xref: /freebsd/sys/vm/vm_glue.c (revision 682c9e0fed0115eb6f283e755901c0aac90e86e8)
1 /*-
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)vm_glue.c	8.6 (Berkeley) 1/5/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Permission to use, copy, modify and distribute this software and
39  * its documentation is hereby granted, provided that both the copyright
40  * notice and this permission notice appear in all copies of the
41  * software, derivative works or modified versions, and any portions
42  * thereof, and that both notices appear in supporting documentation.
43  *
44  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
45  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
46  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
47  *
48  * Carnegie Mellon requests users of this software to return to
49  *
50  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
51  *  School of Computer Science
52  *  Carnegie Mellon University
53  *  Pittsburgh PA 15213-3890
54  *
55  * any improvements or extensions that they make and grant Carnegie the
56  * rights to redistribute these changes.
57  */
58 
59 #include <sys/cdefs.h>
60 __FBSDID("$FreeBSD$");
61 
62 #include "opt_vm.h"
63 #include "opt_kstack_pages.h"
64 #include "opt_kstack_max_pages.h"
65 
66 #include <sys/param.h>
67 #include <sys/systm.h>
68 #include <sys/limits.h>
69 #include <sys/lock.h>
70 #include <sys/mutex.h>
71 #include <sys/proc.h>
72 #include <sys/racct.h>
73 #include <sys/resourcevar.h>
74 #include <sys/sched.h>
75 #include <sys/sf_buf.h>
76 #include <sys/shm.h>
77 #include <sys/vmmeter.h>
78 #include <sys/sx.h>
79 #include <sys/sysctl.h>
80 
81 #include <sys/eventhandler.h>
82 #include <sys/kernel.h>
83 #include <sys/ktr.h>
84 #include <sys/unistd.h>
85 
86 #include <vm/vm.h>
87 #include <vm/vm_param.h>
88 #include <vm/pmap.h>
89 #include <vm/vm_map.h>
90 #include <vm/vm_page.h>
91 #include <vm/vm_pageout.h>
92 #include <vm/vm_object.h>
93 #include <vm/vm_kern.h>
94 #include <vm/vm_extern.h>
95 #include <vm/vm_pager.h>
96 #include <vm/swap_pager.h>
97 
98 /*
99  * System initialization
100  *
101  * THIS MUST BE THE LAST INITIALIZATION ITEM!!!
102  *
103  * Note: run scheduling should be divorced from the vm system.
104  */
105 static void scheduler(void *);
106 SYSINIT(scheduler, SI_SUB_RUN_SCHEDULER, SI_ORDER_ANY, scheduler, NULL);
107 
108 #ifndef NO_SWAPPING
109 static int swapout(struct proc *);
110 static void swapclear(struct proc *);
111 static void vm_thread_swapin(struct thread *td);
112 static void vm_thread_swapout(struct thread *td);
113 #endif
114 
115 /*
116  * MPSAFE
117  *
118  * WARNING!  This code calls vm_map_check_protection() which only checks
119  * the associated vm_map_entry range.  It does not determine whether the
120  * contents of the memory is actually readable or writable.  In most cases
121  * just checking the vm_map_entry is sufficient within the kernel's address
122  * space.
123  */
124 int
125 kernacc(addr, len, rw)
126 	void *addr;
127 	int len, rw;
128 {
129 	boolean_t rv;
130 	vm_offset_t saddr, eaddr;
131 	vm_prot_t prot;
132 
133 	KASSERT((rw & ~VM_PROT_ALL) == 0,
134 	    ("illegal ``rw'' argument to kernacc (%x)\n", rw));
135 
136 	if ((vm_offset_t)addr + len > kernel_map->max_offset ||
137 	    (vm_offset_t)addr + len < (vm_offset_t)addr)
138 		return (FALSE);
139 
140 	prot = rw;
141 	saddr = trunc_page((vm_offset_t)addr);
142 	eaddr = round_page((vm_offset_t)addr + len);
143 	vm_map_lock_read(kernel_map);
144 	rv = vm_map_check_protection(kernel_map, saddr, eaddr, prot);
145 	vm_map_unlock_read(kernel_map);
146 	return (rv == TRUE);
147 }
148 
149 /*
150  * MPSAFE
151  *
152  * WARNING!  This code calls vm_map_check_protection() which only checks
153  * the associated vm_map_entry range.  It does not determine whether the
154  * contents of the memory is actually readable or writable.  vmapbuf(),
155  * vm_fault_quick(), or copyin()/copout()/su*()/fu*() functions should be
156  * used in conjuction with this call.
157  */
158 int
159 useracc(addr, len, rw)
160 	void *addr;
161 	int len, rw;
162 {
163 	boolean_t rv;
164 	vm_prot_t prot;
165 	vm_map_t map;
166 
167 	KASSERT((rw & ~VM_PROT_ALL) == 0,
168 	    ("illegal ``rw'' argument to useracc (%x)\n", rw));
169 	prot = rw;
170 	map = &curproc->p_vmspace->vm_map;
171 	if ((vm_offset_t)addr + len > vm_map_max(map) ||
172 	    (vm_offset_t)addr + len < (vm_offset_t)addr) {
173 		return (FALSE);
174 	}
175 	vm_map_lock_read(map);
176 	rv = vm_map_check_protection(map, trunc_page((vm_offset_t)addr),
177 	    round_page((vm_offset_t)addr + len), prot);
178 	vm_map_unlock_read(map);
179 	return (rv == TRUE);
180 }
181 
182 int
183 vslock(void *addr, size_t len)
184 {
185 	vm_offset_t end, last, start;
186 	unsigned long nsize;
187 	vm_size_t npages;
188 	int error;
189 
190 	last = (vm_offset_t)addr + len;
191 	start = trunc_page((vm_offset_t)addr);
192 	end = round_page(last);
193 	if (last < (vm_offset_t)addr || end < (vm_offset_t)addr)
194 		return (EINVAL);
195 	npages = atop(end - start);
196 	if (npages > vm_page_max_wired)
197 		return (ENOMEM);
198 	PROC_LOCK(curproc);
199 	nsize = ptoa(npages +
200 	    pmap_wired_count(vm_map_pmap(&curproc->p_vmspace->vm_map)));
201 	if (nsize > lim_cur(curproc, RLIMIT_MEMLOCK)) {
202 		PROC_UNLOCK(curproc);
203 		return (ENOMEM);
204 	}
205 	if (racct_set(curproc, RACCT_MEMLOCK, nsize)) {
206 		PROC_UNLOCK(curproc);
207 		return (ENOMEM);
208 	}
209 	PROC_UNLOCK(curproc);
210 #if 0
211 	/*
212 	 * XXX - not yet
213 	 *
214 	 * The limit for transient usage of wired pages should be
215 	 * larger than for "permanent" wired pages (mlock()).
216 	 *
217 	 * Also, the sysctl code, which is the only present user
218 	 * of vslock(), does a hard loop on EAGAIN.
219 	 */
220 	if (npages + cnt.v_wire_count > vm_page_max_wired)
221 		return (EAGAIN);
222 #endif
223 	error = vm_map_wire(&curproc->p_vmspace->vm_map, start, end,
224 	    VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
225 #ifdef RACCT
226 	if (error != KERN_SUCCESS) {
227 		PROC_LOCK(curproc);
228 		racct_set(curproc, RACCT_MEMLOCK,
229 		    ptoa(pmap_wired_count(vm_map_pmap(&curproc->p_vmspace->vm_map))));
230 		PROC_UNLOCK(curproc);
231 	}
232 #endif
233 	/*
234 	 * Return EFAULT on error to match copy{in,out}() behaviour
235 	 * rather than returning ENOMEM like mlock() would.
236 	 */
237 	return (error == KERN_SUCCESS ? 0 : EFAULT);
238 }
239 
240 void
241 vsunlock(void *addr, size_t len)
242 {
243 
244 	/* Rely on the parameter sanity checks performed by vslock(). */
245 	(void)vm_map_unwire(&curproc->p_vmspace->vm_map,
246 	    trunc_page((vm_offset_t)addr), round_page((vm_offset_t)addr + len),
247 	    VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
248 
249 #ifdef RACCT
250 	PROC_LOCK(curproc);
251 	racct_set(curproc, RACCT_MEMLOCK,
252 	    ptoa(pmap_wired_count(vm_map_pmap(&curproc->p_vmspace->vm_map))));
253 	PROC_UNLOCK(curproc);
254 #endif
255 }
256 
257 /*
258  * Pin the page contained within the given object at the given offset.  If the
259  * page is not resident, allocate and load it using the given object's pager.
260  * Return the pinned page if successful; otherwise, return NULL.
261  */
262 static vm_page_t
263 vm_imgact_hold_page(vm_object_t object, vm_ooffset_t offset)
264 {
265 	vm_page_t m, ma[1];
266 	vm_pindex_t pindex;
267 	int rv;
268 
269 	VM_OBJECT_LOCK(object);
270 	pindex = OFF_TO_IDX(offset);
271 	m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
272 	if (m->valid != VM_PAGE_BITS_ALL) {
273 		ma[0] = m;
274 		rv = vm_pager_get_pages(object, ma, 1, 0);
275 		m = vm_page_lookup(object, pindex);
276 		if (m == NULL)
277 			goto out;
278 		if (rv != VM_PAGER_OK) {
279 			vm_page_lock(m);
280 			vm_page_free(m);
281 			vm_page_unlock(m);
282 			m = NULL;
283 			goto out;
284 		}
285 	}
286 	vm_page_lock(m);
287 	vm_page_hold(m);
288 	vm_page_unlock(m);
289 	vm_page_wakeup(m);
290 out:
291 	VM_OBJECT_UNLOCK(object);
292 	return (m);
293 }
294 
295 /*
296  * Return a CPU private mapping to the page at the given offset within the
297  * given object.  The page is pinned before it is mapped.
298  */
299 struct sf_buf *
300 vm_imgact_map_page(vm_object_t object, vm_ooffset_t offset)
301 {
302 	vm_page_t m;
303 
304 	m = vm_imgact_hold_page(object, offset);
305 	if (m == NULL)
306 		return (NULL);
307 	sched_pin();
308 	return (sf_buf_alloc(m, SFB_CPUPRIVATE));
309 }
310 
311 /*
312  * Destroy the given CPU private mapping and unpin the page that it mapped.
313  */
314 void
315 vm_imgact_unmap_page(struct sf_buf *sf)
316 {
317 	vm_page_t m;
318 
319 	m = sf_buf_page(sf);
320 	sf_buf_free(sf);
321 	sched_unpin();
322 	vm_page_lock(m);
323 	vm_page_unhold(m);
324 	vm_page_unlock(m);
325 }
326 
327 void
328 vm_sync_icache(vm_map_t map, vm_offset_t va, vm_offset_t sz)
329 {
330 
331 	pmap_sync_icache(map->pmap, va, sz);
332 }
333 
334 struct kstack_cache_entry {
335 	vm_object_t ksobj;
336 	struct kstack_cache_entry *next_ks_entry;
337 };
338 
339 static struct kstack_cache_entry *kstack_cache;
340 static int kstack_cache_size = 128;
341 static int kstacks;
342 static struct mtx kstack_cache_mtx;
343 SYSCTL_INT(_vm, OID_AUTO, kstack_cache_size, CTLFLAG_RW, &kstack_cache_size, 0,
344     "");
345 SYSCTL_INT(_vm, OID_AUTO, kstacks, CTLFLAG_RD, &kstacks, 0,
346     "");
347 
348 #ifndef KSTACK_MAX_PAGES
349 #define KSTACK_MAX_PAGES 32
350 #endif
351 
352 /*
353  * Create the kernel stack (including pcb for i386) for a new thread.
354  * This routine directly affects the fork perf for a process and
355  * create performance for a thread.
356  */
357 int
358 vm_thread_new(struct thread *td, int pages)
359 {
360 	vm_object_t ksobj;
361 	vm_offset_t ks;
362 	vm_page_t m, ma[KSTACK_MAX_PAGES];
363 	struct kstack_cache_entry *ks_ce;
364 	int i;
365 
366 	/* Bounds check */
367 	if (pages <= 1)
368 		pages = KSTACK_PAGES;
369 	else if (pages > KSTACK_MAX_PAGES)
370 		pages = KSTACK_MAX_PAGES;
371 
372 	if (pages == KSTACK_PAGES) {
373 		mtx_lock(&kstack_cache_mtx);
374 		if (kstack_cache != NULL) {
375 			ks_ce = kstack_cache;
376 			kstack_cache = ks_ce->next_ks_entry;
377 			mtx_unlock(&kstack_cache_mtx);
378 
379 			td->td_kstack_obj = ks_ce->ksobj;
380 			td->td_kstack = (vm_offset_t)ks_ce;
381 			td->td_kstack_pages = KSTACK_PAGES;
382 			return (1);
383 		}
384 		mtx_unlock(&kstack_cache_mtx);
385 	}
386 
387 	/*
388 	 * Allocate an object for the kstack.
389 	 */
390 	ksobj = vm_object_allocate(OBJT_DEFAULT, pages);
391 
392 	/*
393 	 * Get a kernel virtual address for this thread's kstack.
394 	 */
395 #if defined(__mips__)
396 	/*
397 	 * We need to align the kstack's mapped address to fit within
398 	 * a single TLB entry.
399 	 */
400 	ks = kmem_alloc_nofault_space(kernel_map,
401 	    (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE, VMFS_TLB_ALIGNED_SPACE);
402 #else
403 	ks = kmem_alloc_nofault(kernel_map,
404 	   (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
405 #endif
406 	if (ks == 0) {
407 		printf("vm_thread_new: kstack allocation failed\n");
408 		vm_object_deallocate(ksobj);
409 		return (0);
410 	}
411 
412 	atomic_add_int(&kstacks, 1);
413 	if (KSTACK_GUARD_PAGES != 0) {
414 		pmap_qremove(ks, KSTACK_GUARD_PAGES);
415 		ks += KSTACK_GUARD_PAGES * PAGE_SIZE;
416 	}
417 	td->td_kstack_obj = ksobj;
418 	td->td_kstack = ks;
419 	/*
420 	 * Knowing the number of pages allocated is useful when you
421 	 * want to deallocate them.
422 	 */
423 	td->td_kstack_pages = pages;
424 	/*
425 	 * For the length of the stack, link in a real page of ram for each
426 	 * page of stack.
427 	 */
428 	VM_OBJECT_LOCK(ksobj);
429 	for (i = 0; i < pages; i++) {
430 		/*
431 		 * Get a kernel stack page.
432 		 */
433 		m = vm_page_grab(ksobj, i, VM_ALLOC_NOBUSY |
434 		    VM_ALLOC_NORMAL | VM_ALLOC_RETRY | VM_ALLOC_WIRED);
435 		ma[i] = m;
436 		m->valid = VM_PAGE_BITS_ALL;
437 	}
438 	VM_OBJECT_UNLOCK(ksobj);
439 	pmap_qenter(ks, ma, pages);
440 	return (1);
441 }
442 
443 static void
444 vm_thread_stack_dispose(vm_object_t ksobj, vm_offset_t ks, int pages)
445 {
446 	vm_page_t m;
447 	int i;
448 
449 	atomic_add_int(&kstacks, -1);
450 	pmap_qremove(ks, pages);
451 	VM_OBJECT_LOCK(ksobj);
452 	for (i = 0; i < pages; i++) {
453 		m = vm_page_lookup(ksobj, i);
454 		if (m == NULL)
455 			panic("vm_thread_dispose: kstack already missing?");
456 		vm_page_lock(m);
457 		vm_page_unwire(m, 0);
458 		vm_page_free(m);
459 		vm_page_unlock(m);
460 	}
461 	VM_OBJECT_UNLOCK(ksobj);
462 	vm_object_deallocate(ksobj);
463 	kmem_free(kernel_map, ks - (KSTACK_GUARD_PAGES * PAGE_SIZE),
464 	    (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
465 }
466 
467 /*
468  * Dispose of a thread's kernel stack.
469  */
470 void
471 vm_thread_dispose(struct thread *td)
472 {
473 	vm_object_t ksobj;
474 	vm_offset_t ks;
475 	struct kstack_cache_entry *ks_ce;
476 	int pages;
477 
478 	pages = td->td_kstack_pages;
479 	ksobj = td->td_kstack_obj;
480 	ks = td->td_kstack;
481 	td->td_kstack = 0;
482 	td->td_kstack_pages = 0;
483 	if (pages == KSTACK_PAGES && kstacks <= kstack_cache_size) {
484 		ks_ce = (struct kstack_cache_entry *)ks;
485 		ks_ce->ksobj = ksobj;
486 		mtx_lock(&kstack_cache_mtx);
487 		ks_ce->next_ks_entry = kstack_cache;
488 		kstack_cache = ks_ce;
489 		mtx_unlock(&kstack_cache_mtx);
490 		return;
491 	}
492 	vm_thread_stack_dispose(ksobj, ks, pages);
493 }
494 
495 static void
496 vm_thread_stack_lowmem(void *nulll)
497 {
498 	struct kstack_cache_entry *ks_ce, *ks_ce1;
499 
500 	mtx_lock(&kstack_cache_mtx);
501 	ks_ce = kstack_cache;
502 	kstack_cache = NULL;
503 	mtx_unlock(&kstack_cache_mtx);
504 
505 	while (ks_ce != NULL) {
506 		ks_ce1 = ks_ce;
507 		ks_ce = ks_ce->next_ks_entry;
508 
509 		vm_thread_stack_dispose(ks_ce1->ksobj, (vm_offset_t)ks_ce1,
510 		    KSTACK_PAGES);
511 	}
512 }
513 
514 static void
515 kstack_cache_init(void *nulll)
516 {
517 
518 	EVENTHANDLER_REGISTER(vm_lowmem, vm_thread_stack_lowmem, NULL,
519 	    EVENTHANDLER_PRI_ANY);
520 }
521 
522 MTX_SYSINIT(kstack_cache, &kstack_cache_mtx, "kstkch", MTX_DEF);
523 SYSINIT(vm_kstacks, SI_SUB_KTHREAD_INIT, SI_ORDER_ANY, kstack_cache_init, NULL);
524 
525 #ifndef NO_SWAPPING
526 /*
527  * Allow a thread's kernel stack to be paged out.
528  */
529 static void
530 vm_thread_swapout(struct thread *td)
531 {
532 	vm_object_t ksobj;
533 	vm_page_t m;
534 	int i, pages;
535 
536 	cpu_thread_swapout(td);
537 	pages = td->td_kstack_pages;
538 	ksobj = td->td_kstack_obj;
539 	pmap_qremove(td->td_kstack, pages);
540 	VM_OBJECT_LOCK(ksobj);
541 	for (i = 0; i < pages; i++) {
542 		m = vm_page_lookup(ksobj, i);
543 		if (m == NULL)
544 			panic("vm_thread_swapout: kstack already missing?");
545 		vm_page_dirty(m);
546 		vm_page_lock(m);
547 		vm_page_unwire(m, 0);
548 		vm_page_unlock(m);
549 	}
550 	VM_OBJECT_UNLOCK(ksobj);
551 }
552 
553 /*
554  * Bring the kernel stack for a specified thread back in.
555  */
556 static void
557 vm_thread_swapin(struct thread *td)
558 {
559 	vm_object_t ksobj;
560 	vm_page_t ma[KSTACK_MAX_PAGES];
561 	int i, j, k, pages, rv;
562 
563 	pages = td->td_kstack_pages;
564 	ksobj = td->td_kstack_obj;
565 	VM_OBJECT_LOCK(ksobj);
566 	for (i = 0; i < pages; i++)
567 		ma[i] = vm_page_grab(ksobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY |
568 		    VM_ALLOC_WIRED);
569 	for (i = 0; i < pages; i++) {
570 		if (ma[i]->valid != VM_PAGE_BITS_ALL) {
571 			KASSERT(ma[i]->oflags & VPO_BUSY,
572 			    ("lost busy 1"));
573 			vm_object_pip_add(ksobj, 1);
574 			for (j = i + 1; j < pages; j++) {
575 				KASSERT(ma[j]->valid == VM_PAGE_BITS_ALL ||
576 				    (ma[j]->oflags & VPO_BUSY),
577 				    ("lost busy 2"));
578 				if (ma[j]->valid == VM_PAGE_BITS_ALL)
579 					break;
580 			}
581 			rv = vm_pager_get_pages(ksobj, ma + i, j - i, 0);
582 			if (rv != VM_PAGER_OK)
583 	panic("vm_thread_swapin: cannot get kstack for proc: %d",
584 				    td->td_proc->p_pid);
585 			vm_object_pip_wakeup(ksobj);
586 			for (k = i; k < j; k++)
587 				ma[k] = vm_page_lookup(ksobj, k);
588 			vm_page_wakeup(ma[i]);
589 		} else if (ma[i]->oflags & VPO_BUSY)
590 			vm_page_wakeup(ma[i]);
591 	}
592 	VM_OBJECT_UNLOCK(ksobj);
593 	pmap_qenter(td->td_kstack, ma, pages);
594 	cpu_thread_swapin(td);
595 }
596 #endif /* !NO_SWAPPING */
597 
598 /*
599  * Implement fork's actions on an address space.
600  * Here we arrange for the address space to be copied or referenced,
601  * allocate a user struct (pcb and kernel stack), then call the
602  * machine-dependent layer to fill those in and make the new process
603  * ready to run.  The new process is set up so that it returns directly
604  * to user mode to avoid stack copying and relocation problems.
605  */
606 int
607 vm_forkproc(td, p2, td2, vm2, flags)
608 	struct thread *td;
609 	struct proc *p2;
610 	struct thread *td2;
611 	struct vmspace *vm2;
612 	int flags;
613 {
614 	struct proc *p1 = td->td_proc;
615 	int error;
616 
617 	if ((flags & RFPROC) == 0) {
618 		/*
619 		 * Divorce the memory, if it is shared, essentially
620 		 * this changes shared memory amongst threads, into
621 		 * COW locally.
622 		 */
623 		if ((flags & RFMEM) == 0) {
624 			if (p1->p_vmspace->vm_refcnt > 1) {
625 				error = vmspace_unshare(p1);
626 				if (error)
627 					return (error);
628 			}
629 		}
630 		cpu_fork(td, p2, td2, flags);
631 		return (0);
632 	}
633 
634 	if (flags & RFMEM) {
635 		p2->p_vmspace = p1->p_vmspace;
636 		atomic_add_int(&p1->p_vmspace->vm_refcnt, 1);
637 	}
638 
639 	while (vm_page_count_severe()) {
640 		VM_WAIT;
641 	}
642 
643 	if ((flags & RFMEM) == 0) {
644 		p2->p_vmspace = vm2;
645 		if (p1->p_vmspace->vm_shm)
646 			shmfork(p1, p2);
647 	}
648 
649 	/*
650 	 * cpu_fork will copy and update the pcb, set up the kernel stack,
651 	 * and make the child ready to run.
652 	 */
653 	cpu_fork(td, p2, td2, flags);
654 	return (0);
655 }
656 
657 /*
658  * Called after process has been wait(2)'ed apon and is being reaped.
659  * The idea is to reclaim resources that we could not reclaim while
660  * the process was still executing.
661  */
662 void
663 vm_waitproc(p)
664 	struct proc *p;
665 {
666 
667 	vmspace_exitfree(p);		/* and clean-out the vmspace */
668 }
669 
670 void
671 faultin(p)
672 	struct proc *p;
673 {
674 #ifdef NO_SWAPPING
675 
676 	PROC_LOCK_ASSERT(p, MA_OWNED);
677 	if ((p->p_flag & P_INMEM) == 0)
678 		panic("faultin: proc swapped out with NO_SWAPPING!");
679 #else /* !NO_SWAPPING */
680 	struct thread *td;
681 
682 	PROC_LOCK_ASSERT(p, MA_OWNED);
683 	/*
684 	 * If another process is swapping in this process,
685 	 * just wait until it finishes.
686 	 */
687 	if (p->p_flag & P_SWAPPINGIN) {
688 		while (p->p_flag & P_SWAPPINGIN)
689 			msleep(&p->p_flag, &p->p_mtx, PVM, "faultin", 0);
690 		return;
691 	}
692 	if ((p->p_flag & P_INMEM) == 0) {
693 		/*
694 		 * Don't let another thread swap process p out while we are
695 		 * busy swapping it in.
696 		 */
697 		++p->p_lock;
698 		p->p_flag |= P_SWAPPINGIN;
699 		PROC_UNLOCK(p);
700 
701 		/*
702 		 * We hold no lock here because the list of threads
703 		 * can not change while all threads in the process are
704 		 * swapped out.
705 		 */
706 		FOREACH_THREAD_IN_PROC(p, td)
707 			vm_thread_swapin(td);
708 		PROC_LOCK(p);
709 		swapclear(p);
710 		p->p_swtick = ticks;
711 
712 		wakeup(&p->p_flag);
713 
714 		/* Allow other threads to swap p out now. */
715 		--p->p_lock;
716 	}
717 #endif /* NO_SWAPPING */
718 }
719 
720 /*
721  * This swapin algorithm attempts to swap-in processes only if there
722  * is enough space for them.  Of course, if a process waits for a long
723  * time, it will be swapped in anyway.
724  *
725  * Giant is held on entry.
726  */
727 /* ARGSUSED*/
728 static void
729 scheduler(dummy)
730 	void *dummy;
731 {
732 	struct proc *p;
733 	struct thread *td;
734 	struct proc *pp;
735 	int slptime;
736 	int swtime;
737 	int ppri;
738 	int pri;
739 
740 	mtx_assert(&Giant, MA_OWNED | MA_NOTRECURSED);
741 	mtx_unlock(&Giant);
742 
743 loop:
744 	if (vm_page_count_min()) {
745 		VM_WAIT;
746 		goto loop;
747 	}
748 
749 	pp = NULL;
750 	ppri = INT_MIN;
751 	sx_slock(&allproc_lock);
752 	FOREACH_PROC_IN_SYSTEM(p) {
753 		PROC_LOCK(p);
754 		if (p->p_state == PRS_NEW ||
755 		    p->p_flag & (P_SWAPPINGOUT | P_SWAPPINGIN | P_INMEM)) {
756 			PROC_UNLOCK(p);
757 			continue;
758 		}
759 		swtime = (ticks - p->p_swtick) / hz;
760 		FOREACH_THREAD_IN_PROC(p, td) {
761 			/*
762 			 * An otherwise runnable thread of a process
763 			 * swapped out has only the TDI_SWAPPED bit set.
764 			 *
765 			 */
766 			thread_lock(td);
767 			if (td->td_inhibitors == TDI_SWAPPED) {
768 				slptime = (ticks - td->td_slptick) / hz;
769 				pri = swtime + slptime;
770 				if ((td->td_flags & TDF_SWAPINREQ) == 0)
771 					pri -= p->p_nice * 8;
772 				/*
773 				 * if this thread is higher priority
774 				 * and there is enough space, then select
775 				 * this process instead of the previous
776 				 * selection.
777 				 */
778 				if (pri > ppri) {
779 					pp = p;
780 					ppri = pri;
781 				}
782 			}
783 			thread_unlock(td);
784 		}
785 		PROC_UNLOCK(p);
786 	}
787 	sx_sunlock(&allproc_lock);
788 
789 	/*
790 	 * Nothing to do, back to sleep.
791 	 */
792 	if ((p = pp) == NULL) {
793 		tsleep(&proc0, PVM, "sched", MAXSLP * hz / 2);
794 		goto loop;
795 	}
796 	PROC_LOCK(p);
797 
798 	/*
799 	 * Another process may be bringing or may have already
800 	 * brought this process in while we traverse all threads.
801 	 * Or, this process may even be being swapped out again.
802 	 */
803 	if (p->p_flag & (P_INMEM | P_SWAPPINGOUT | P_SWAPPINGIN)) {
804 		PROC_UNLOCK(p);
805 		goto loop;
806 	}
807 
808 	/*
809 	 * We would like to bring someone in. (only if there is space).
810 	 * [What checks the space? ]
811 	 */
812 	faultin(p);
813 	PROC_UNLOCK(p);
814 	goto loop;
815 }
816 
817 void
818 kick_proc0(void)
819 {
820 
821 	wakeup(&proc0);
822 }
823 
824 #ifndef NO_SWAPPING
825 
826 /*
827  * Swap_idle_threshold1 is the guaranteed swapped in time for a process
828  */
829 static int swap_idle_threshold1 = 2;
830 SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold1, CTLFLAG_RW,
831     &swap_idle_threshold1, 0, "Guaranteed swapped in time for a process");
832 
833 /*
834  * Swap_idle_threshold2 is the time that a process can be idle before
835  * it will be swapped out, if idle swapping is enabled.
836  */
837 static int swap_idle_threshold2 = 10;
838 SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold2, CTLFLAG_RW,
839     &swap_idle_threshold2, 0, "Time before a process will be swapped out");
840 
841 /*
842  * First, if any processes have been sleeping or stopped for at least
843  * "swap_idle_threshold1" seconds, they are swapped out.  If, however,
844  * no such processes exist, then the longest-sleeping or stopped
845  * process is swapped out.  Finally, and only as a last resort, if
846  * there are no sleeping or stopped processes, the longest-resident
847  * process is swapped out.
848  */
849 void
850 swapout_procs(action)
851 int action;
852 {
853 	struct proc *p;
854 	struct thread *td;
855 	int didswap = 0;
856 
857 retry:
858 	sx_slock(&allproc_lock);
859 	FOREACH_PROC_IN_SYSTEM(p) {
860 		struct vmspace *vm;
861 		int minslptime = 100000;
862 		int slptime;
863 
864 		/*
865 		 * Watch out for a process in
866 		 * creation.  It may have no
867 		 * address space or lock yet.
868 		 */
869 		if (p->p_state == PRS_NEW)
870 			continue;
871 		/*
872 		 * An aio daemon switches its
873 		 * address space while running.
874 		 * Perform a quick check whether
875 		 * a process has P_SYSTEM.
876 		 */
877 		if ((p->p_flag & P_SYSTEM) != 0)
878 			continue;
879 		/*
880 		 * Do not swapout a process that
881 		 * is waiting for VM data
882 		 * structures as there is a possible
883 		 * deadlock.  Test this first as
884 		 * this may block.
885 		 *
886 		 * Lock the map until swapout
887 		 * finishes, or a thread of this
888 		 * process may attempt to alter
889 		 * the map.
890 		 */
891 		vm = vmspace_acquire_ref(p);
892 		if (vm == NULL)
893 			continue;
894 		if (!vm_map_trylock(&vm->vm_map))
895 			goto nextproc1;
896 
897 		PROC_LOCK(p);
898 		if (p->p_lock != 0 ||
899 		    (p->p_flag & (P_STOPPED_SINGLE|P_TRACED|P_SYSTEM|P_WEXIT)
900 		    ) != 0) {
901 			goto nextproc;
902 		}
903 		/*
904 		 * only aiod changes vmspace, however it will be
905 		 * skipped because of the if statement above checking
906 		 * for P_SYSTEM
907 		 */
908 		if ((p->p_flag & (P_INMEM|P_SWAPPINGOUT|P_SWAPPINGIN)) != P_INMEM)
909 			goto nextproc;
910 
911 		switch (p->p_state) {
912 		default:
913 			/* Don't swap out processes in any sort
914 			 * of 'special' state. */
915 			break;
916 
917 		case PRS_NORMAL:
918 			/*
919 			 * do not swapout a realtime process
920 			 * Check all the thread groups..
921 			 */
922 			FOREACH_THREAD_IN_PROC(p, td) {
923 				thread_lock(td);
924 				if (PRI_IS_REALTIME(td->td_pri_class)) {
925 					thread_unlock(td);
926 					goto nextproc;
927 				}
928 				slptime = (ticks - td->td_slptick) / hz;
929 				/*
930 				 * Guarantee swap_idle_threshold1
931 				 * time in memory.
932 				 */
933 				if (slptime < swap_idle_threshold1) {
934 					thread_unlock(td);
935 					goto nextproc;
936 				}
937 
938 				/*
939 				 * Do not swapout a process if it is
940 				 * waiting on a critical event of some
941 				 * kind or there is a thread whose
942 				 * pageable memory may be accessed.
943 				 *
944 				 * This could be refined to support
945 				 * swapping out a thread.
946 				 */
947 				if (!thread_safetoswapout(td)) {
948 					thread_unlock(td);
949 					goto nextproc;
950 				}
951 				/*
952 				 * If the system is under memory stress,
953 				 * or if we are swapping
954 				 * idle processes >= swap_idle_threshold2,
955 				 * then swap the process out.
956 				 */
957 				if (((action & VM_SWAP_NORMAL) == 0) &&
958 				    (((action & VM_SWAP_IDLE) == 0) ||
959 				    (slptime < swap_idle_threshold2))) {
960 					thread_unlock(td);
961 					goto nextproc;
962 				}
963 
964 				if (minslptime > slptime)
965 					minslptime = slptime;
966 				thread_unlock(td);
967 			}
968 
969 			/*
970 			 * If the pageout daemon didn't free enough pages,
971 			 * or if this process is idle and the system is
972 			 * configured to swap proactively, swap it out.
973 			 */
974 			if ((action & VM_SWAP_NORMAL) ||
975 				((action & VM_SWAP_IDLE) &&
976 				 (minslptime > swap_idle_threshold2))) {
977 				if (swapout(p) == 0)
978 					didswap++;
979 				PROC_UNLOCK(p);
980 				vm_map_unlock(&vm->vm_map);
981 				vmspace_free(vm);
982 				sx_sunlock(&allproc_lock);
983 				goto retry;
984 			}
985 		}
986 nextproc:
987 		PROC_UNLOCK(p);
988 		vm_map_unlock(&vm->vm_map);
989 nextproc1:
990 		vmspace_free(vm);
991 		continue;
992 	}
993 	sx_sunlock(&allproc_lock);
994 	/*
995 	 * If we swapped something out, and another process needed memory,
996 	 * then wakeup the sched process.
997 	 */
998 	if (didswap)
999 		wakeup(&proc0);
1000 }
1001 
1002 static void
1003 swapclear(p)
1004 	struct proc *p;
1005 {
1006 	struct thread *td;
1007 
1008 	PROC_LOCK_ASSERT(p, MA_OWNED);
1009 
1010 	FOREACH_THREAD_IN_PROC(p, td) {
1011 		thread_lock(td);
1012 		td->td_flags |= TDF_INMEM;
1013 		td->td_flags &= ~TDF_SWAPINREQ;
1014 		TD_CLR_SWAPPED(td);
1015 		if (TD_CAN_RUN(td))
1016 			if (setrunnable(td)) {
1017 #ifdef INVARIANTS
1018 				/*
1019 				 * XXX: We just cleared TDI_SWAPPED
1020 				 * above and set TDF_INMEM, so this
1021 				 * should never happen.
1022 				 */
1023 				panic("not waking up swapper");
1024 #endif
1025 			}
1026 		thread_unlock(td);
1027 	}
1028 	p->p_flag &= ~(P_SWAPPINGIN|P_SWAPPINGOUT);
1029 	p->p_flag |= P_INMEM;
1030 }
1031 
1032 static int
1033 swapout(p)
1034 	struct proc *p;
1035 {
1036 	struct thread *td;
1037 
1038 	PROC_LOCK_ASSERT(p, MA_OWNED);
1039 #if defined(SWAP_DEBUG)
1040 	printf("swapping out %d\n", p->p_pid);
1041 #endif
1042 
1043 	/*
1044 	 * The states of this process and its threads may have changed
1045 	 * by now.  Assuming that there is only one pageout daemon thread,
1046 	 * this process should still be in memory.
1047 	 */
1048 	KASSERT((p->p_flag & (P_INMEM|P_SWAPPINGOUT|P_SWAPPINGIN)) == P_INMEM,
1049 		("swapout: lost a swapout race?"));
1050 
1051 	/*
1052 	 * remember the process resident count
1053 	 */
1054 	p->p_vmspace->vm_swrss = vmspace_resident_count(p->p_vmspace);
1055 	/*
1056 	 * Check and mark all threads before we proceed.
1057 	 */
1058 	p->p_flag &= ~P_INMEM;
1059 	p->p_flag |= P_SWAPPINGOUT;
1060 	FOREACH_THREAD_IN_PROC(p, td) {
1061 		thread_lock(td);
1062 		if (!thread_safetoswapout(td)) {
1063 			thread_unlock(td);
1064 			swapclear(p);
1065 			return (EBUSY);
1066 		}
1067 		td->td_flags &= ~TDF_INMEM;
1068 		TD_SET_SWAPPED(td);
1069 		thread_unlock(td);
1070 	}
1071 	td = FIRST_THREAD_IN_PROC(p);
1072 	++td->td_ru.ru_nswap;
1073 	PROC_UNLOCK(p);
1074 
1075 	/*
1076 	 * This list is stable because all threads are now prevented from
1077 	 * running.  The list is only modified in the context of a running
1078 	 * thread in this process.
1079 	 */
1080 	FOREACH_THREAD_IN_PROC(p, td)
1081 		vm_thread_swapout(td);
1082 
1083 	PROC_LOCK(p);
1084 	p->p_flag &= ~P_SWAPPINGOUT;
1085 	p->p_swtick = ticks;
1086 	return (0);
1087 }
1088 #endif /* !NO_SWAPPING */
1089