1 /*- 2 * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU) 3 * 4 * Copyright (c) 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * The Mach Operating System project at Carnegie-Mellon University. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * from: @(#)vm_glue.c 8.6 (Berkeley) 1/5/94 35 * 36 * 37 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 38 * All rights reserved. 39 * 40 * Permission to use, copy, modify and distribute this software and 41 * its documentation is hereby granted, provided that both the copyright 42 * notice and this permission notice appear in all copies of the 43 * software, derivative works or modified versions, and any portions 44 * thereof, and that both notices appear in supporting documentation. 45 * 46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 47 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 49 * 50 * Carnegie Mellon requests users of this software to return to 51 * 52 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 53 * School of Computer Science 54 * Carnegie Mellon University 55 * Pittsburgh PA 15213-3890 56 * 57 * any improvements or extensions that they make and grant Carnegie the 58 * rights to redistribute these changes. 59 */ 60 61 #include <sys/cdefs.h> 62 __FBSDID("$FreeBSD$"); 63 64 #include "opt_vm.h" 65 #include "opt_kstack_pages.h" 66 #include "opt_kstack_max_pages.h" 67 #include "opt_kstack_usage_prof.h" 68 69 #include <sys/param.h> 70 #include <sys/systm.h> 71 #include <sys/domainset.h> 72 #include <sys/limits.h> 73 #include <sys/lock.h> 74 #include <sys/malloc.h> 75 #include <sys/mutex.h> 76 #include <sys/proc.h> 77 #include <sys/racct.h> 78 #include <sys/refcount.h> 79 #include <sys/resourcevar.h> 80 #include <sys/rwlock.h> 81 #include <sys/sched.h> 82 #include <sys/sf_buf.h> 83 #include <sys/shm.h> 84 #include <sys/smp.h> 85 #include <sys/vmmeter.h> 86 #include <sys/vmem.h> 87 #include <sys/sx.h> 88 #include <sys/sysctl.h> 89 #include <sys/eventhandler.h> 90 #include <sys/kernel.h> 91 #include <sys/ktr.h> 92 #include <sys/unistd.h> 93 94 #include <vm/uma.h> 95 #include <vm/vm.h> 96 #include <vm/vm_param.h> 97 #include <vm/pmap.h> 98 #include <vm/vm_domainset.h> 99 #include <vm/vm_map.h> 100 #include <vm/vm_page.h> 101 #include <vm/vm_pageout.h> 102 #include <vm/vm_object.h> 103 #include <vm/vm_kern.h> 104 #include <vm/vm_extern.h> 105 #include <vm/vm_pager.h> 106 #include <vm/swap_pager.h> 107 108 #include <machine/cpu.h> 109 110 /* 111 * MPSAFE 112 * 113 * WARNING! This code calls vm_map_check_protection() which only checks 114 * the associated vm_map_entry range. It does not determine whether the 115 * contents of the memory is actually readable or writable. In most cases 116 * just checking the vm_map_entry is sufficient within the kernel's address 117 * space. 118 */ 119 int 120 kernacc(void *addr, int len, int rw) 121 { 122 boolean_t rv; 123 vm_offset_t saddr, eaddr; 124 vm_prot_t prot; 125 126 KASSERT((rw & ~VM_PROT_ALL) == 0, 127 ("illegal ``rw'' argument to kernacc (%x)\n", rw)); 128 129 if ((vm_offset_t)addr + len > vm_map_max(kernel_map) || 130 (vm_offset_t)addr + len < (vm_offset_t)addr) 131 return (FALSE); 132 133 prot = rw; 134 saddr = trunc_page((vm_offset_t)addr); 135 eaddr = round_page((vm_offset_t)addr + len); 136 vm_map_lock_read(kernel_map); 137 rv = vm_map_check_protection(kernel_map, saddr, eaddr, prot); 138 vm_map_unlock_read(kernel_map); 139 return (rv == TRUE); 140 } 141 142 /* 143 * MPSAFE 144 * 145 * WARNING! This code calls vm_map_check_protection() which only checks 146 * the associated vm_map_entry range. It does not determine whether the 147 * contents of the memory is actually readable or writable. vmapbuf(), 148 * vm_fault_quick(), or copyin()/copout()/su*()/fu*() functions should be 149 * used in conjunction with this call. 150 */ 151 int 152 useracc(void *addr, int len, int rw) 153 { 154 boolean_t rv; 155 vm_prot_t prot; 156 vm_map_t map; 157 158 KASSERT((rw & ~VM_PROT_ALL) == 0, 159 ("illegal ``rw'' argument to useracc (%x)\n", rw)); 160 prot = rw; 161 map = &curproc->p_vmspace->vm_map; 162 if ((vm_offset_t)addr + len > vm_map_max(map) || 163 (vm_offset_t)addr + len < (vm_offset_t)addr) { 164 return (FALSE); 165 } 166 vm_map_lock_read(map); 167 rv = vm_map_check_protection(map, trunc_page((vm_offset_t)addr), 168 round_page((vm_offset_t)addr + len), prot); 169 vm_map_unlock_read(map); 170 return (rv == TRUE); 171 } 172 173 int 174 vslock(void *addr, size_t len) 175 { 176 vm_offset_t end, last, start; 177 vm_size_t npages; 178 int error; 179 180 last = (vm_offset_t)addr + len; 181 start = trunc_page((vm_offset_t)addr); 182 end = round_page(last); 183 if (last < (vm_offset_t)addr || end < (vm_offset_t)addr) 184 return (EINVAL); 185 npages = atop(end - start); 186 if (npages > vm_page_max_user_wired) 187 return (ENOMEM); 188 error = vm_map_wire(&curproc->p_vmspace->vm_map, start, end, 189 VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES); 190 if (error == KERN_SUCCESS) { 191 curthread->td_vslock_sz += len; 192 return (0); 193 } 194 195 /* 196 * Return EFAULT on error to match copy{in,out}() behaviour 197 * rather than returning ENOMEM like mlock() would. 198 */ 199 return (EFAULT); 200 } 201 202 void 203 vsunlock(void *addr, size_t len) 204 { 205 206 /* Rely on the parameter sanity checks performed by vslock(). */ 207 MPASS(curthread->td_vslock_sz >= len); 208 curthread->td_vslock_sz -= len; 209 (void)vm_map_unwire(&curproc->p_vmspace->vm_map, 210 trunc_page((vm_offset_t)addr), round_page((vm_offset_t)addr + len), 211 VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES); 212 } 213 214 /* 215 * Pin the page contained within the given object at the given offset. If the 216 * page is not resident, allocate and load it using the given object's pager. 217 * Return the pinned page if successful; otherwise, return NULL. 218 */ 219 static vm_page_t 220 vm_imgact_hold_page(vm_object_t object, vm_ooffset_t offset) 221 { 222 vm_page_t m; 223 vm_pindex_t pindex; 224 225 pindex = OFF_TO_IDX(offset); 226 (void)vm_page_grab_valid_unlocked(&m, object, pindex, 227 VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY | VM_ALLOC_WIRED); 228 return (m); 229 } 230 231 /* 232 * Return a CPU private mapping to the page at the given offset within the 233 * given object. The page is pinned before it is mapped. 234 */ 235 struct sf_buf * 236 vm_imgact_map_page(vm_object_t object, vm_ooffset_t offset) 237 { 238 vm_page_t m; 239 240 m = vm_imgact_hold_page(object, offset); 241 if (m == NULL) 242 return (NULL); 243 sched_pin(); 244 return (sf_buf_alloc(m, SFB_CPUPRIVATE)); 245 } 246 247 /* 248 * Destroy the given CPU private mapping and unpin the page that it mapped. 249 */ 250 void 251 vm_imgact_unmap_page(struct sf_buf *sf) 252 { 253 vm_page_t m; 254 255 m = sf_buf_page(sf); 256 sf_buf_free(sf); 257 sched_unpin(); 258 vm_page_unwire(m, PQ_ACTIVE); 259 } 260 261 void 262 vm_sync_icache(vm_map_t map, vm_offset_t va, vm_offset_t sz) 263 { 264 265 pmap_sync_icache(map->pmap, va, sz); 266 } 267 268 vm_object_t kstack_object; 269 static uma_zone_t kstack_cache; 270 static int kstack_cache_size; 271 272 static int 273 sysctl_kstack_cache_size(SYSCTL_HANDLER_ARGS) 274 { 275 int error, oldsize; 276 277 oldsize = kstack_cache_size; 278 error = sysctl_handle_int(oidp, arg1, arg2, req); 279 if (error == 0 && req->newptr && oldsize != kstack_cache_size) 280 uma_zone_set_maxcache(kstack_cache, kstack_cache_size); 281 return (error); 282 } 283 SYSCTL_PROC(_vm, OID_AUTO, kstack_cache_size, 284 CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &kstack_cache_size, 0, 285 sysctl_kstack_cache_size, "IU", "Maximum number of cached kernel stacks"); 286 287 /* 288 * Create the kernel stack (including pcb for i386) for a new thread. 289 */ 290 static vm_offset_t 291 vm_thread_stack_create(struct domainset *ds, int pages) 292 { 293 vm_page_t ma[KSTACK_MAX_PAGES]; 294 vm_offset_t ks; 295 int i; 296 297 /* 298 * Get a kernel virtual address for this thread's kstack. 299 */ 300 #if defined(__mips__) 301 /* 302 * We need to align the kstack's mapped address to fit within 303 * a single TLB entry. 304 */ 305 if (vmem_xalloc(kernel_arena, (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE, 306 PAGE_SIZE * 2, 0, 0, VMEM_ADDR_MIN, VMEM_ADDR_MAX, 307 M_BESTFIT | M_NOWAIT, &ks)) { 308 ks = 0; 309 } 310 #else 311 ks = kva_alloc((pages + KSTACK_GUARD_PAGES) * PAGE_SIZE); 312 #endif 313 if (ks == 0) { 314 printf("%s: kstack allocation failed\n", __func__); 315 return (0); 316 } 317 318 if (KSTACK_GUARD_PAGES != 0) { 319 pmap_qremove(ks, KSTACK_GUARD_PAGES); 320 ks += KSTACK_GUARD_PAGES * PAGE_SIZE; 321 } 322 323 /* 324 * Allocate physical pages to back the stack. 325 */ 326 vm_thread_stack_back(ds, ks, ma, pages, VM_ALLOC_NORMAL); 327 for (i = 0; i < pages; i++) 328 vm_page_valid(ma[i]); 329 pmap_qenter(ks, ma, pages); 330 331 return (ks); 332 } 333 334 static void 335 vm_thread_stack_dispose(vm_offset_t ks, int pages) 336 { 337 vm_page_t m; 338 vm_pindex_t pindex; 339 int i; 340 341 pindex = atop(ks - VM_MIN_KERNEL_ADDRESS); 342 343 pmap_qremove(ks, pages); 344 VM_OBJECT_WLOCK(kstack_object); 345 for (i = 0; i < pages; i++) { 346 m = vm_page_lookup(kstack_object, pindex + i); 347 if (m == NULL) 348 panic("%s: kstack already missing?", __func__); 349 vm_page_xbusy_claim(m); 350 vm_page_unwire_noq(m); 351 vm_page_free(m); 352 } 353 VM_OBJECT_WUNLOCK(kstack_object); 354 kva_free(ks - (KSTACK_GUARD_PAGES * PAGE_SIZE), 355 (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE); 356 } 357 358 /* 359 * Allocate the kernel stack for a new thread. 360 */ 361 int 362 vm_thread_new(struct thread *td, int pages) 363 { 364 vm_offset_t ks; 365 366 /* Bounds check */ 367 if (pages <= 1) 368 pages = kstack_pages; 369 else if (pages > KSTACK_MAX_PAGES) 370 pages = KSTACK_MAX_PAGES; 371 372 ks = 0; 373 if (pages == kstack_pages && kstack_cache != NULL) 374 ks = (vm_offset_t)uma_zalloc(kstack_cache, M_NOWAIT); 375 376 /* 377 * Ensure that kstack objects can draw pages from any memory 378 * domain. Otherwise a local memory shortage can block a process 379 * swap-in. 380 */ 381 if (ks == 0) 382 ks = vm_thread_stack_create(DOMAINSET_PREF(PCPU_GET(domain)), 383 pages); 384 if (ks == 0) 385 return (0); 386 td->td_kstack = ks; 387 td->td_kstack_pages = pages; 388 return (1); 389 } 390 391 /* 392 * Dispose of a thread's kernel stack. 393 */ 394 void 395 vm_thread_dispose(struct thread *td) 396 { 397 vm_offset_t ks; 398 int pages; 399 400 pages = td->td_kstack_pages; 401 ks = td->td_kstack; 402 td->td_kstack = 0; 403 td->td_kstack_pages = 0; 404 if (pages == kstack_pages) 405 uma_zfree(kstack_cache, (void *)ks); 406 else 407 vm_thread_stack_dispose(ks, pages); 408 } 409 410 /* 411 * Allocate physical pages, following the specified NUMA policy, to back a 412 * kernel stack. 413 */ 414 void 415 vm_thread_stack_back(struct domainset *ds, vm_offset_t ks, vm_page_t ma[], 416 int npages, int req_class) 417 { 418 vm_pindex_t pindex; 419 int n; 420 421 pindex = atop(ks - VM_MIN_KERNEL_ADDRESS); 422 423 VM_OBJECT_WLOCK(kstack_object); 424 for (n = 0; n < npages;) { 425 if (vm_ndomains > 1) 426 kstack_object->domain.dr_policy = ds; 427 428 /* 429 * Use WAITFAIL to force a reset of the domain selection policy 430 * if we had to sleep for pages. 431 */ 432 n += vm_page_grab_pages(kstack_object, pindex + n, 433 req_class | VM_ALLOC_WIRED | VM_ALLOC_WAITFAIL, 434 &ma[n], npages - n); 435 } 436 VM_OBJECT_WUNLOCK(kstack_object); 437 } 438 439 static int 440 kstack_import(void *arg, void **store, int cnt, int domain, int flags) 441 { 442 struct domainset *ds; 443 int i; 444 445 if (domain == UMA_ANYDOMAIN) 446 ds = DOMAINSET_RR(); 447 else 448 ds = DOMAINSET_PREF(domain); 449 450 for (i = 0; i < cnt; i++) { 451 store[i] = (void *)vm_thread_stack_create(ds, kstack_pages); 452 if (store[i] == NULL) 453 break; 454 } 455 return (i); 456 } 457 458 static void 459 kstack_release(void *arg, void **store, int cnt) 460 { 461 vm_offset_t ks; 462 int i; 463 464 for (i = 0; i < cnt; i++) { 465 ks = (vm_offset_t)store[i]; 466 vm_thread_stack_dispose(ks, kstack_pages); 467 } 468 } 469 470 static void 471 kstack_cache_init(void *null) 472 { 473 kstack_object = vm_object_allocate(OBJT_SWAP, 474 atop(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS)); 475 kstack_cache = uma_zcache_create("kstack_cache", 476 kstack_pages * PAGE_SIZE, NULL, NULL, NULL, NULL, 477 kstack_import, kstack_release, NULL, 478 UMA_ZONE_FIRSTTOUCH); 479 kstack_cache_size = imax(128, mp_ncpus * 4); 480 uma_zone_set_maxcache(kstack_cache, kstack_cache_size); 481 } 482 SYSINIT(vm_kstacks, SI_SUB_KMEM, SI_ORDER_ANY, kstack_cache_init, NULL); 483 484 #ifdef KSTACK_USAGE_PROF 485 /* 486 * Track maximum stack used by a thread in kernel. 487 */ 488 static int max_kstack_used; 489 490 SYSCTL_INT(_debug, OID_AUTO, max_kstack_used, CTLFLAG_RD, 491 &max_kstack_used, 0, 492 "Maxiumum stack depth used by a thread in kernel"); 493 494 void 495 intr_prof_stack_use(struct thread *td, struct trapframe *frame) 496 { 497 vm_offset_t stack_top; 498 vm_offset_t current; 499 int used, prev_used; 500 501 /* 502 * Testing for interrupted kernel mode isn't strictly 503 * needed. It optimizes the execution, since interrupts from 504 * usermode will have only the trap frame on the stack. 505 */ 506 if (TRAPF_USERMODE(frame)) 507 return; 508 509 stack_top = td->td_kstack + td->td_kstack_pages * PAGE_SIZE; 510 current = (vm_offset_t)(uintptr_t)&stack_top; 511 512 /* 513 * Try to detect if interrupt is using kernel thread stack. 514 * Hardware could use a dedicated stack for interrupt handling. 515 */ 516 if (stack_top <= current || current < td->td_kstack) 517 return; 518 519 used = stack_top - current; 520 for (;;) { 521 prev_used = max_kstack_used; 522 if (prev_used >= used) 523 break; 524 if (atomic_cmpset_int(&max_kstack_used, prev_used, used)) 525 break; 526 } 527 } 528 #endif /* KSTACK_USAGE_PROF */ 529 530 /* 531 * Implement fork's actions on an address space. 532 * Here we arrange for the address space to be copied or referenced, 533 * allocate a user struct (pcb and kernel stack), then call the 534 * machine-dependent layer to fill those in and make the new process 535 * ready to run. The new process is set up so that it returns directly 536 * to user mode to avoid stack copying and relocation problems. 537 */ 538 int 539 vm_forkproc(struct thread *td, struct proc *p2, struct thread *td2, 540 struct vmspace *vm2, int flags) 541 { 542 struct proc *p1 = td->td_proc; 543 struct domainset *dset; 544 int error; 545 546 if ((flags & RFPROC) == 0) { 547 /* 548 * Divorce the memory, if it is shared, essentially 549 * this changes shared memory amongst threads, into 550 * COW locally. 551 */ 552 if ((flags & RFMEM) == 0) { 553 if (refcount_load(&p1->p_vmspace->vm_refcnt) > 1) { 554 error = vmspace_unshare(p1); 555 if (error) 556 return (error); 557 } 558 } 559 cpu_fork(td, p2, td2, flags); 560 return (0); 561 } 562 563 if (flags & RFMEM) { 564 p2->p_vmspace = p1->p_vmspace; 565 refcount_acquire(&p1->p_vmspace->vm_refcnt); 566 } 567 dset = td2->td_domain.dr_policy; 568 while (vm_page_count_severe_set(&dset->ds_mask)) { 569 vm_wait_doms(&dset->ds_mask, 0); 570 } 571 572 if ((flags & RFMEM) == 0) { 573 p2->p_vmspace = vm2; 574 if (p1->p_vmspace->vm_shm) 575 shmfork(p1, p2); 576 } 577 578 /* 579 * cpu_fork will copy and update the pcb, set up the kernel stack, 580 * and make the child ready to run. 581 */ 582 cpu_fork(td, p2, td2, flags); 583 return (0); 584 } 585 586 /* 587 * Called after process has been wait(2)'ed upon and is being reaped. 588 * The idea is to reclaim resources that we could not reclaim while 589 * the process was still executing. 590 */ 591 void 592 vm_waitproc(p) 593 struct proc *p; 594 { 595 596 vmspace_exitfree(p); /* and clean-out the vmspace */ 597 } 598 599 void 600 kick_proc0(void) 601 { 602 603 wakeup(&proc0); 604 } 605