601 #endif /* !NO_SWAPPING */
602 
603 /*
604  * Implement fork's actions on an address space.
605  * Here we arrange for the address space to be copied or referenced,
606  * allocate a user struct (pcb and kernel stack), then call the
607  * machine-dependent layer to fill those in and make the new process
608  * ready to run.  The new process is set up so that it returns directly
609  * to user mode to avoid stack copying and relocation problems.
610  */
611 int
612 vm_forkproc(td, p2, td2, vm2, flags)
613 	struct thread *td;
614 	struct proc *p2;
615 	struct thread *td2;
616 	struct vmspace *vm2;
617 	int flags;
618 {
619 	struct proc *p1 = td->td_proc;
620 	int error;
621 
622 	if ((flags & RFPROC) == 0) {
623 		/*
624 		 * Divorce the memory, if it is shared, essentially
625 		 * this changes shared memory amongst threads, into
626 		 * COW locally.
627 		 */
628 		if ((flags & RFMEM) == 0) {
629 			if (p1->p_vmspace->vm_refcnt > 1) {
630 				error = vmspace_unshare(p1);
631 				if (error)
632 					return (error);
633 			}
634 		}
635 		cpu_fork(td, p2, td2, flags);
636 		return (0);
637 	}
638 
639 	if (flags & RFMEM) {
640 		p2->p_vmspace = p1->p_vmspace;
641 		atomic_add_int(&p1->p_vmspace->vm_refcnt, 1);
642 	}
643 
644 	while (vm_page_count_severe()) {
645 		VM_WAIT;
646 	}
647 
648 	if ((flags & RFMEM) == 0) {
649 		p2->p_vmspace = vm2;
650 		if (p1->p_vmspace->vm_shm)
651 			shmfork(p1, p2);
652 	}
653 
654 	/*
655 	 * cpu_fork will copy and update the pcb, set up the kernel stack,
656 	 * and make the child ready to run.
657 	 */
658 	cpu_fork(td, p2, td2, flags);
659 	return (0);
660 }
661 
662 /*
663  * Called after process has been wait(2)'ed upon and is being reaped.
664  * The idea is to reclaim resources that we could not reclaim while
665  * the process was still executing.
666  */
667 void
668 vm_waitproc(p)
669 	struct proc *p;
670 {
671 
672 	vmspace_exitfree(p);		/* and clean-out the vmspace */
673 }
674 
675 void
676 faultin(p)
677 	struct proc *p;
678 {
679 #ifdef NO_SWAPPING
680 
681 	PROC_LOCK_ASSERT(p, MA_OWNED);
682 	if ((p->p_flag & P_INMEM) == 0)
683 		panic("faultin: proc swapped out with NO_SWAPPING!");
684 #else /* !NO_SWAPPING */
685 	struct thread *td;
686 
687 	PROC_LOCK_ASSERT(p, MA_OWNED);
688 	/*
689 	 * If another process is swapping in this process,
690 	 * just wait until it finishes.
691 	 */
692 	if (p->p_flag & P_SWAPPINGIN) {
693 		while (p->p_flag & P_SWAPPINGIN)
694 			msleep(&p->p_flag, &p->p_mtx, PVM, "faultin", 0);
695 		return;
696 	}
697 	if ((p->p_flag & P_INMEM) == 0) {
698 		/*
699 		 * Don't let another thread swap process p out while we are
700 		 * busy swapping it in.
701 		 */
702 		++p->p_lock;
703 		p->p_flag |= P_SWAPPINGIN;
704 		PROC_UNLOCK(p);
705 
706 		/*
707 		 * We hold no lock here because the list of threads
708 		 * can not change while all threads in the process are
709 		 * swapped out.
710 		 */
711 		FOREACH_THREAD_IN_PROC(p, td)
712 			vm_thread_swapin(td);
713 		PROC_LOCK(p);
714 		swapclear(p);
715 		p->p_swtick = ticks;
716 
717 		wakeup(&p->p_flag);
718 
719 		/* Allow other threads to swap p out now. */
720 		--p->p_lock;
721 	}
722 #endif /* NO_SWAPPING */
723 }
724 
725 /*
726  * This swapin algorithm attempts to swap-in processes only if there
727  * is enough space for them.  Of course, if a process waits for a long
728  * time, it will be swapped in anyway.
729  */
730 void
731 swapper(void)
732 {
733 	struct proc *p;
734 	struct thread *td;
735 	struct proc *pp;
736 	int slptime;
737 	int swtime;
738 	int ppri;
739 	int pri;
740 
741 loop:
742 	if (vm_page_count_min()) {
743 		VM_WAIT;
744 		goto loop;
745 	}
746 
747 	pp = NULL;
748 	ppri = INT_MIN;
749 	sx_slock(&allproc_lock);
750 	FOREACH_PROC_IN_SYSTEM(p) {
751 		PROC_LOCK(p);
752 		if (p->p_state == PRS_NEW ||
753 		    p->p_flag & (P_SWAPPINGOUT | P_SWAPPINGIN | P_INMEM)) {
754 			PROC_UNLOCK(p);
755 			continue;
756 		}
757 		swtime = (ticks - p->p_swtick) / hz;
758 		FOREACH_THREAD_IN_PROC(p, td) {
759 			/*
760 			 * An otherwise runnable thread of a process
761 			 * swapped out has only the TDI_SWAPPED bit set.
762 			 *
763 			 */
764 			thread_lock(td);
765 			if (td->td_inhibitors == TDI_SWAPPED) {
766 				slptime = (ticks - td->td_slptick) / hz;
767 				pri = swtime + slptime;
768 				if ((td->td_flags & TDF_SWAPINREQ) == 0)
769 					pri -= p->p_nice * 8;
770 				/*
771 				 * if this thread is higher priority
772 				 * and there is enough space, then select
773 				 * this process instead of the previous
774 				 * selection.
775 				 */
776 				if (pri > ppri) {
777 					pp = p;
778 					ppri = pri;
779 				}
780 			}
781 			thread_unlock(td);
782 		}
783 		PROC_UNLOCK(p);
784 	}
785 	sx_sunlock(&allproc_lock);
786 
787 	/*
788 	 * Nothing to do, back to sleep.
789 	 */
790 	if ((p = pp) == NULL) {
791 		tsleep(&proc0, PVM, "swapin", MAXSLP * hz / 2);
792 		goto loop;
793 	}
794 	PROC_LOCK(p);
795 
796 	/*
797 	 * Another process may be bringing or may have already
798 	 * brought this process in while we traverse all threads.
799 	 * Or, this process may even be being swapped out again.
800 	 */
801 	if (p->p_flag & (P_INMEM | P_SWAPPINGOUT | P_SWAPPINGIN)) {
802 		PROC_UNLOCK(p);
803 		goto loop;
804 	}
805 
806 	/*
807 	 * We would like to bring someone in. (only if there is space).
808 	 * [What checks the space? ]
809 	 */
810 	faultin(p);
811 	PROC_UNLOCK(p);
812 	goto loop;
813 }
814 
815 void
816 kick_proc0(void)
817 {
818 
819 	wakeup(&proc0);
820 }
821 
822 #ifndef NO_SWAPPING
823 
824 /*
825  * Swap_idle_threshold1 is the guaranteed swapped in time for a process
826  */
827 static int swap_idle_threshold1 = 2;
828 SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold1, CTLFLAG_RW,
829     &swap_idle_threshold1, 0, "Guaranteed swapped in time for a process");
830 
831 /*
832  * Swap_idle_threshold2 is the time that a process can be idle before
833  * it will be swapped out, if idle swapping is enabled.
834  */
835 static int swap_idle_threshold2 = 10;
836 SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold2, CTLFLAG_RW,
837     &swap_idle_threshold2, 0, "Time before a process will be swapped out");
838 
839 /*
840  * First, if any processes have been sleeping or stopped for at least
841  * "swap_idle_threshold1" seconds, they are swapped out.  If, however,
842  * no such processes exist, then the longest-sleeping or stopped
843  * process is swapped out.  Finally, and only as a last resort, if
844  * there are no sleeping or stopped processes, the longest-resident
845  * process is swapped out.
846  */
847 void
848 swapout_procs(action)
849 int action;
850 {
851 	struct proc *p;
852 	struct thread *td;
853 	int didswap = 0;
854 
855 retry:
856 	sx_slock(&allproc_lock);
857 	FOREACH_PROC_IN_SYSTEM(p) {
858 		struct vmspace *vm;
859 		int minslptime = 100000;
860 		int slptime;
861 
862 		PROC_LOCK(p);
863 		/*
864 		 * Watch out for a process in
865 		 * creation.  It may have no
866 		 * address space or lock yet.
867 		 */
868 		if (p->p_state == PRS_NEW) {
869 			PROC_UNLOCK(p);
870 			continue;
871 		}
872 		/*
873 		 * An aio daemon switches its
874 		 * address space while running.
875 		 * Perform a quick check whether
876 		 * a process has P_SYSTEM.
877 		 * Filter out exiting processes.
878 		 */
879 		if ((p->p_flag & (P_SYSTEM | P_WEXIT)) != 0) {
880 			PROC_UNLOCK(p);
881 			continue;
882 		}
883 		_PHOLD_LITE(p);
884 		PROC_UNLOCK(p);
885 		sx_sunlock(&allproc_lock);
886 
887 		/*
888 		 * Do not swapout a process that
889 		 * is waiting for VM data
890 		 * structures as there is a possible
891 		 * deadlock.  Test this first as
892 		 * this may block.
893 		 *
894 		 * Lock the map until swapout
895 		 * finishes, or a thread of this
896 		 * process may attempt to alter
897 		 * the map.
898 		 */
899 		vm = vmspace_acquire_ref(p);
900 		if (vm == NULL)
901 			goto nextproc2;
902 		if (!vm_map_trylock(&vm->vm_map))
903 			goto nextproc1;
904 
905 		PROC_LOCK(p);
906 		if (p->p_lock != 1 || (p->p_flag & (P_STOPPED_SINGLE |
907 		    P_TRACED | P_SYSTEM)) != 0)
908 			goto nextproc;
909 
910 		/*
911 		 * only aiod changes vmspace, however it will be
912 		 * skipped because of the if statement above checking
913 		 * for P_SYSTEM
914 		 */
915 		if ((p->p_flag & (P_INMEM|P_SWAPPINGOUT|P_SWAPPINGIN)) != P_INMEM)
916 			goto nextproc;
917 
918 		switch (p->p_state) {
919 		default:
920 			/* Don't swap out processes in any sort
921 			 * of 'special' state. */
922 			break;
923 
924 		case PRS_NORMAL:
925 			/*
926 			 * do not swapout a realtime process
927 			 * Check all the thread groups..
928 			 */
929 			FOREACH_THREAD_IN_PROC(p, td) {
930 				thread_lock(td);
931 				if (PRI_IS_REALTIME(td->td_pri_class)) {
932 					thread_unlock(td);
933 					goto nextproc;
934 				}
935 				slptime = (ticks - td->td_slptick) / hz;
936 				/*
937 				 * Guarantee swap_idle_threshold1
938 				 * time in memory.
939 				 */
940 				if (slptime < swap_idle_threshold1) {
941 					thread_unlock(td);
942 					goto nextproc;
943 				}
944 
945 				/*
946 				 * Do not swapout a process if it is
947 				 * waiting on a critical event of some
948 				 * kind or there is a thread whose
949 				 * pageable memory may be accessed.
950 				 *
951 				 * This could be refined to support
952 				 * swapping out a thread.
953 				 */
954 				if (!thread_safetoswapout(td)) {
955 					thread_unlock(td);
956 					goto nextproc;
957 				}
958 				/*
959 				 * If the system is under memory stress,
960 				 * or if we are swapping
961 				 * idle processes >= swap_idle_threshold2,
962 				 * then swap the process out.
963 				 */
964 				if (((action & VM_SWAP_NORMAL) == 0) &&
965 				    (((action & VM_SWAP_IDLE) == 0) ||
966 				    (slptime < swap_idle_threshold2))) {
967 					thread_unlock(td);
968 					goto nextproc;
969 				}
970 
971 				if (minslptime > slptime)
972 					minslptime = slptime;
973 				thread_unlock(td);
974 			}
975 
976 			/*
977 			 * If the pageout daemon didn't free enough pages,
978 			 * or if this process is idle and the system is
979 			 * configured to swap proactively, swap it out.
980 			 */
981 			if ((action & VM_SWAP_NORMAL) ||
982 				((action & VM_SWAP_IDLE) &&
983 				 (minslptime > swap_idle_threshold2))) {
984 				_PRELE(p);
985 				if (swapout(p) == 0)
986 					didswap++;
987 				PROC_UNLOCK(p);
988 				vm_map_unlock(&vm->vm_map);
989 				vmspace_free(vm);
990 				goto retry;
991 			}
992 		}
993 nextproc:
994 		PROC_UNLOCK(p);
995 		vm_map_unlock(&vm->vm_map);
996 nextproc1:
997 		vmspace_free(vm);
998 nextproc2:
999 		sx_slock(&allproc_lock);
1000 		PRELE(p);
1001 	}
1002 	sx_sunlock(&allproc_lock);
1003 	/*
1004 	 * If we swapped something out, and another process needed memory,
1005 	 * then wakeup the sched process.
1006 	 */
1007 	if (didswap)
1008 		wakeup(&proc0);
1009 }
1010 
1011 static void
1012 swapclear(p)
1013 	struct proc *p;
1014 {
1015 	struct thread *td;
1016 
1017 	PROC_LOCK_ASSERT(p, MA_OWNED);
1018 
1019 	FOREACH_THREAD_IN_PROC(p, td) {
1020 		thread_lock(td);
1021 		td->td_flags |= TDF_INMEM;
1022 		td->td_flags &= ~TDF_SWAPINREQ;
1023 		TD_CLR_SWAPPED(td);
1024 		if (TD_CAN_RUN(td))
1025 			if (setrunnable(td)) {
1026 #ifdef INVARIANTS
1027 				/*
1028 				 * XXX: We just cleared TDI_SWAPPED
1029 				 * above and set TDF_INMEM, so this
1030 				 * should never happen.
1031 				 */
1032 				panic("not waking up swapper");
1033 #endif
1034 			}
1035 		thread_unlock(td);
1036 	}
1037 	p->p_flag &= ~(P_SWAPPINGIN|P_SWAPPINGOUT);
1038 	p->p_flag |= P_INMEM;
1039 }
1040 
1041 static int
1042 swapout(p)
1043 	struct proc *p;
1044 {
1045 	struct thread *td;
1046 
1047 	PROC_LOCK_ASSERT(p, MA_OWNED);
1048 #if defined(SWAP_DEBUG)
1049 	printf("swapping out %d\n", p->p_pid);
1050 #endif
1051 
1052 	/*
1053 	 * The states of this process and its threads may have changed
1054 	 * by now.  Assuming that there is only one pageout daemon thread,
1055 	 * this process should still be in memory.
1056 	 */
1057 	KASSERT((p->p_flag & (P_INMEM|P_SWAPPINGOUT|P_SWAPPINGIN)) == P_INMEM,
1058 		("swapout: lost a swapout race?"));
1059 
1060 	/*
1061 	 * remember the process resident count
1062 	 */
1063 	p->p_vmspace->vm_swrss = vmspace_resident_count(p->p_vmspace);
1064 	/*
1065 	 * Check and mark all threads before we proceed.
1066 	 */
1067 	p->p_flag &= ~P_INMEM;
1068 	p->p_flag |= P_SWAPPINGOUT;
1069 	FOREACH_THREAD_IN_PROC(p, td) {
1070 		thread_lock(td);
1071 		if (!thread_safetoswapout(td)) {
1072 			thread_unlock(td);
1073 			swapclear(p);
1074 			return (EBUSY);
1075 		}
1076 		td->td_flags &= ~TDF_INMEM;
1077 		TD_SET_SWAPPED(td);
1078 		thread_unlock(td);
1079 	}
1080 	td = FIRST_THREAD_IN_PROC(p);
1081 	++td->td_ru.ru_nswap;
1082 	PROC_UNLOCK(p);
1083 
1084 	/*
1085 	 * This list is stable because all threads are now prevented from
1086 	 * running.  The list is only modified in the context of a running
1087 	 * thread in this process.
1088 	 */
1089 	FOREACH_THREAD_IN_PROC(p, td)
1090 		vm_thread_swapout(td);
1091 
1092 	PROC_LOCK(p);
1093 	p->p_flag &= ~P_SWAPPINGOUT;
1094 	p->p_swtick = ticks;
1095 	return (0);
1096 }
1097 #endif /* !NO_SWAPPING */
1098