xref: /freebsd/sys/vm/vm_glue.c (revision 5bd73b51076b5cb5a2c9810f76c1d7ed20c4460e)
1 /*-
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)vm_glue.c	8.6 (Berkeley) 1/5/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Permission to use, copy, modify and distribute this software and
39  * its documentation is hereby granted, provided that both the copyright
40  * notice and this permission notice appear in all copies of the
41  * software, derivative works or modified versions, and any portions
42  * thereof, and that both notices appear in supporting documentation.
43  *
44  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
45  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
46  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
47  *
48  * Carnegie Mellon requests users of this software to return to
49  *
50  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
51  *  School of Computer Science
52  *  Carnegie Mellon University
53  *  Pittsburgh PA 15213-3890
54  *
55  * any improvements or extensions that they make and grant Carnegie the
56  * rights to redistribute these changes.
57  */
58 
59 #include <sys/cdefs.h>
60 __FBSDID("$FreeBSD$");
61 
62 #include "opt_vm.h"
63 #include "opt_kstack_pages.h"
64 #include "opt_kstack_max_pages.h"
65 #include "opt_kstack_usage_prof.h"
66 
67 #include <sys/param.h>
68 #include <sys/systm.h>
69 #include <sys/limits.h>
70 #include <sys/lock.h>
71 #include <sys/malloc.h>
72 #include <sys/mutex.h>
73 #include <sys/proc.h>
74 #include <sys/racct.h>
75 #include <sys/resourcevar.h>
76 #include <sys/rwlock.h>
77 #include <sys/sched.h>
78 #include <sys/sf_buf.h>
79 #include <sys/shm.h>
80 #include <sys/vmmeter.h>
81 #include <sys/vmem.h>
82 #include <sys/sx.h>
83 #include <sys/sysctl.h>
84 #include <sys/_kstack_cache.h>
85 #include <sys/eventhandler.h>
86 #include <sys/kernel.h>
87 #include <sys/ktr.h>
88 #include <sys/unistd.h>
89 
90 #include <vm/vm.h>
91 #include <vm/vm_param.h>
92 #include <vm/pmap.h>
93 #include <vm/vm_map.h>
94 #include <vm/vm_page.h>
95 #include <vm/vm_pageout.h>
96 #include <vm/vm_object.h>
97 #include <vm/vm_kern.h>
98 #include <vm/vm_extern.h>
99 #include <vm/vm_pager.h>
100 #include <vm/swap_pager.h>
101 
102 #include <machine/cpu.h>
103 
104 #ifndef NO_SWAPPING
105 static int swapout(struct proc *);
106 static void swapclear(struct proc *);
107 static void vm_thread_swapin(struct thread *td);
108 static void vm_thread_swapout(struct thread *td);
109 #endif
110 
111 /*
112  * MPSAFE
113  *
114  * WARNING!  This code calls vm_map_check_protection() which only checks
115  * the associated vm_map_entry range.  It does not determine whether the
116  * contents of the memory is actually readable or writable.  In most cases
117  * just checking the vm_map_entry is sufficient within the kernel's address
118  * space.
119  */
120 int
121 kernacc(addr, len, rw)
122 	void *addr;
123 	int len, rw;
124 {
125 	boolean_t rv;
126 	vm_offset_t saddr, eaddr;
127 	vm_prot_t prot;
128 
129 	KASSERT((rw & ~VM_PROT_ALL) == 0,
130 	    ("illegal ``rw'' argument to kernacc (%x)\n", rw));
131 
132 	if ((vm_offset_t)addr + len > kernel_map->max_offset ||
133 	    (vm_offset_t)addr + len < (vm_offset_t)addr)
134 		return (FALSE);
135 
136 	prot = rw;
137 	saddr = trunc_page((vm_offset_t)addr);
138 	eaddr = round_page((vm_offset_t)addr + len);
139 	vm_map_lock_read(kernel_map);
140 	rv = vm_map_check_protection(kernel_map, saddr, eaddr, prot);
141 	vm_map_unlock_read(kernel_map);
142 	return (rv == TRUE);
143 }
144 
145 /*
146  * MPSAFE
147  *
148  * WARNING!  This code calls vm_map_check_protection() which only checks
149  * the associated vm_map_entry range.  It does not determine whether the
150  * contents of the memory is actually readable or writable.  vmapbuf(),
151  * vm_fault_quick(), or copyin()/copout()/su*()/fu*() functions should be
152  * used in conjuction with this call.
153  */
154 int
155 useracc(addr, len, rw)
156 	void *addr;
157 	int len, rw;
158 {
159 	boolean_t rv;
160 	vm_prot_t prot;
161 	vm_map_t map;
162 
163 	KASSERT((rw & ~VM_PROT_ALL) == 0,
164 	    ("illegal ``rw'' argument to useracc (%x)\n", rw));
165 	prot = rw;
166 	map = &curproc->p_vmspace->vm_map;
167 	if ((vm_offset_t)addr + len > vm_map_max(map) ||
168 	    (vm_offset_t)addr + len < (vm_offset_t)addr) {
169 		return (FALSE);
170 	}
171 	vm_map_lock_read(map);
172 	rv = vm_map_check_protection(map, trunc_page((vm_offset_t)addr),
173 	    round_page((vm_offset_t)addr + len), prot);
174 	vm_map_unlock_read(map);
175 	return (rv == TRUE);
176 }
177 
178 int
179 vslock(void *addr, size_t len)
180 {
181 	vm_offset_t end, last, start;
182 	vm_size_t npages;
183 	int error;
184 
185 	last = (vm_offset_t)addr + len;
186 	start = trunc_page((vm_offset_t)addr);
187 	end = round_page(last);
188 	if (last < (vm_offset_t)addr || end < (vm_offset_t)addr)
189 		return (EINVAL);
190 	npages = atop(end - start);
191 	if (npages > vm_page_max_wired)
192 		return (ENOMEM);
193 #if 0
194 	/*
195 	 * XXX - not yet
196 	 *
197 	 * The limit for transient usage of wired pages should be
198 	 * larger than for "permanent" wired pages (mlock()).
199 	 *
200 	 * Also, the sysctl code, which is the only present user
201 	 * of vslock(), does a hard loop on EAGAIN.
202 	 */
203 	if (npages + vm_cnt.v_wire_count > vm_page_max_wired)
204 		return (EAGAIN);
205 #endif
206 	error = vm_map_wire(&curproc->p_vmspace->vm_map, start, end,
207 	    VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
208 	/*
209 	 * Return EFAULT on error to match copy{in,out}() behaviour
210 	 * rather than returning ENOMEM like mlock() would.
211 	 */
212 	return (error == KERN_SUCCESS ? 0 : EFAULT);
213 }
214 
215 void
216 vsunlock(void *addr, size_t len)
217 {
218 
219 	/* Rely on the parameter sanity checks performed by vslock(). */
220 	(void)vm_map_unwire(&curproc->p_vmspace->vm_map,
221 	    trunc_page((vm_offset_t)addr), round_page((vm_offset_t)addr + len),
222 	    VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
223 }
224 
225 /*
226  * Pin the page contained within the given object at the given offset.  If the
227  * page is not resident, allocate and load it using the given object's pager.
228  * Return the pinned page if successful; otherwise, return NULL.
229  */
230 static vm_page_t
231 vm_imgact_hold_page(vm_object_t object, vm_ooffset_t offset)
232 {
233 	vm_page_t m, ma[1];
234 	vm_pindex_t pindex;
235 	int rv;
236 
237 	VM_OBJECT_WLOCK(object);
238 	pindex = OFF_TO_IDX(offset);
239 	m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL);
240 	if (m->valid != VM_PAGE_BITS_ALL) {
241 		ma[0] = m;
242 		rv = vm_pager_get_pages(object, ma, 1, 0);
243 		m = vm_page_lookup(object, pindex);
244 		if (m == NULL)
245 			goto out;
246 		if (rv != VM_PAGER_OK) {
247 			vm_page_lock(m);
248 			vm_page_free(m);
249 			vm_page_unlock(m);
250 			m = NULL;
251 			goto out;
252 		}
253 	}
254 	vm_page_xunbusy(m);
255 	vm_page_lock(m);
256 	vm_page_hold(m);
257 	vm_page_activate(m);
258 	vm_page_unlock(m);
259 out:
260 	VM_OBJECT_WUNLOCK(object);
261 	return (m);
262 }
263 
264 /*
265  * Return a CPU private mapping to the page at the given offset within the
266  * given object.  The page is pinned before it is mapped.
267  */
268 struct sf_buf *
269 vm_imgact_map_page(vm_object_t object, vm_ooffset_t offset)
270 {
271 	vm_page_t m;
272 
273 	m = vm_imgact_hold_page(object, offset);
274 	if (m == NULL)
275 		return (NULL);
276 	sched_pin();
277 	return (sf_buf_alloc(m, SFB_CPUPRIVATE));
278 }
279 
280 /*
281  * Destroy the given CPU private mapping and unpin the page that it mapped.
282  */
283 void
284 vm_imgact_unmap_page(struct sf_buf *sf)
285 {
286 	vm_page_t m;
287 
288 	m = sf_buf_page(sf);
289 	sf_buf_free(sf);
290 	sched_unpin();
291 	vm_page_lock(m);
292 	vm_page_unhold(m);
293 	vm_page_unlock(m);
294 }
295 
296 void
297 vm_sync_icache(vm_map_t map, vm_offset_t va, vm_offset_t sz)
298 {
299 
300 	pmap_sync_icache(map->pmap, va, sz);
301 }
302 
303 struct kstack_cache_entry *kstack_cache;
304 static int kstack_cache_size = 128;
305 static int kstacks;
306 static struct mtx kstack_cache_mtx;
307 MTX_SYSINIT(kstack_cache, &kstack_cache_mtx, "kstkch", MTX_DEF);
308 
309 SYSCTL_INT(_vm, OID_AUTO, kstack_cache_size, CTLFLAG_RW, &kstack_cache_size, 0,
310     "");
311 SYSCTL_INT(_vm, OID_AUTO, kstacks, CTLFLAG_RD, &kstacks, 0,
312     "");
313 
314 #ifndef KSTACK_MAX_PAGES
315 #define KSTACK_MAX_PAGES 32
316 #endif
317 
318 /*
319  * Create the kernel stack (including pcb for i386) for a new thread.
320  * This routine directly affects the fork perf for a process and
321  * create performance for a thread.
322  */
323 int
324 vm_thread_new(struct thread *td, int pages)
325 {
326 	vm_object_t ksobj;
327 	vm_offset_t ks;
328 	vm_page_t m, ma[KSTACK_MAX_PAGES];
329 	struct kstack_cache_entry *ks_ce;
330 	int i;
331 
332 	/* Bounds check */
333 	if (pages <= 1)
334 		pages = KSTACK_PAGES;
335 	else if (pages > KSTACK_MAX_PAGES)
336 		pages = KSTACK_MAX_PAGES;
337 
338 	if (pages == KSTACK_PAGES) {
339 		mtx_lock(&kstack_cache_mtx);
340 		if (kstack_cache != NULL) {
341 			ks_ce = kstack_cache;
342 			kstack_cache = ks_ce->next_ks_entry;
343 			mtx_unlock(&kstack_cache_mtx);
344 
345 			td->td_kstack_obj = ks_ce->ksobj;
346 			td->td_kstack = (vm_offset_t)ks_ce;
347 			td->td_kstack_pages = KSTACK_PAGES;
348 			return (1);
349 		}
350 		mtx_unlock(&kstack_cache_mtx);
351 	}
352 
353 	/*
354 	 * Allocate an object for the kstack.
355 	 */
356 	ksobj = vm_object_allocate(OBJT_DEFAULT, pages);
357 
358 	/*
359 	 * Get a kernel virtual address for this thread's kstack.
360 	 */
361 #if defined(__mips__)
362 	/*
363 	 * We need to align the kstack's mapped address to fit within
364 	 * a single TLB entry.
365 	 */
366 	if (vmem_xalloc(kernel_arena, (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE,
367 	    PAGE_SIZE * 2, 0, 0, VMEM_ADDR_MIN, VMEM_ADDR_MAX,
368 	    M_BESTFIT | M_NOWAIT, &ks)) {
369 		ks = 0;
370 	}
371 #else
372 	ks = kva_alloc((pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
373 #endif
374 	if (ks == 0) {
375 		printf("vm_thread_new: kstack allocation failed\n");
376 		vm_object_deallocate(ksobj);
377 		return (0);
378 	}
379 
380 	atomic_add_int(&kstacks, 1);
381 	if (KSTACK_GUARD_PAGES != 0) {
382 		pmap_qremove(ks, KSTACK_GUARD_PAGES);
383 		ks += KSTACK_GUARD_PAGES * PAGE_SIZE;
384 	}
385 	td->td_kstack_obj = ksobj;
386 	td->td_kstack = ks;
387 	/*
388 	 * Knowing the number of pages allocated is useful when you
389 	 * want to deallocate them.
390 	 */
391 	td->td_kstack_pages = pages;
392 	/*
393 	 * For the length of the stack, link in a real page of ram for each
394 	 * page of stack.
395 	 */
396 	VM_OBJECT_WLOCK(ksobj);
397 	for (i = 0; i < pages; i++) {
398 		/*
399 		 * Get a kernel stack page.
400 		 */
401 		m = vm_page_grab(ksobj, i, VM_ALLOC_NOBUSY |
402 		    VM_ALLOC_NORMAL | VM_ALLOC_WIRED);
403 		ma[i] = m;
404 		m->valid = VM_PAGE_BITS_ALL;
405 	}
406 	VM_OBJECT_WUNLOCK(ksobj);
407 	pmap_qenter(ks, ma, pages);
408 	return (1);
409 }
410 
411 static void
412 vm_thread_stack_dispose(vm_object_t ksobj, vm_offset_t ks, int pages)
413 {
414 	vm_page_t m;
415 	int i;
416 
417 	atomic_add_int(&kstacks, -1);
418 	pmap_qremove(ks, pages);
419 	VM_OBJECT_WLOCK(ksobj);
420 	for (i = 0; i < pages; i++) {
421 		m = vm_page_lookup(ksobj, i);
422 		if (m == NULL)
423 			panic("vm_thread_dispose: kstack already missing?");
424 		vm_page_lock(m);
425 		vm_page_unwire(m, PQ_INACTIVE);
426 		vm_page_free(m);
427 		vm_page_unlock(m);
428 	}
429 	VM_OBJECT_WUNLOCK(ksobj);
430 	vm_object_deallocate(ksobj);
431 	kva_free(ks - (KSTACK_GUARD_PAGES * PAGE_SIZE),
432 	    (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
433 }
434 
435 /*
436  * Dispose of a thread's kernel stack.
437  */
438 void
439 vm_thread_dispose(struct thread *td)
440 {
441 	vm_object_t ksobj;
442 	vm_offset_t ks;
443 	struct kstack_cache_entry *ks_ce;
444 	int pages;
445 
446 	pages = td->td_kstack_pages;
447 	ksobj = td->td_kstack_obj;
448 	ks = td->td_kstack;
449 	td->td_kstack = 0;
450 	td->td_kstack_pages = 0;
451 	if (pages == KSTACK_PAGES && kstacks <= kstack_cache_size) {
452 		ks_ce = (struct kstack_cache_entry *)ks;
453 		ks_ce->ksobj = ksobj;
454 		mtx_lock(&kstack_cache_mtx);
455 		ks_ce->next_ks_entry = kstack_cache;
456 		kstack_cache = ks_ce;
457 		mtx_unlock(&kstack_cache_mtx);
458 		return;
459 	}
460 	vm_thread_stack_dispose(ksobj, ks, pages);
461 }
462 
463 static void
464 vm_thread_stack_lowmem(void *nulll)
465 {
466 	struct kstack_cache_entry *ks_ce, *ks_ce1;
467 
468 	mtx_lock(&kstack_cache_mtx);
469 	ks_ce = kstack_cache;
470 	kstack_cache = NULL;
471 	mtx_unlock(&kstack_cache_mtx);
472 
473 	while (ks_ce != NULL) {
474 		ks_ce1 = ks_ce;
475 		ks_ce = ks_ce->next_ks_entry;
476 
477 		vm_thread_stack_dispose(ks_ce1->ksobj, (vm_offset_t)ks_ce1,
478 		    KSTACK_PAGES);
479 	}
480 }
481 
482 static void
483 kstack_cache_init(void *nulll)
484 {
485 
486 	EVENTHANDLER_REGISTER(vm_lowmem, vm_thread_stack_lowmem, NULL,
487 	    EVENTHANDLER_PRI_ANY);
488 }
489 
490 SYSINIT(vm_kstacks, SI_SUB_KTHREAD_INIT, SI_ORDER_ANY, kstack_cache_init, NULL);
491 
492 #ifdef KSTACK_USAGE_PROF
493 /*
494  * Track maximum stack used by a thread in kernel.
495  */
496 static int max_kstack_used;
497 
498 SYSCTL_INT(_debug, OID_AUTO, max_kstack_used, CTLFLAG_RD,
499     &max_kstack_used, 0,
500     "Maxiumum stack depth used by a thread in kernel");
501 
502 void
503 intr_prof_stack_use(struct thread *td, struct trapframe *frame)
504 {
505 	vm_offset_t stack_top;
506 	vm_offset_t current;
507 	int used, prev_used;
508 
509 	/*
510 	 * Testing for interrupted kernel mode isn't strictly
511 	 * needed. It optimizes the execution, since interrupts from
512 	 * usermode will have only the trap frame on the stack.
513 	 */
514 	if (TRAPF_USERMODE(frame))
515 		return;
516 
517 	stack_top = td->td_kstack + td->td_kstack_pages * PAGE_SIZE;
518 	current = (vm_offset_t)(uintptr_t)&stack_top;
519 
520 	/*
521 	 * Try to detect if interrupt is using kernel thread stack.
522 	 * Hardware could use a dedicated stack for interrupt handling.
523 	 */
524 	if (stack_top <= current || current < td->td_kstack)
525 		return;
526 
527 	used = stack_top - current;
528 	for (;;) {
529 		prev_used = max_kstack_used;
530 		if (prev_used >= used)
531 			break;
532 		if (atomic_cmpset_int(&max_kstack_used, prev_used, used))
533 			break;
534 	}
535 }
536 #endif /* KSTACK_USAGE_PROF */
537 
538 #ifndef NO_SWAPPING
539 /*
540  * Allow a thread's kernel stack to be paged out.
541  */
542 static void
543 vm_thread_swapout(struct thread *td)
544 {
545 	vm_object_t ksobj;
546 	vm_page_t m;
547 	int i, pages;
548 
549 	cpu_thread_swapout(td);
550 	pages = td->td_kstack_pages;
551 	ksobj = td->td_kstack_obj;
552 	pmap_qremove(td->td_kstack, pages);
553 	VM_OBJECT_WLOCK(ksobj);
554 	for (i = 0; i < pages; i++) {
555 		m = vm_page_lookup(ksobj, i);
556 		if (m == NULL)
557 			panic("vm_thread_swapout: kstack already missing?");
558 		vm_page_dirty(m);
559 		vm_page_lock(m);
560 		vm_page_unwire(m, PQ_INACTIVE);
561 		vm_page_unlock(m);
562 	}
563 	VM_OBJECT_WUNLOCK(ksobj);
564 }
565 
566 /*
567  * Bring the kernel stack for a specified thread back in.
568  */
569 static void
570 vm_thread_swapin(struct thread *td)
571 {
572 	vm_object_t ksobj;
573 	vm_page_t ma[KSTACK_MAX_PAGES];
574 	int i, j, k, pages, rv;
575 
576 	pages = td->td_kstack_pages;
577 	ksobj = td->td_kstack_obj;
578 	VM_OBJECT_WLOCK(ksobj);
579 	for (i = 0; i < pages; i++)
580 		ma[i] = vm_page_grab(ksobj, i, VM_ALLOC_NORMAL |
581 		    VM_ALLOC_WIRED);
582 	for (i = 0; i < pages; i++) {
583 		if (ma[i]->valid != VM_PAGE_BITS_ALL) {
584 			vm_page_assert_xbusied(ma[i]);
585 			vm_object_pip_add(ksobj, 1);
586 			for (j = i + 1; j < pages; j++) {
587 				if (ma[j]->valid != VM_PAGE_BITS_ALL)
588 					vm_page_assert_xbusied(ma[j]);
589 				if (ma[j]->valid == VM_PAGE_BITS_ALL)
590 					break;
591 			}
592 			rv = vm_pager_get_pages(ksobj, ma + i, j - i, 0);
593 			if (rv != VM_PAGER_OK)
594 	panic("vm_thread_swapin: cannot get kstack for proc: %d",
595 				    td->td_proc->p_pid);
596 			vm_object_pip_wakeup(ksobj);
597 			for (k = i; k < j; k++)
598 				ma[k] = vm_page_lookup(ksobj, k);
599 			vm_page_xunbusy(ma[i]);
600 		} else if (vm_page_xbusied(ma[i]))
601 			vm_page_xunbusy(ma[i]);
602 	}
603 	VM_OBJECT_WUNLOCK(ksobj);
604 	pmap_qenter(td->td_kstack, ma, pages);
605 	cpu_thread_swapin(td);
606 }
607 #endif /* !NO_SWAPPING */
608 
609 /*
610  * Implement fork's actions on an address space.
611  * Here we arrange for the address space to be copied or referenced,
612  * allocate a user struct (pcb and kernel stack), then call the
613  * machine-dependent layer to fill those in and make the new process
614  * ready to run.  The new process is set up so that it returns directly
615  * to user mode to avoid stack copying and relocation problems.
616  */
617 int
618 vm_forkproc(td, p2, td2, vm2, flags)
619 	struct thread *td;
620 	struct proc *p2;
621 	struct thread *td2;
622 	struct vmspace *vm2;
623 	int flags;
624 {
625 	struct proc *p1 = td->td_proc;
626 	int error;
627 
628 	if ((flags & RFPROC) == 0) {
629 		/*
630 		 * Divorce the memory, if it is shared, essentially
631 		 * this changes shared memory amongst threads, into
632 		 * COW locally.
633 		 */
634 		if ((flags & RFMEM) == 0) {
635 			if (p1->p_vmspace->vm_refcnt > 1) {
636 				error = vmspace_unshare(p1);
637 				if (error)
638 					return (error);
639 			}
640 		}
641 		cpu_fork(td, p2, td2, flags);
642 		return (0);
643 	}
644 
645 	if (flags & RFMEM) {
646 		p2->p_vmspace = p1->p_vmspace;
647 		atomic_add_int(&p1->p_vmspace->vm_refcnt, 1);
648 	}
649 
650 	while (vm_page_count_severe()) {
651 		VM_WAIT;
652 	}
653 
654 	if ((flags & RFMEM) == 0) {
655 		p2->p_vmspace = vm2;
656 		if (p1->p_vmspace->vm_shm)
657 			shmfork(p1, p2);
658 	}
659 
660 	/*
661 	 * cpu_fork will copy and update the pcb, set up the kernel stack,
662 	 * and make the child ready to run.
663 	 */
664 	cpu_fork(td, p2, td2, flags);
665 	return (0);
666 }
667 
668 /*
669  * Called after process has been wait(2)'ed apon and is being reaped.
670  * The idea is to reclaim resources that we could not reclaim while
671  * the process was still executing.
672  */
673 void
674 vm_waitproc(p)
675 	struct proc *p;
676 {
677 
678 	vmspace_exitfree(p);		/* and clean-out the vmspace */
679 }
680 
681 void
682 faultin(p)
683 	struct proc *p;
684 {
685 #ifdef NO_SWAPPING
686 
687 	PROC_LOCK_ASSERT(p, MA_OWNED);
688 	if ((p->p_flag & P_INMEM) == 0)
689 		panic("faultin: proc swapped out with NO_SWAPPING!");
690 #else /* !NO_SWAPPING */
691 	struct thread *td;
692 
693 	PROC_LOCK_ASSERT(p, MA_OWNED);
694 	/*
695 	 * If another process is swapping in this process,
696 	 * just wait until it finishes.
697 	 */
698 	if (p->p_flag & P_SWAPPINGIN) {
699 		while (p->p_flag & P_SWAPPINGIN)
700 			msleep(&p->p_flag, &p->p_mtx, PVM, "faultin", 0);
701 		return;
702 	}
703 	if ((p->p_flag & P_INMEM) == 0) {
704 		/*
705 		 * Don't let another thread swap process p out while we are
706 		 * busy swapping it in.
707 		 */
708 		++p->p_lock;
709 		p->p_flag |= P_SWAPPINGIN;
710 		PROC_UNLOCK(p);
711 
712 		/*
713 		 * We hold no lock here because the list of threads
714 		 * can not change while all threads in the process are
715 		 * swapped out.
716 		 */
717 		FOREACH_THREAD_IN_PROC(p, td)
718 			vm_thread_swapin(td);
719 		PROC_LOCK(p);
720 		swapclear(p);
721 		p->p_swtick = ticks;
722 
723 		wakeup(&p->p_flag);
724 
725 		/* Allow other threads to swap p out now. */
726 		--p->p_lock;
727 	}
728 #endif /* NO_SWAPPING */
729 }
730 
731 /*
732  * This swapin algorithm attempts to swap-in processes only if there
733  * is enough space for them.  Of course, if a process waits for a long
734  * time, it will be swapped in anyway.
735  *
736  * Giant is held on entry.
737  */
738 void
739 swapper(void)
740 {
741 	struct proc *p;
742 	struct thread *td;
743 	struct proc *pp;
744 	int slptime;
745 	int swtime;
746 	int ppri;
747 	int pri;
748 
749 loop:
750 	if (vm_page_count_min()) {
751 		VM_WAIT;
752 		goto loop;
753 	}
754 
755 	pp = NULL;
756 	ppri = INT_MIN;
757 	sx_slock(&allproc_lock);
758 	FOREACH_PROC_IN_SYSTEM(p) {
759 		PROC_LOCK(p);
760 		if (p->p_state == PRS_NEW ||
761 		    p->p_flag & (P_SWAPPINGOUT | P_SWAPPINGIN | P_INMEM)) {
762 			PROC_UNLOCK(p);
763 			continue;
764 		}
765 		swtime = (ticks - p->p_swtick) / hz;
766 		FOREACH_THREAD_IN_PROC(p, td) {
767 			/*
768 			 * An otherwise runnable thread of a process
769 			 * swapped out has only the TDI_SWAPPED bit set.
770 			 *
771 			 */
772 			thread_lock(td);
773 			if (td->td_inhibitors == TDI_SWAPPED) {
774 				slptime = (ticks - td->td_slptick) / hz;
775 				pri = swtime + slptime;
776 				if ((td->td_flags & TDF_SWAPINREQ) == 0)
777 					pri -= p->p_nice * 8;
778 				/*
779 				 * if this thread is higher priority
780 				 * and there is enough space, then select
781 				 * this process instead of the previous
782 				 * selection.
783 				 */
784 				if (pri > ppri) {
785 					pp = p;
786 					ppri = pri;
787 				}
788 			}
789 			thread_unlock(td);
790 		}
791 		PROC_UNLOCK(p);
792 	}
793 	sx_sunlock(&allproc_lock);
794 
795 	/*
796 	 * Nothing to do, back to sleep.
797 	 */
798 	if ((p = pp) == NULL) {
799 		tsleep(&proc0, PVM, "swapin", MAXSLP * hz / 2);
800 		goto loop;
801 	}
802 	PROC_LOCK(p);
803 
804 	/*
805 	 * Another process may be bringing or may have already
806 	 * brought this process in while we traverse all threads.
807 	 * Or, this process may even be being swapped out again.
808 	 */
809 	if (p->p_flag & (P_INMEM | P_SWAPPINGOUT | P_SWAPPINGIN)) {
810 		PROC_UNLOCK(p);
811 		goto loop;
812 	}
813 
814 	/*
815 	 * We would like to bring someone in. (only if there is space).
816 	 * [What checks the space? ]
817 	 */
818 	faultin(p);
819 	PROC_UNLOCK(p);
820 	goto loop;
821 }
822 
823 void
824 kick_proc0(void)
825 {
826 
827 	wakeup(&proc0);
828 }
829 
830 #ifndef NO_SWAPPING
831 
832 /*
833  * Swap_idle_threshold1 is the guaranteed swapped in time for a process
834  */
835 static int swap_idle_threshold1 = 2;
836 SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold1, CTLFLAG_RW,
837     &swap_idle_threshold1, 0, "Guaranteed swapped in time for a process");
838 
839 /*
840  * Swap_idle_threshold2 is the time that a process can be idle before
841  * it will be swapped out, if idle swapping is enabled.
842  */
843 static int swap_idle_threshold2 = 10;
844 SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold2, CTLFLAG_RW,
845     &swap_idle_threshold2, 0, "Time before a process will be swapped out");
846 
847 /*
848  * First, if any processes have been sleeping or stopped for at least
849  * "swap_idle_threshold1" seconds, they are swapped out.  If, however,
850  * no such processes exist, then the longest-sleeping or stopped
851  * process is swapped out.  Finally, and only as a last resort, if
852  * there are no sleeping or stopped processes, the longest-resident
853  * process is swapped out.
854  */
855 void
856 swapout_procs(action)
857 int action;
858 {
859 	struct proc *p;
860 	struct thread *td;
861 	int didswap = 0;
862 
863 retry:
864 	sx_slock(&allproc_lock);
865 	FOREACH_PROC_IN_SYSTEM(p) {
866 		struct vmspace *vm;
867 		int minslptime = 100000;
868 		int slptime;
869 
870 		/*
871 		 * Watch out for a process in
872 		 * creation.  It may have no
873 		 * address space or lock yet.
874 		 */
875 		if (p->p_state == PRS_NEW)
876 			continue;
877 		/*
878 		 * An aio daemon switches its
879 		 * address space while running.
880 		 * Perform a quick check whether
881 		 * a process has P_SYSTEM.
882 		 */
883 		if ((p->p_flag & P_SYSTEM) != 0)
884 			continue;
885 		/*
886 		 * Do not swapout a process that
887 		 * is waiting for VM data
888 		 * structures as there is a possible
889 		 * deadlock.  Test this first as
890 		 * this may block.
891 		 *
892 		 * Lock the map until swapout
893 		 * finishes, or a thread of this
894 		 * process may attempt to alter
895 		 * the map.
896 		 */
897 		vm = vmspace_acquire_ref(p);
898 		if (vm == NULL)
899 			continue;
900 		if (!vm_map_trylock(&vm->vm_map))
901 			goto nextproc1;
902 
903 		PROC_LOCK(p);
904 		if (p->p_lock != 0 ||
905 		    (p->p_flag & (P_STOPPED_SINGLE|P_TRACED|P_SYSTEM|P_WEXIT)
906 		    ) != 0) {
907 			goto nextproc;
908 		}
909 		/*
910 		 * only aiod changes vmspace, however it will be
911 		 * skipped because of the if statement above checking
912 		 * for P_SYSTEM
913 		 */
914 		if ((p->p_flag & (P_INMEM|P_SWAPPINGOUT|P_SWAPPINGIN)) != P_INMEM)
915 			goto nextproc;
916 
917 		switch (p->p_state) {
918 		default:
919 			/* Don't swap out processes in any sort
920 			 * of 'special' state. */
921 			break;
922 
923 		case PRS_NORMAL:
924 			/*
925 			 * do not swapout a realtime process
926 			 * Check all the thread groups..
927 			 */
928 			FOREACH_THREAD_IN_PROC(p, td) {
929 				thread_lock(td);
930 				if (PRI_IS_REALTIME(td->td_pri_class)) {
931 					thread_unlock(td);
932 					goto nextproc;
933 				}
934 				slptime = (ticks - td->td_slptick) / hz;
935 				/*
936 				 * Guarantee swap_idle_threshold1
937 				 * time in memory.
938 				 */
939 				if (slptime < swap_idle_threshold1) {
940 					thread_unlock(td);
941 					goto nextproc;
942 				}
943 
944 				/*
945 				 * Do not swapout a process if it is
946 				 * waiting on a critical event of some
947 				 * kind or there is a thread whose
948 				 * pageable memory may be accessed.
949 				 *
950 				 * This could be refined to support
951 				 * swapping out a thread.
952 				 */
953 				if (!thread_safetoswapout(td)) {
954 					thread_unlock(td);
955 					goto nextproc;
956 				}
957 				/*
958 				 * If the system is under memory stress,
959 				 * or if we are swapping
960 				 * idle processes >= swap_idle_threshold2,
961 				 * then swap the process out.
962 				 */
963 				if (((action & VM_SWAP_NORMAL) == 0) &&
964 				    (((action & VM_SWAP_IDLE) == 0) ||
965 				    (slptime < swap_idle_threshold2))) {
966 					thread_unlock(td);
967 					goto nextproc;
968 				}
969 
970 				if (minslptime > slptime)
971 					minslptime = slptime;
972 				thread_unlock(td);
973 			}
974 
975 			/*
976 			 * If the pageout daemon didn't free enough pages,
977 			 * or if this process is idle and the system is
978 			 * configured to swap proactively, swap it out.
979 			 */
980 			if ((action & VM_SWAP_NORMAL) ||
981 				((action & VM_SWAP_IDLE) &&
982 				 (minslptime > swap_idle_threshold2))) {
983 				if (swapout(p) == 0)
984 					didswap++;
985 				PROC_UNLOCK(p);
986 				vm_map_unlock(&vm->vm_map);
987 				vmspace_free(vm);
988 				sx_sunlock(&allproc_lock);
989 				goto retry;
990 			}
991 		}
992 nextproc:
993 		PROC_UNLOCK(p);
994 		vm_map_unlock(&vm->vm_map);
995 nextproc1:
996 		vmspace_free(vm);
997 		continue;
998 	}
999 	sx_sunlock(&allproc_lock);
1000 	/*
1001 	 * If we swapped something out, and another process needed memory,
1002 	 * then wakeup the sched process.
1003 	 */
1004 	if (didswap)
1005 		wakeup(&proc0);
1006 }
1007 
1008 static void
1009 swapclear(p)
1010 	struct proc *p;
1011 {
1012 	struct thread *td;
1013 
1014 	PROC_LOCK_ASSERT(p, MA_OWNED);
1015 
1016 	FOREACH_THREAD_IN_PROC(p, td) {
1017 		thread_lock(td);
1018 		td->td_flags |= TDF_INMEM;
1019 		td->td_flags &= ~TDF_SWAPINREQ;
1020 		TD_CLR_SWAPPED(td);
1021 		if (TD_CAN_RUN(td))
1022 			if (setrunnable(td)) {
1023 #ifdef INVARIANTS
1024 				/*
1025 				 * XXX: We just cleared TDI_SWAPPED
1026 				 * above and set TDF_INMEM, so this
1027 				 * should never happen.
1028 				 */
1029 				panic("not waking up swapper");
1030 #endif
1031 			}
1032 		thread_unlock(td);
1033 	}
1034 	p->p_flag &= ~(P_SWAPPINGIN|P_SWAPPINGOUT);
1035 	p->p_flag |= P_INMEM;
1036 }
1037 
1038 static int
1039 swapout(p)
1040 	struct proc *p;
1041 {
1042 	struct thread *td;
1043 
1044 	PROC_LOCK_ASSERT(p, MA_OWNED);
1045 #if defined(SWAP_DEBUG)
1046 	printf("swapping out %d\n", p->p_pid);
1047 #endif
1048 
1049 	/*
1050 	 * The states of this process and its threads may have changed
1051 	 * by now.  Assuming that there is only one pageout daemon thread,
1052 	 * this process should still be in memory.
1053 	 */
1054 	KASSERT((p->p_flag & (P_INMEM|P_SWAPPINGOUT|P_SWAPPINGIN)) == P_INMEM,
1055 		("swapout: lost a swapout race?"));
1056 
1057 	/*
1058 	 * remember the process resident count
1059 	 */
1060 	p->p_vmspace->vm_swrss = vmspace_resident_count(p->p_vmspace);
1061 	/*
1062 	 * Check and mark all threads before we proceed.
1063 	 */
1064 	p->p_flag &= ~P_INMEM;
1065 	p->p_flag |= P_SWAPPINGOUT;
1066 	FOREACH_THREAD_IN_PROC(p, td) {
1067 		thread_lock(td);
1068 		if (!thread_safetoswapout(td)) {
1069 			thread_unlock(td);
1070 			swapclear(p);
1071 			return (EBUSY);
1072 		}
1073 		td->td_flags &= ~TDF_INMEM;
1074 		TD_SET_SWAPPED(td);
1075 		thread_unlock(td);
1076 	}
1077 	td = FIRST_THREAD_IN_PROC(p);
1078 	++td->td_ru.ru_nswap;
1079 	PROC_UNLOCK(p);
1080 
1081 	/*
1082 	 * This list is stable because all threads are now prevented from
1083 	 * running.  The list is only modified in the context of a running
1084 	 * thread in this process.
1085 	 */
1086 	FOREACH_THREAD_IN_PROC(p, td)
1087 		vm_thread_swapout(td);
1088 
1089 	PROC_LOCK(p);
1090 	p->p_flag &= ~P_SWAPPINGOUT;
1091 	p->p_swtick = ticks;
1092 	return (0);
1093 }
1094 #endif /* !NO_SWAPPING */
1095