xref: /freebsd/sys/vm/vm_glue.c (revision 74bf4e164ba5851606a27d4feff27717452583e5)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)vm_glue.c	8.6 (Berkeley) 1/5/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Permission to use, copy, modify and distribute this software and
39  * its documentation is hereby granted, provided that both the copyright
40  * notice and this permission notice appear in all copies of the
41  * software, derivative works or modified versions, and any portions
42  * thereof, and that both notices appear in supporting documentation.
43  *
44  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
45  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
46  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
47  *
48  * Carnegie Mellon requests users of this software to return to
49  *
50  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
51  *  School of Computer Science
52  *  Carnegie Mellon University
53  *  Pittsburgh PA 15213-3890
54  *
55  * any improvements or extensions that they make and grant Carnegie the
56  * rights to redistribute these changes.
57  */
58 
59 #include <sys/cdefs.h>
60 __FBSDID("$FreeBSD$");
61 
62 #include "opt_vm.h"
63 #include "opt_kstack_pages.h"
64 #include "opt_kstack_max_pages.h"
65 
66 #include <sys/param.h>
67 #include <sys/systm.h>
68 #include <sys/limits.h>
69 #include <sys/lock.h>
70 #include <sys/mutex.h>
71 #include <sys/proc.h>
72 #include <sys/resourcevar.h>
73 #include <sys/shm.h>
74 #include <sys/vmmeter.h>
75 #include <sys/sx.h>
76 #include <sys/sysctl.h>
77 
78 #include <sys/kernel.h>
79 #include <sys/ktr.h>
80 #include <sys/unistd.h>
81 
82 #include <vm/vm.h>
83 #include <vm/vm_param.h>
84 #include <vm/pmap.h>
85 #include <vm/vm_map.h>
86 #include <vm/vm_page.h>
87 #include <vm/vm_pageout.h>
88 #include <vm/vm_object.h>
89 #include <vm/vm_kern.h>
90 #include <vm/vm_extern.h>
91 #include <vm/vm_pager.h>
92 #include <vm/swap_pager.h>
93 
94 #include <sys/user.h>
95 
96 extern int maxslp;
97 
98 /*
99  * System initialization
100  *
101  * Note: proc0 from proc.h
102  */
103 static void vm_init_limits(void *);
104 SYSINIT(vm_limits, SI_SUB_VM_CONF, SI_ORDER_FIRST, vm_init_limits, &proc0)
105 
106 /*
107  * THIS MUST BE THE LAST INITIALIZATION ITEM!!!
108  *
109  * Note: run scheduling should be divorced from the vm system.
110  */
111 static void scheduler(void *);
112 SYSINIT(scheduler, SI_SUB_RUN_SCHEDULER, SI_ORDER_ANY, scheduler, NULL)
113 
114 #ifndef NO_SWAPPING
115 static void swapout(struct proc *);
116 static void vm_proc_swapin(struct proc *p);
117 static void vm_proc_swapout(struct proc *p);
118 #endif
119 
120 /*
121  * MPSAFE
122  *
123  * WARNING!  This code calls vm_map_check_protection() which only checks
124  * the associated vm_map_entry range.  It does not determine whether the
125  * contents of the memory is actually readable or writable.  In most cases
126  * just checking the vm_map_entry is sufficient within the kernel's address
127  * space.
128  */
129 int
130 kernacc(addr, len, rw)
131 	void *addr;
132 	int len, rw;
133 {
134 	boolean_t rv;
135 	vm_offset_t saddr, eaddr;
136 	vm_prot_t prot;
137 
138 	KASSERT((rw & ~VM_PROT_ALL) == 0,
139 	    ("illegal ``rw'' argument to kernacc (%x)\n", rw));
140 	prot = rw;
141 	saddr = trunc_page((vm_offset_t)addr);
142 	eaddr = round_page((vm_offset_t)addr + len);
143 	vm_map_lock_read(kernel_map);
144 	rv = vm_map_check_protection(kernel_map, saddr, eaddr, prot);
145 	vm_map_unlock_read(kernel_map);
146 	return (rv == TRUE);
147 }
148 
149 /*
150  * MPSAFE
151  *
152  * WARNING!  This code calls vm_map_check_protection() which only checks
153  * the associated vm_map_entry range.  It does not determine whether the
154  * contents of the memory is actually readable or writable.  vmapbuf(),
155  * vm_fault_quick(), or copyin()/copout()/su*()/fu*() functions should be
156  * used in conjuction with this call.
157  */
158 int
159 useracc(addr, len, rw)
160 	void *addr;
161 	int len, rw;
162 {
163 	boolean_t rv;
164 	vm_prot_t prot;
165 	vm_map_t map;
166 
167 	KASSERT((rw & ~VM_PROT_ALL) == 0,
168 	    ("illegal ``rw'' argument to useracc (%x)\n", rw));
169 	prot = rw;
170 	map = &curproc->p_vmspace->vm_map;
171 	if ((vm_offset_t)addr + len > vm_map_max(map) ||
172 	    (vm_offset_t)addr + len < (vm_offset_t)addr) {
173 		return (FALSE);
174 	}
175 	vm_map_lock_read(map);
176 	rv = vm_map_check_protection(map, trunc_page((vm_offset_t)addr),
177 	    round_page((vm_offset_t)addr + len), prot);
178 	vm_map_unlock_read(map);
179 	return (rv == TRUE);
180 }
181 
182 int
183 vslock(void *addr, size_t len)
184 {
185 	vm_offset_t end, last, start;
186 	vm_size_t npages;
187 	int error;
188 
189 	last = (vm_offset_t)addr + len;
190 	start = trunc_page((vm_offset_t)addr);
191 	end = round_page(last);
192 	if (last < (vm_offset_t)addr || end < (vm_offset_t)addr)
193 		return (EINVAL);
194 	npages = atop(end - start);
195 	if (npages > vm_page_max_wired)
196 		return (ENOMEM);
197 	PROC_LOCK(curproc);
198 	if (ptoa(npages +
199 	    pmap_wired_count(vm_map_pmap(&curproc->p_vmspace->vm_map))) >
200 	    lim_cur(curproc, RLIMIT_MEMLOCK)) {
201 		PROC_UNLOCK(curproc);
202 		return (ENOMEM);
203 	}
204 	PROC_UNLOCK(curproc);
205 #if 0
206 	/*
207 	 * XXX - not yet
208 	 *
209 	 * The limit for transient usage of wired pages should be
210 	 * larger than for "permanent" wired pages (mlock()).
211 	 *
212 	 * Also, the sysctl code, which is the only present user
213 	 * of vslock(), does a hard loop on EAGAIN.
214 	 */
215 	if (npages + cnt.v_wire_count > vm_page_max_wired)
216 		return (EAGAIN);
217 #endif
218 	error = vm_map_wire(&curproc->p_vmspace->vm_map, start, end,
219 	    VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
220 	/*
221 	 * Return EFAULT on error to match copy{in,out}() behaviour
222 	 * rather than returning ENOMEM like mlock() would.
223 	 */
224 	return (error == KERN_SUCCESS ? 0 : EFAULT);
225 }
226 
227 void
228 vsunlock(void *addr, size_t len)
229 {
230 
231 	/* Rely on the parameter sanity checks performed by vslock(). */
232 	(void)vm_map_unwire(&curproc->p_vmspace->vm_map,
233 	    trunc_page((vm_offset_t)addr), round_page((vm_offset_t)addr + len),
234 	    VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
235 }
236 
237 /*
238  * Create the U area for a new process.
239  * This routine directly affects the fork perf for a process.
240  */
241 void
242 vm_proc_new(struct proc *p)
243 {
244 	vm_page_t ma[UAREA_PAGES];
245 	vm_object_t upobj;
246 	vm_offset_t up;
247 	vm_page_t m;
248 	u_int i;
249 
250 	/*
251 	 * Get a kernel virtual address for the U area for this process.
252 	 */
253 	up = kmem_alloc_nofault(kernel_map, UAREA_PAGES * PAGE_SIZE);
254 	if (up == 0)
255 		panic("vm_proc_new: upage allocation failed");
256 	p->p_uarea = (struct user *)up;
257 
258 	/*
259 	 * Allocate object and page(s) for the U area.
260 	 */
261 	upobj = vm_object_allocate(OBJT_DEFAULT, UAREA_PAGES);
262 	p->p_upages_obj = upobj;
263 	VM_OBJECT_LOCK(upobj);
264 	for (i = 0; i < UAREA_PAGES; i++) {
265 		m = vm_page_grab(upobj, i,
266 		    VM_ALLOC_NORMAL | VM_ALLOC_RETRY | VM_ALLOC_WIRED);
267 		ma[i] = m;
268 
269 		vm_page_lock_queues();
270 		vm_page_wakeup(m);
271 		m->valid = VM_PAGE_BITS_ALL;
272 		vm_page_unlock_queues();
273 	}
274 	VM_OBJECT_UNLOCK(upobj);
275 
276 	/*
277 	 * Enter the pages into the kernel address space.
278 	 */
279 	pmap_qenter(up, ma, UAREA_PAGES);
280 }
281 
282 /*
283  * Dispose the U area for a process that has exited.
284  * This routine directly impacts the exit perf of a process.
285  * XXX proc_zone is marked UMA_ZONE_NOFREE, so this should never be called.
286  */
287 void
288 vm_proc_dispose(struct proc *p)
289 {
290 	vm_object_t upobj;
291 	vm_offset_t up;
292 	vm_page_t m;
293 
294 	upobj = p->p_upages_obj;
295 	VM_OBJECT_LOCK(upobj);
296 	if (upobj->resident_page_count != UAREA_PAGES)
297 		panic("vm_proc_dispose: incorrect number of pages in upobj");
298 	vm_page_lock_queues();
299 	while ((m = TAILQ_FIRST(&upobj->memq)) != NULL) {
300 		vm_page_busy(m);
301 		vm_page_unwire(m, 0);
302 		vm_page_free(m);
303 	}
304 	vm_page_unlock_queues();
305 	VM_OBJECT_UNLOCK(upobj);
306 	up = (vm_offset_t)p->p_uarea;
307 	pmap_qremove(up, UAREA_PAGES);
308 	kmem_free(kernel_map, up, UAREA_PAGES * PAGE_SIZE);
309 	vm_object_deallocate(upobj);
310 }
311 
312 #ifndef NO_SWAPPING
313 /*
314  * Allow the U area for a process to be prejudicially paged out.
315  */
316 static void
317 vm_proc_swapout(struct proc *p)
318 {
319 	vm_object_t upobj;
320 	vm_offset_t up;
321 	vm_page_t m;
322 
323 	upobj = p->p_upages_obj;
324 	VM_OBJECT_LOCK(upobj);
325 	if (upobj->resident_page_count != UAREA_PAGES)
326 		panic("vm_proc_dispose: incorrect number of pages in upobj");
327 	vm_page_lock_queues();
328 	TAILQ_FOREACH(m, &upobj->memq, listq) {
329 		vm_page_dirty(m);
330 		vm_page_unwire(m, 0);
331 	}
332 	vm_page_unlock_queues();
333 	VM_OBJECT_UNLOCK(upobj);
334 	up = (vm_offset_t)p->p_uarea;
335 	pmap_qremove(up, UAREA_PAGES);
336 }
337 
338 /*
339  * Bring the U area for a specified process back in.
340  */
341 static void
342 vm_proc_swapin(struct proc *p)
343 {
344 	vm_page_t ma[UAREA_PAGES];
345 	vm_object_t upobj;
346 	vm_offset_t up;
347 	vm_page_t m;
348 	int rv;
349 	int i;
350 
351 	upobj = p->p_upages_obj;
352 	VM_OBJECT_LOCK(upobj);
353 	for (i = 0; i < UAREA_PAGES; i++) {
354 		m = vm_page_grab(upobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
355 		if (m->valid != VM_PAGE_BITS_ALL) {
356 			rv = vm_pager_get_pages(upobj, &m, 1, 0);
357 			if (rv != VM_PAGER_OK)
358 				panic("vm_proc_swapin: cannot get upage");
359 		}
360 		ma[i] = m;
361 	}
362 	if (upobj->resident_page_count != UAREA_PAGES)
363 		panic("vm_proc_swapin: lost pages from upobj");
364 	vm_page_lock_queues();
365 	TAILQ_FOREACH(m, &upobj->memq, listq) {
366 		m->valid = VM_PAGE_BITS_ALL;
367 		vm_page_wire(m);
368 		vm_page_wakeup(m);
369 	}
370 	vm_page_unlock_queues();
371 	VM_OBJECT_UNLOCK(upobj);
372 	up = (vm_offset_t)p->p_uarea;
373 	pmap_qenter(up, ma, UAREA_PAGES);
374 }
375 
376 /*
377  * Swap in the UAREAs of all processes swapped out to the given device.
378  * The pages in the UAREA are marked dirty and their swap metadata is freed.
379  */
380 void
381 vm_proc_swapin_all(struct swdevt *devidx)
382 {
383 	struct proc *p;
384 	vm_object_t object;
385 	vm_page_t m;
386 
387 retry:
388 	sx_slock(&allproc_lock);
389 	FOREACH_PROC_IN_SYSTEM(p) {
390 		PROC_LOCK(p);
391 		object = p->p_upages_obj;
392 		if (object != NULL) {
393 			VM_OBJECT_LOCK(object);
394 			if (swap_pager_isswapped(object, devidx)) {
395 				VM_OBJECT_UNLOCK(object);
396 				sx_sunlock(&allproc_lock);
397 				faultin(p);
398 				PROC_UNLOCK(p);
399 				VM_OBJECT_LOCK(object);
400 				vm_page_lock_queues();
401 				TAILQ_FOREACH(m, &object->memq, listq)
402 					vm_page_dirty(m);
403 				vm_page_unlock_queues();
404 				swap_pager_freespace(object, 0,
405 				    object->un_pager.swp.swp_bcount);
406 				VM_OBJECT_UNLOCK(object);
407 				goto retry;
408 			}
409 			VM_OBJECT_UNLOCK(object);
410 		}
411 		PROC_UNLOCK(p);
412 	}
413 	sx_sunlock(&allproc_lock);
414 }
415 #endif
416 
417 #ifndef KSTACK_MAX_PAGES
418 #define KSTACK_MAX_PAGES 32
419 #endif
420 
421 /*
422  * Create the kernel stack (including pcb for i386) for a new thread.
423  * This routine directly affects the fork perf for a process and
424  * create performance for a thread.
425  */
426 void
427 vm_thread_new(struct thread *td, int pages)
428 {
429 	vm_object_t ksobj;
430 	vm_offset_t ks;
431 	vm_page_t m, ma[KSTACK_MAX_PAGES];
432 	int i;
433 
434 	/* Bounds check */
435 	if (pages <= 1)
436 		pages = KSTACK_PAGES;
437 	else if (pages > KSTACK_MAX_PAGES)
438 		pages = KSTACK_MAX_PAGES;
439 	/*
440 	 * Allocate an object for the kstack.
441 	 */
442 	ksobj = vm_object_allocate(OBJT_DEFAULT, pages);
443 	td->td_kstack_obj = ksobj;
444 	/*
445 	 * Get a kernel virtual address for this thread's kstack.
446 	 */
447 	ks = kmem_alloc_nofault(kernel_map,
448 	   (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
449 	if (ks == 0)
450 		panic("vm_thread_new: kstack allocation failed");
451 	if (KSTACK_GUARD_PAGES != 0) {
452 		pmap_qremove(ks, KSTACK_GUARD_PAGES);
453 		ks += KSTACK_GUARD_PAGES * PAGE_SIZE;
454 	}
455 	td->td_kstack = ks;
456 	/*
457 	 * Knowing the number of pages allocated is useful when you
458 	 * want to deallocate them.
459 	 */
460 	td->td_kstack_pages = pages;
461 	/*
462 	 * For the length of the stack, link in a real page of ram for each
463 	 * page of stack.
464 	 */
465 	VM_OBJECT_LOCK(ksobj);
466 	for (i = 0; i < pages; i++) {
467 		/*
468 		 * Get a kernel stack page.
469 		 */
470 		m = vm_page_grab(ksobj, i,
471 		    VM_ALLOC_NORMAL | VM_ALLOC_RETRY | VM_ALLOC_WIRED);
472 		ma[i] = m;
473 		vm_page_lock_queues();
474 		vm_page_wakeup(m);
475 		m->valid = VM_PAGE_BITS_ALL;
476 		vm_page_unlock_queues();
477 	}
478 	VM_OBJECT_UNLOCK(ksobj);
479 	pmap_qenter(ks, ma, pages);
480 }
481 
482 /*
483  * Dispose of a thread's kernel stack.
484  */
485 void
486 vm_thread_dispose(struct thread *td)
487 {
488 	vm_object_t ksobj;
489 	vm_offset_t ks;
490 	vm_page_t m;
491 	int i, pages;
492 
493 	pages = td->td_kstack_pages;
494 	ksobj = td->td_kstack_obj;
495 	ks = td->td_kstack;
496 	pmap_qremove(ks, pages);
497 	VM_OBJECT_LOCK(ksobj);
498 	for (i = 0; i < pages; i++) {
499 		m = vm_page_lookup(ksobj, i);
500 		if (m == NULL)
501 			panic("vm_thread_dispose: kstack already missing?");
502 		vm_page_lock_queues();
503 		vm_page_busy(m);
504 		vm_page_unwire(m, 0);
505 		vm_page_free(m);
506 		vm_page_unlock_queues();
507 	}
508 	VM_OBJECT_UNLOCK(ksobj);
509 	vm_object_deallocate(ksobj);
510 	kmem_free(kernel_map, ks - (KSTACK_GUARD_PAGES * PAGE_SIZE),
511 	    (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
512 }
513 
514 /*
515  * Allow a thread's kernel stack to be paged out.
516  */
517 void
518 vm_thread_swapout(struct thread *td)
519 {
520 	vm_object_t ksobj;
521 	vm_page_t m;
522 	int i, pages;
523 
524 	cpu_thread_swapout(td);
525 	pages = td->td_kstack_pages;
526 	ksobj = td->td_kstack_obj;
527 	pmap_qremove(td->td_kstack, pages);
528 	VM_OBJECT_LOCK(ksobj);
529 	for (i = 0; i < pages; i++) {
530 		m = vm_page_lookup(ksobj, i);
531 		if (m == NULL)
532 			panic("vm_thread_swapout: kstack already missing?");
533 		vm_page_lock_queues();
534 		vm_page_dirty(m);
535 		vm_page_unwire(m, 0);
536 		vm_page_unlock_queues();
537 	}
538 	VM_OBJECT_UNLOCK(ksobj);
539 }
540 
541 /*
542  * Bring the kernel stack for a specified thread back in.
543  */
544 void
545 vm_thread_swapin(struct thread *td)
546 {
547 	vm_object_t ksobj;
548 	vm_page_t m, ma[KSTACK_MAX_PAGES];
549 	int i, pages, rv;
550 
551 	pages = td->td_kstack_pages;
552 	ksobj = td->td_kstack_obj;
553 	VM_OBJECT_LOCK(ksobj);
554 	for (i = 0; i < pages; i++) {
555 		m = vm_page_grab(ksobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
556 		if (m->valid != VM_PAGE_BITS_ALL) {
557 			rv = vm_pager_get_pages(ksobj, &m, 1, 0);
558 			if (rv != VM_PAGER_OK)
559 				panic("vm_thread_swapin: cannot get kstack for proc: %d", td->td_proc->p_pid);
560 			m = vm_page_lookup(ksobj, i);
561 			m->valid = VM_PAGE_BITS_ALL;
562 		}
563 		ma[i] = m;
564 		vm_page_lock_queues();
565 		vm_page_wire(m);
566 		vm_page_wakeup(m);
567 		vm_page_unlock_queues();
568 	}
569 	VM_OBJECT_UNLOCK(ksobj);
570 	pmap_qenter(td->td_kstack, ma, pages);
571 	cpu_thread_swapin(td);
572 }
573 
574 /*
575  * Set up a variable-sized alternate kstack.
576  */
577 void
578 vm_thread_new_altkstack(struct thread *td, int pages)
579 {
580 
581 	td->td_altkstack = td->td_kstack;
582 	td->td_altkstack_obj = td->td_kstack_obj;
583 	td->td_altkstack_pages = td->td_kstack_pages;
584 
585 	vm_thread_new(td, pages);
586 }
587 
588 /*
589  * Restore the original kstack.
590  */
591 void
592 vm_thread_dispose_altkstack(struct thread *td)
593 {
594 
595 	vm_thread_dispose(td);
596 
597 	td->td_kstack = td->td_altkstack;
598 	td->td_kstack_obj = td->td_altkstack_obj;
599 	td->td_kstack_pages = td->td_altkstack_pages;
600 	td->td_altkstack = 0;
601 	td->td_altkstack_obj = NULL;
602 	td->td_altkstack_pages = 0;
603 }
604 
605 /*
606  * Implement fork's actions on an address space.
607  * Here we arrange for the address space to be copied or referenced,
608  * allocate a user struct (pcb and kernel stack), then call the
609  * machine-dependent layer to fill those in and make the new process
610  * ready to run.  The new process is set up so that it returns directly
611  * to user mode to avoid stack copying and relocation problems.
612  */
613 void
614 vm_forkproc(td, p2, td2, flags)
615 	struct thread *td;
616 	struct proc *p2;
617 	struct thread *td2;
618 	int flags;
619 {
620 	struct proc *p1 = td->td_proc;
621 
622 	GIANT_REQUIRED;
623 
624 	if ((flags & RFPROC) == 0) {
625 		/*
626 		 * Divorce the memory, if it is shared, essentially
627 		 * this changes shared memory amongst threads, into
628 		 * COW locally.
629 		 */
630 		if ((flags & RFMEM) == 0) {
631 			if (p1->p_vmspace->vm_refcnt > 1) {
632 				vmspace_unshare(p1);
633 			}
634 		}
635 		cpu_fork(td, p2, td2, flags);
636 		return;
637 	}
638 
639 	if (flags & RFMEM) {
640 		p2->p_vmspace = p1->p_vmspace;
641 		atomic_add_int(&p1->p_vmspace->vm_refcnt, 1);
642 	}
643 
644 	while (vm_page_count_severe()) {
645 		VM_WAIT;
646 	}
647 
648 	if ((flags & RFMEM) == 0) {
649 		p2->p_vmspace = vmspace_fork(p1->p_vmspace);
650 		if (p1->p_vmspace->vm_shm)
651 			shmfork(p1, p2);
652 	}
653 
654 	/*
655 	 * p_stats currently points at fields in the user struct.
656 	 * Copy parts of p_stats; zero the rest of p_stats (statistics).
657 	 */
658 #define	RANGEOF(type, start, end) (offsetof(type, end) - offsetof(type, start))
659 
660 	p2->p_stats = &p2->p_uarea->u_stats;
661 	bzero(&p2->p_stats->pstat_startzero,
662 	    (unsigned) RANGEOF(struct pstats, pstat_startzero, pstat_endzero));
663 	bcopy(&p1->p_stats->pstat_startcopy, &p2->p_stats->pstat_startcopy,
664 	    (unsigned) RANGEOF(struct pstats, pstat_startcopy, pstat_endcopy));
665 #undef RANGEOF
666 
667 	/*
668 	 * cpu_fork will copy and update the pcb, set up the kernel stack,
669 	 * and make the child ready to run.
670 	 */
671 	cpu_fork(td, p2, td2, flags);
672 }
673 
674 /*
675  * Called after process has been wait(2)'ed apon and is being reaped.
676  * The idea is to reclaim resources that we could not reclaim while
677  * the process was still executing.
678  */
679 void
680 vm_waitproc(p)
681 	struct proc *p;
682 {
683 
684 	vmspace_exitfree(p);		/* and clean-out the vmspace */
685 }
686 
687 /*
688  * Set default limits for VM system.
689  * Called for proc 0, and then inherited by all others.
690  *
691  * XXX should probably act directly on proc0.
692  */
693 static void
694 vm_init_limits(udata)
695 	void *udata;
696 {
697 	struct proc *p = udata;
698 	struct plimit *limp;
699 	int rss_limit;
700 
701 	/*
702 	 * Set up the initial limits on process VM. Set the maximum resident
703 	 * set size to be half of (reasonably) available memory.  Since this
704 	 * is a soft limit, it comes into effect only when the system is out
705 	 * of memory - half of main memory helps to favor smaller processes,
706 	 * and reduces thrashing of the object cache.
707 	 */
708 	limp = p->p_limit;
709 	limp->pl_rlimit[RLIMIT_STACK].rlim_cur = dflssiz;
710 	limp->pl_rlimit[RLIMIT_STACK].rlim_max = maxssiz;
711 	limp->pl_rlimit[RLIMIT_DATA].rlim_cur = dfldsiz;
712 	limp->pl_rlimit[RLIMIT_DATA].rlim_max = maxdsiz;
713 	/* limit the limit to no less than 2MB */
714 	rss_limit = max(cnt.v_free_count, 512);
715 	limp->pl_rlimit[RLIMIT_RSS].rlim_cur = ptoa(rss_limit);
716 	limp->pl_rlimit[RLIMIT_RSS].rlim_max = RLIM_INFINITY;
717 }
718 
719 void
720 faultin(p)
721 	struct proc *p;
722 {
723 #ifdef NO_SWAPPING
724 
725 	PROC_LOCK_ASSERT(p, MA_OWNED);
726 	if ((p->p_sflag & PS_INMEM) == 0)
727 		panic("faultin: proc swapped out with NO_SWAPPING!");
728 #else /* !NO_SWAPPING */
729 	struct thread *td;
730 
731 	GIANT_REQUIRED;
732 	PROC_LOCK_ASSERT(p, MA_OWNED);
733 	/*
734 	 * If another process is swapping in this process,
735 	 * just wait until it finishes.
736 	 */
737 	if (p->p_sflag & PS_SWAPPINGIN)
738 		msleep(&p->p_sflag, &p->p_mtx, PVM, "faultin", 0);
739 	else if ((p->p_sflag & PS_INMEM) == 0) {
740 		/*
741 		 * Don't let another thread swap process p out while we are
742 		 * busy swapping it in.
743 		 */
744 		++p->p_lock;
745 		mtx_lock_spin(&sched_lock);
746 		p->p_sflag |= PS_SWAPPINGIN;
747 		mtx_unlock_spin(&sched_lock);
748 		PROC_UNLOCK(p);
749 
750 		vm_proc_swapin(p);
751 		FOREACH_THREAD_IN_PROC(p, td)
752 			vm_thread_swapin(td);
753 
754 		PROC_LOCK(p);
755 		mtx_lock_spin(&sched_lock);
756 		p->p_sflag &= ~PS_SWAPPINGIN;
757 		p->p_sflag |= PS_INMEM;
758 		FOREACH_THREAD_IN_PROC(p, td) {
759 			TD_CLR_SWAPPED(td);
760 			if (TD_CAN_RUN(td))
761 				setrunnable(td);
762 		}
763 		mtx_unlock_spin(&sched_lock);
764 
765 		wakeup(&p->p_sflag);
766 
767 		/* Allow other threads to swap p out now. */
768 		--p->p_lock;
769 	}
770 #endif /* NO_SWAPPING */
771 }
772 
773 /*
774  * This swapin algorithm attempts to swap-in processes only if there
775  * is enough space for them.  Of course, if a process waits for a long
776  * time, it will be swapped in anyway.
777  *
778  *  XXXKSE - process with the thread with highest priority counts..
779  *
780  * Giant is still held at this point, to be released in tsleep.
781  */
782 /* ARGSUSED*/
783 static void
784 scheduler(dummy)
785 	void *dummy;
786 {
787 	struct proc *p;
788 	struct thread *td;
789 	int pri;
790 	struct proc *pp;
791 	int ppri;
792 
793 	mtx_assert(&Giant, MA_OWNED | MA_NOTRECURSED);
794 	/* GIANT_REQUIRED */
795 
796 loop:
797 	if (vm_page_count_min()) {
798 		VM_WAIT;
799 		goto loop;
800 	}
801 
802 	pp = NULL;
803 	ppri = INT_MIN;
804 	sx_slock(&allproc_lock);
805 	FOREACH_PROC_IN_SYSTEM(p) {
806 		struct ksegrp *kg;
807 		if (p->p_sflag & (PS_INMEM | PS_SWAPPINGOUT | PS_SWAPPINGIN)) {
808 			continue;
809 		}
810 		mtx_lock_spin(&sched_lock);
811 		FOREACH_THREAD_IN_PROC(p, td) {
812 			/*
813 			 * An otherwise runnable thread of a process
814 			 * swapped out has only the TDI_SWAPPED bit set.
815 			 *
816 			 */
817 			if (td->td_inhibitors == TDI_SWAPPED) {
818 				kg = td->td_ksegrp;
819 				pri = p->p_swtime + kg->kg_slptime;
820 				if ((p->p_sflag & PS_SWAPINREQ) == 0) {
821 					pri -= p->p_nice * 8;
822 				}
823 
824 				/*
825 				 * if this ksegrp is higher priority
826 				 * and there is enough space, then select
827 				 * this process instead of the previous
828 				 * selection.
829 				 */
830 				if (pri > ppri) {
831 					pp = p;
832 					ppri = pri;
833 				}
834 			}
835 		}
836 		mtx_unlock_spin(&sched_lock);
837 	}
838 	sx_sunlock(&allproc_lock);
839 
840 	/*
841 	 * Nothing to do, back to sleep.
842 	 */
843 	if ((p = pp) == NULL) {
844 		tsleep(&proc0, PVM, "sched", maxslp * hz / 2);
845 		goto loop;
846 	}
847 	PROC_LOCK(p);
848 
849 	/*
850 	 * Another process may be bringing or may have already
851 	 * brought this process in while we traverse all threads.
852 	 * Or, this process may even be being swapped out again.
853 	 */
854 	if (p->p_sflag & (PS_INMEM | PS_SWAPPINGOUT | PS_SWAPPINGIN)) {
855 		PROC_UNLOCK(p);
856 		goto loop;
857 	}
858 
859 	mtx_lock_spin(&sched_lock);
860 	p->p_sflag &= ~PS_SWAPINREQ;
861 	mtx_unlock_spin(&sched_lock);
862 
863 	/*
864 	 * We would like to bring someone in. (only if there is space).
865 	 * [What checks the space? ]
866 	 */
867 	faultin(p);
868 	PROC_UNLOCK(p);
869 	mtx_lock_spin(&sched_lock);
870 	p->p_swtime = 0;
871 	mtx_unlock_spin(&sched_lock);
872 	goto loop;
873 }
874 
875 #ifndef NO_SWAPPING
876 
877 /*
878  * Swap_idle_threshold1 is the guaranteed swapped in time for a process
879  */
880 static int swap_idle_threshold1 = 2;
881 SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold1, CTLFLAG_RW,
882     &swap_idle_threshold1, 0, "Guaranteed swapped in time for a process");
883 
884 /*
885  * Swap_idle_threshold2 is the time that a process can be idle before
886  * it will be swapped out, if idle swapping is enabled.
887  */
888 static int swap_idle_threshold2 = 10;
889 SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold2, CTLFLAG_RW,
890     &swap_idle_threshold2, 0, "Time before a process will be swapped out");
891 
892 /*
893  * Swapout is driven by the pageout daemon.  Very simple, we find eligible
894  * procs and unwire their u-areas.  We try to always "swap" at least one
895  * process in case we need the room for a swapin.
896  * If any procs have been sleeping/stopped for at least maxslp seconds,
897  * they are swapped.  Else, we swap the longest-sleeping or stopped process,
898  * if any, otherwise the longest-resident process.
899  */
900 void
901 swapout_procs(action)
902 int action;
903 {
904 	struct proc *p;
905 	struct thread *td;
906 	struct ksegrp *kg;
907 	int didswap = 0;
908 
909 	GIANT_REQUIRED;
910 
911 retry:
912 	sx_slock(&allproc_lock);
913 	FOREACH_PROC_IN_SYSTEM(p) {
914 		struct vmspace *vm;
915 		int minslptime = 100000;
916 
917 		/*
918 		 * Watch out for a process in
919 		 * creation.  It may have no
920 		 * address space or lock yet.
921 		 */
922 		mtx_lock_spin(&sched_lock);
923 		if (p->p_state == PRS_NEW) {
924 			mtx_unlock_spin(&sched_lock);
925 			continue;
926 		}
927 		mtx_unlock_spin(&sched_lock);
928 
929 		/*
930 		 * An aio daemon switches its
931 		 * address space while running.
932 		 * Perform a quick check whether
933 		 * a process has P_SYSTEM.
934 		 */
935 		if ((p->p_flag & P_SYSTEM) != 0)
936 			continue;
937 
938 		/*
939 		 * Do not swapout a process that
940 		 * is waiting for VM data
941 		 * structures as there is a possible
942 		 * deadlock.  Test this first as
943 		 * this may block.
944 		 *
945 		 * Lock the map until swapout
946 		 * finishes, or a thread of this
947 		 * process may attempt to alter
948 		 * the map.
949 		 */
950 		PROC_LOCK(p);
951 		vm = p->p_vmspace;
952 		KASSERT(vm != NULL,
953 			("swapout_procs: a process has no address space"));
954 		atomic_add_int(&vm->vm_refcnt, 1);
955 		PROC_UNLOCK(p);
956 		if (!vm_map_trylock(&vm->vm_map))
957 			goto nextproc1;
958 
959 		PROC_LOCK(p);
960 		if (p->p_lock != 0 ||
961 		    (p->p_flag & (P_STOPPED_SINGLE|P_TRACED|P_SYSTEM|P_WEXIT)
962 		    ) != 0) {
963 			goto nextproc2;
964 		}
965 		/*
966 		 * only aiod changes vmspace, however it will be
967 		 * skipped because of the if statement above checking
968 		 * for P_SYSTEM
969 		 */
970 		if ((p->p_sflag & (PS_INMEM|PS_SWAPPINGOUT|PS_SWAPPINGIN)) != PS_INMEM)
971 			goto nextproc2;
972 
973 		switch (p->p_state) {
974 		default:
975 			/* Don't swap out processes in any sort
976 			 * of 'special' state. */
977 			break;
978 
979 		case PRS_NORMAL:
980 			mtx_lock_spin(&sched_lock);
981 			/*
982 			 * do not swapout a realtime process
983 			 * Check all the thread groups..
984 			 */
985 			FOREACH_KSEGRP_IN_PROC(p, kg) {
986 				if (PRI_IS_REALTIME(kg->kg_pri_class))
987 					goto nextproc;
988 
989 				/*
990 				 * Guarantee swap_idle_threshold1
991 				 * time in memory.
992 				 */
993 				if (kg->kg_slptime < swap_idle_threshold1)
994 					goto nextproc;
995 
996 				/*
997 				 * Do not swapout a process if it is
998 				 * waiting on a critical event of some
999 				 * kind or there is a thread whose
1000 				 * pageable memory may be accessed.
1001 				 *
1002 				 * This could be refined to support
1003 				 * swapping out a thread.
1004 				 */
1005 				FOREACH_THREAD_IN_GROUP(kg, td) {
1006 					if ((td->td_priority) < PSOCK ||
1007 					    !thread_safetoswapout(td))
1008 						goto nextproc;
1009 				}
1010 				/*
1011 				 * If the system is under memory stress,
1012 				 * or if we are swapping
1013 				 * idle processes >= swap_idle_threshold2,
1014 				 * then swap the process out.
1015 				 */
1016 				if (((action & VM_SWAP_NORMAL) == 0) &&
1017 				    (((action & VM_SWAP_IDLE) == 0) ||
1018 				    (kg->kg_slptime < swap_idle_threshold2)))
1019 					goto nextproc;
1020 
1021 				if (minslptime > kg->kg_slptime)
1022 					minslptime = kg->kg_slptime;
1023 			}
1024 
1025 			/*
1026 			 * If the pageout daemon didn't free enough pages,
1027 			 * or if this process is idle and the system is
1028 			 * configured to swap proactively, swap it out.
1029 			 */
1030 			if ((action & VM_SWAP_NORMAL) ||
1031 				((action & VM_SWAP_IDLE) &&
1032 				 (minslptime > swap_idle_threshold2))) {
1033 				swapout(p);
1034 				didswap++;
1035 				mtx_unlock_spin(&sched_lock);
1036 				PROC_UNLOCK(p);
1037 				vm_map_unlock(&vm->vm_map);
1038 				vmspace_free(vm);
1039 				sx_sunlock(&allproc_lock);
1040 				goto retry;
1041 			}
1042 nextproc:
1043 			mtx_unlock_spin(&sched_lock);
1044 		}
1045 nextproc2:
1046 		PROC_UNLOCK(p);
1047 		vm_map_unlock(&vm->vm_map);
1048 nextproc1:
1049 		vmspace_free(vm);
1050 		continue;
1051 	}
1052 	sx_sunlock(&allproc_lock);
1053 	/*
1054 	 * If we swapped something out, and another process needed memory,
1055 	 * then wakeup the sched process.
1056 	 */
1057 	if (didswap)
1058 		wakeup(&proc0);
1059 }
1060 
1061 static void
1062 swapout(p)
1063 	struct proc *p;
1064 {
1065 	struct thread *td;
1066 
1067 	PROC_LOCK_ASSERT(p, MA_OWNED);
1068 	mtx_assert(&sched_lock, MA_OWNED | MA_NOTRECURSED);
1069 #if defined(SWAP_DEBUG)
1070 	printf("swapping out %d\n", p->p_pid);
1071 #endif
1072 
1073 	/*
1074 	 * The states of this process and its threads may have changed
1075 	 * by now.  Assuming that there is only one pageout daemon thread,
1076 	 * this process should still be in memory.
1077 	 */
1078 	KASSERT((p->p_sflag & (PS_INMEM|PS_SWAPPINGOUT|PS_SWAPPINGIN)) == PS_INMEM,
1079 		("swapout: lost a swapout race?"));
1080 
1081 #if defined(INVARIANTS)
1082 	/*
1083 	 * Make sure that all threads are safe to be swapped out.
1084 	 *
1085 	 * Alternatively, we could swap out only safe threads.
1086 	 */
1087 	FOREACH_THREAD_IN_PROC(p, td) {
1088 		KASSERT(thread_safetoswapout(td),
1089 			("swapout: there is a thread not safe for swapout"));
1090 	}
1091 #endif /* INVARIANTS */
1092 
1093 	++p->p_stats->p_ru.ru_nswap;
1094 	/*
1095 	 * remember the process resident count
1096 	 */
1097 	p->p_vmspace->vm_swrss = vmspace_resident_count(p->p_vmspace);
1098 
1099 	p->p_sflag &= ~PS_INMEM;
1100 	p->p_sflag |= PS_SWAPPINGOUT;
1101 	PROC_UNLOCK(p);
1102 	FOREACH_THREAD_IN_PROC(p, td)
1103 		TD_SET_SWAPPED(td);
1104 	mtx_unlock_spin(&sched_lock);
1105 
1106 	vm_proc_swapout(p);
1107 	FOREACH_THREAD_IN_PROC(p, td)
1108 		vm_thread_swapout(td);
1109 
1110 	PROC_LOCK(p);
1111 	mtx_lock_spin(&sched_lock);
1112 	p->p_sflag &= ~PS_SWAPPINGOUT;
1113 	p->p_swtime = 0;
1114 }
1115 #endif /* !NO_SWAPPING */
1116