xref: /freebsd/sys/vm/vm_glue.c (revision 3e65b9c6e6b7b2081d54e1dc40983c3c00eaf738)
1 /*-
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)vm_glue.c	8.6 (Berkeley) 1/5/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Permission to use, copy, modify and distribute this software and
39  * its documentation is hereby granted, provided that both the copyright
40  * notice and this permission notice appear in all copies of the
41  * software, derivative works or modified versions, and any portions
42  * thereof, and that both notices appear in supporting documentation.
43  *
44  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
45  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
46  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
47  *
48  * Carnegie Mellon requests users of this software to return to
49  *
50  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
51  *  School of Computer Science
52  *  Carnegie Mellon University
53  *  Pittsburgh PA 15213-3890
54  *
55  * any improvements or extensions that they make and grant Carnegie the
56  * rights to redistribute these changes.
57  */
58 
59 #include <sys/cdefs.h>
60 __FBSDID("$FreeBSD$");
61 
62 #include "opt_vm.h"
63 #include "opt_kstack_pages.h"
64 #include "opt_kstack_max_pages.h"
65 
66 #include <sys/param.h>
67 #include <sys/systm.h>
68 #include <sys/limits.h>
69 #include <sys/lock.h>
70 #include <sys/mutex.h>
71 #include <sys/proc.h>
72 #include <sys/racct.h>
73 #include <sys/resourcevar.h>
74 #include <sys/sched.h>
75 #include <sys/sf_buf.h>
76 #include <sys/shm.h>
77 #include <sys/vmmeter.h>
78 #include <sys/sx.h>
79 #include <sys/sysctl.h>
80 #include <sys/_kstack_cache.h>
81 #include <sys/eventhandler.h>
82 #include <sys/kernel.h>
83 #include <sys/ktr.h>
84 #include <sys/unistd.h>
85 
86 #include <vm/vm.h>
87 #include <vm/vm_param.h>
88 #include <vm/pmap.h>
89 #include <vm/vm_map.h>
90 #include <vm/vm_page.h>
91 #include <vm/vm_pageout.h>
92 #include <vm/vm_object.h>
93 #include <vm/vm_kern.h>
94 #include <vm/vm_extern.h>
95 #include <vm/vm_pager.h>
96 #include <vm/swap_pager.h>
97 
98 /*
99  * System initialization
100  *
101  * THIS MUST BE THE LAST INITIALIZATION ITEM!!!
102  *
103  * Note: run scheduling should be divorced from the vm system.
104  */
105 static void scheduler(void *);
106 SYSINIT(scheduler, SI_SUB_RUN_SCHEDULER, SI_ORDER_ANY, scheduler, NULL);
107 
108 #ifndef NO_SWAPPING
109 static int swapout(struct proc *);
110 static void swapclear(struct proc *);
111 static void vm_thread_swapin(struct thread *td);
112 static void vm_thread_swapout(struct thread *td);
113 #endif
114 
115 /*
116  * MPSAFE
117  *
118  * WARNING!  This code calls vm_map_check_protection() which only checks
119  * the associated vm_map_entry range.  It does not determine whether the
120  * contents of the memory is actually readable or writable.  In most cases
121  * just checking the vm_map_entry is sufficient within the kernel's address
122  * space.
123  */
124 int
125 kernacc(addr, len, rw)
126 	void *addr;
127 	int len, rw;
128 {
129 	boolean_t rv;
130 	vm_offset_t saddr, eaddr;
131 	vm_prot_t prot;
132 
133 	KASSERT((rw & ~VM_PROT_ALL) == 0,
134 	    ("illegal ``rw'' argument to kernacc (%x)\n", rw));
135 
136 	if ((vm_offset_t)addr + len > kernel_map->max_offset ||
137 	    (vm_offset_t)addr + len < (vm_offset_t)addr)
138 		return (FALSE);
139 
140 	prot = rw;
141 	saddr = trunc_page((vm_offset_t)addr);
142 	eaddr = round_page((vm_offset_t)addr + len);
143 	vm_map_lock_read(kernel_map);
144 	rv = vm_map_check_protection(kernel_map, saddr, eaddr, prot);
145 	vm_map_unlock_read(kernel_map);
146 	return (rv == TRUE);
147 }
148 
149 /*
150  * MPSAFE
151  *
152  * WARNING!  This code calls vm_map_check_protection() which only checks
153  * the associated vm_map_entry range.  It does not determine whether the
154  * contents of the memory is actually readable or writable.  vmapbuf(),
155  * vm_fault_quick(), or copyin()/copout()/su*()/fu*() functions should be
156  * used in conjuction with this call.
157  */
158 int
159 useracc(addr, len, rw)
160 	void *addr;
161 	int len, rw;
162 {
163 	boolean_t rv;
164 	vm_prot_t prot;
165 	vm_map_t map;
166 
167 	KASSERT((rw & ~VM_PROT_ALL) == 0,
168 	    ("illegal ``rw'' argument to useracc (%x)\n", rw));
169 	prot = rw;
170 	map = &curproc->p_vmspace->vm_map;
171 	if ((vm_offset_t)addr + len > vm_map_max(map) ||
172 	    (vm_offset_t)addr + len < (vm_offset_t)addr) {
173 		return (FALSE);
174 	}
175 	vm_map_lock_read(map);
176 	rv = vm_map_check_protection(map, trunc_page((vm_offset_t)addr),
177 	    round_page((vm_offset_t)addr + len), prot);
178 	vm_map_unlock_read(map);
179 	return (rv == TRUE);
180 }
181 
182 int
183 vslock(void *addr, size_t len)
184 {
185 	vm_offset_t end, last, start;
186 	unsigned long nsize;
187 	vm_size_t npages;
188 	int error;
189 
190 	last = (vm_offset_t)addr + len;
191 	start = trunc_page((vm_offset_t)addr);
192 	end = round_page(last);
193 	if (last < (vm_offset_t)addr || end < (vm_offset_t)addr)
194 		return (EINVAL);
195 	npages = atop(end - start);
196 	if (npages > vm_page_max_wired)
197 		return (ENOMEM);
198 	PROC_LOCK(curproc);
199 	nsize = ptoa(npages +
200 	    pmap_wired_count(vm_map_pmap(&curproc->p_vmspace->vm_map)));
201 	if (nsize > lim_cur(curproc, RLIMIT_MEMLOCK)) {
202 		PROC_UNLOCK(curproc);
203 		return (ENOMEM);
204 	}
205 	if (racct_set(curproc, RACCT_MEMLOCK, nsize)) {
206 		PROC_UNLOCK(curproc);
207 		return (ENOMEM);
208 	}
209 	PROC_UNLOCK(curproc);
210 #if 0
211 	/*
212 	 * XXX - not yet
213 	 *
214 	 * The limit for transient usage of wired pages should be
215 	 * larger than for "permanent" wired pages (mlock()).
216 	 *
217 	 * Also, the sysctl code, which is the only present user
218 	 * of vslock(), does a hard loop on EAGAIN.
219 	 */
220 	if (npages + cnt.v_wire_count > vm_page_max_wired)
221 		return (EAGAIN);
222 #endif
223 	error = vm_map_wire(&curproc->p_vmspace->vm_map, start, end,
224 	    VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
225 #ifdef RACCT
226 	if (error != KERN_SUCCESS) {
227 		PROC_LOCK(curproc);
228 		racct_set(curproc, RACCT_MEMLOCK,
229 		    ptoa(pmap_wired_count(vm_map_pmap(&curproc->p_vmspace->vm_map))));
230 		PROC_UNLOCK(curproc);
231 	}
232 #endif
233 	/*
234 	 * Return EFAULT on error to match copy{in,out}() behaviour
235 	 * rather than returning ENOMEM like mlock() would.
236 	 */
237 	return (error == KERN_SUCCESS ? 0 : EFAULT);
238 }
239 
240 void
241 vsunlock(void *addr, size_t len)
242 {
243 
244 	/* Rely on the parameter sanity checks performed by vslock(). */
245 	(void)vm_map_unwire(&curproc->p_vmspace->vm_map,
246 	    trunc_page((vm_offset_t)addr), round_page((vm_offset_t)addr + len),
247 	    VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
248 
249 #ifdef RACCT
250 	PROC_LOCK(curproc);
251 	racct_set(curproc, RACCT_MEMLOCK,
252 	    ptoa(pmap_wired_count(vm_map_pmap(&curproc->p_vmspace->vm_map))));
253 	PROC_UNLOCK(curproc);
254 #endif
255 }
256 
257 /*
258  * Pin the page contained within the given object at the given offset.  If the
259  * page is not resident, allocate and load it using the given object's pager.
260  * Return the pinned page if successful; otherwise, return NULL.
261  */
262 static vm_page_t
263 vm_imgact_hold_page(vm_object_t object, vm_ooffset_t offset)
264 {
265 	vm_page_t m, ma[1];
266 	vm_pindex_t pindex;
267 	int rv;
268 
269 	VM_OBJECT_LOCK(object);
270 	pindex = OFF_TO_IDX(offset);
271 	m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
272 	if (m->valid != VM_PAGE_BITS_ALL) {
273 		ma[0] = m;
274 		rv = vm_pager_get_pages(object, ma, 1, 0);
275 		m = vm_page_lookup(object, pindex);
276 		if (m == NULL)
277 			goto out;
278 		if (rv != VM_PAGER_OK) {
279 			vm_page_lock(m);
280 			vm_page_free(m);
281 			vm_page_unlock(m);
282 			m = NULL;
283 			goto out;
284 		}
285 	}
286 	vm_page_lock(m);
287 	vm_page_hold(m);
288 	vm_page_unlock(m);
289 	vm_page_wakeup(m);
290 out:
291 	VM_OBJECT_UNLOCK(object);
292 	return (m);
293 }
294 
295 /*
296  * Return a CPU private mapping to the page at the given offset within the
297  * given object.  The page is pinned before it is mapped.
298  */
299 struct sf_buf *
300 vm_imgact_map_page(vm_object_t object, vm_ooffset_t offset)
301 {
302 	vm_page_t m;
303 
304 	m = vm_imgact_hold_page(object, offset);
305 	if (m == NULL)
306 		return (NULL);
307 	sched_pin();
308 	return (sf_buf_alloc(m, SFB_CPUPRIVATE));
309 }
310 
311 /*
312  * Destroy the given CPU private mapping and unpin the page that it mapped.
313  */
314 void
315 vm_imgact_unmap_page(struct sf_buf *sf)
316 {
317 	vm_page_t m;
318 
319 	m = sf_buf_page(sf);
320 	sf_buf_free(sf);
321 	sched_unpin();
322 	vm_page_lock(m);
323 	vm_page_unhold(m);
324 	vm_page_unlock(m);
325 }
326 
327 void
328 vm_sync_icache(vm_map_t map, vm_offset_t va, vm_offset_t sz)
329 {
330 
331 	pmap_sync_icache(map->pmap, va, sz);
332 }
333 
334 struct kstack_cache_entry *kstack_cache;
335 static int kstack_cache_size = 128;
336 static int kstacks;
337 static struct mtx kstack_cache_mtx;
338 SYSCTL_INT(_vm, OID_AUTO, kstack_cache_size, CTLFLAG_RW, &kstack_cache_size, 0,
339     "");
340 SYSCTL_INT(_vm, OID_AUTO, kstacks, CTLFLAG_RD, &kstacks, 0,
341     "");
342 
343 #ifndef KSTACK_MAX_PAGES
344 #define KSTACK_MAX_PAGES 32
345 #endif
346 
347 /*
348  * Create the kernel stack (including pcb for i386) for a new thread.
349  * This routine directly affects the fork perf for a process and
350  * create performance for a thread.
351  */
352 int
353 vm_thread_new(struct thread *td, int pages)
354 {
355 	vm_object_t ksobj;
356 	vm_offset_t ks;
357 	vm_page_t m, ma[KSTACK_MAX_PAGES];
358 	struct kstack_cache_entry *ks_ce;
359 	int i;
360 
361 	/* Bounds check */
362 	if (pages <= 1)
363 		pages = KSTACK_PAGES;
364 	else if (pages > KSTACK_MAX_PAGES)
365 		pages = KSTACK_MAX_PAGES;
366 
367 	if (pages == KSTACK_PAGES) {
368 		mtx_lock(&kstack_cache_mtx);
369 		if (kstack_cache != NULL) {
370 			ks_ce = kstack_cache;
371 			kstack_cache = ks_ce->next_ks_entry;
372 			mtx_unlock(&kstack_cache_mtx);
373 
374 			td->td_kstack_obj = ks_ce->ksobj;
375 			td->td_kstack = (vm_offset_t)ks_ce;
376 			td->td_kstack_pages = KSTACK_PAGES;
377 			return (1);
378 		}
379 		mtx_unlock(&kstack_cache_mtx);
380 	}
381 
382 	/*
383 	 * Allocate an object for the kstack.
384 	 */
385 	ksobj = vm_object_allocate(OBJT_DEFAULT, pages);
386 
387 	/*
388 	 * Get a kernel virtual address for this thread's kstack.
389 	 */
390 #if defined(__mips__)
391 	/*
392 	 * We need to align the kstack's mapped address to fit within
393 	 * a single TLB entry.
394 	 */
395 	ks = kmem_alloc_nofault_space(kernel_map,
396 	    (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE, VMFS_TLB_ALIGNED_SPACE);
397 #else
398 	ks = kmem_alloc_nofault(kernel_map,
399 	   (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
400 #endif
401 	if (ks == 0) {
402 		printf("vm_thread_new: kstack allocation failed\n");
403 		vm_object_deallocate(ksobj);
404 		return (0);
405 	}
406 
407 	atomic_add_int(&kstacks, 1);
408 	if (KSTACK_GUARD_PAGES != 0) {
409 		pmap_qremove(ks, KSTACK_GUARD_PAGES);
410 		ks += KSTACK_GUARD_PAGES * PAGE_SIZE;
411 	}
412 	td->td_kstack_obj = ksobj;
413 	td->td_kstack = ks;
414 	/*
415 	 * Knowing the number of pages allocated is useful when you
416 	 * want to deallocate them.
417 	 */
418 	td->td_kstack_pages = pages;
419 	/*
420 	 * For the length of the stack, link in a real page of ram for each
421 	 * page of stack.
422 	 */
423 	VM_OBJECT_LOCK(ksobj);
424 	for (i = 0; i < pages; i++) {
425 		/*
426 		 * Get a kernel stack page.
427 		 */
428 		m = vm_page_grab(ksobj, i, VM_ALLOC_NOBUSY |
429 		    VM_ALLOC_NORMAL | VM_ALLOC_RETRY | VM_ALLOC_WIRED);
430 		ma[i] = m;
431 		m->valid = VM_PAGE_BITS_ALL;
432 	}
433 	VM_OBJECT_UNLOCK(ksobj);
434 	pmap_qenter(ks, ma, pages);
435 	return (1);
436 }
437 
438 static void
439 vm_thread_stack_dispose(vm_object_t ksobj, vm_offset_t ks, int pages)
440 {
441 	vm_page_t m;
442 	int i;
443 
444 	atomic_add_int(&kstacks, -1);
445 	pmap_qremove(ks, pages);
446 	VM_OBJECT_LOCK(ksobj);
447 	for (i = 0; i < pages; i++) {
448 		m = vm_page_lookup(ksobj, i);
449 		if (m == NULL)
450 			panic("vm_thread_dispose: kstack already missing?");
451 		vm_page_lock(m);
452 		vm_page_unwire(m, 0);
453 		vm_page_free(m);
454 		vm_page_unlock(m);
455 	}
456 	VM_OBJECT_UNLOCK(ksobj);
457 	vm_object_deallocate(ksobj);
458 	kmem_free(kernel_map, ks - (KSTACK_GUARD_PAGES * PAGE_SIZE),
459 	    (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
460 }
461 
462 /*
463  * Dispose of a thread's kernel stack.
464  */
465 void
466 vm_thread_dispose(struct thread *td)
467 {
468 	vm_object_t ksobj;
469 	vm_offset_t ks;
470 	struct kstack_cache_entry *ks_ce;
471 	int pages;
472 
473 	pages = td->td_kstack_pages;
474 	ksobj = td->td_kstack_obj;
475 	ks = td->td_kstack;
476 	td->td_kstack = 0;
477 	td->td_kstack_pages = 0;
478 	if (pages == KSTACK_PAGES && kstacks <= kstack_cache_size) {
479 		ks_ce = (struct kstack_cache_entry *)ks;
480 		ks_ce->ksobj = ksobj;
481 		mtx_lock(&kstack_cache_mtx);
482 		ks_ce->next_ks_entry = kstack_cache;
483 		kstack_cache = ks_ce;
484 		mtx_unlock(&kstack_cache_mtx);
485 		return;
486 	}
487 	vm_thread_stack_dispose(ksobj, ks, pages);
488 }
489 
490 static void
491 vm_thread_stack_lowmem(void *nulll)
492 {
493 	struct kstack_cache_entry *ks_ce, *ks_ce1;
494 
495 	mtx_lock(&kstack_cache_mtx);
496 	ks_ce = kstack_cache;
497 	kstack_cache = NULL;
498 	mtx_unlock(&kstack_cache_mtx);
499 
500 	while (ks_ce != NULL) {
501 		ks_ce1 = ks_ce;
502 		ks_ce = ks_ce->next_ks_entry;
503 
504 		vm_thread_stack_dispose(ks_ce1->ksobj, (vm_offset_t)ks_ce1,
505 		    KSTACK_PAGES);
506 	}
507 }
508 
509 static void
510 kstack_cache_init(void *nulll)
511 {
512 
513 	EVENTHANDLER_REGISTER(vm_lowmem, vm_thread_stack_lowmem, NULL,
514 	    EVENTHANDLER_PRI_ANY);
515 }
516 
517 MTX_SYSINIT(kstack_cache, &kstack_cache_mtx, "kstkch", MTX_DEF);
518 SYSINIT(vm_kstacks, SI_SUB_KTHREAD_INIT, SI_ORDER_ANY, kstack_cache_init, NULL);
519 
520 #ifndef NO_SWAPPING
521 /*
522  * Allow a thread's kernel stack to be paged out.
523  */
524 static void
525 vm_thread_swapout(struct thread *td)
526 {
527 	vm_object_t ksobj;
528 	vm_page_t m;
529 	int i, pages;
530 
531 	cpu_thread_swapout(td);
532 	pages = td->td_kstack_pages;
533 	ksobj = td->td_kstack_obj;
534 	pmap_qremove(td->td_kstack, pages);
535 	VM_OBJECT_LOCK(ksobj);
536 	for (i = 0; i < pages; i++) {
537 		m = vm_page_lookup(ksobj, i);
538 		if (m == NULL)
539 			panic("vm_thread_swapout: kstack already missing?");
540 		vm_page_dirty(m);
541 		vm_page_lock(m);
542 		vm_page_unwire(m, 0);
543 		vm_page_unlock(m);
544 	}
545 	VM_OBJECT_UNLOCK(ksobj);
546 }
547 
548 /*
549  * Bring the kernel stack for a specified thread back in.
550  */
551 static void
552 vm_thread_swapin(struct thread *td)
553 {
554 	vm_object_t ksobj;
555 	vm_page_t ma[KSTACK_MAX_PAGES];
556 	int i, j, k, pages, rv;
557 
558 	pages = td->td_kstack_pages;
559 	ksobj = td->td_kstack_obj;
560 	VM_OBJECT_LOCK(ksobj);
561 	for (i = 0; i < pages; i++)
562 		ma[i] = vm_page_grab(ksobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY |
563 		    VM_ALLOC_WIRED);
564 	for (i = 0; i < pages; i++) {
565 		if (ma[i]->valid != VM_PAGE_BITS_ALL) {
566 			KASSERT(ma[i]->oflags & VPO_BUSY,
567 			    ("lost busy 1"));
568 			vm_object_pip_add(ksobj, 1);
569 			for (j = i + 1; j < pages; j++) {
570 				KASSERT(ma[j]->valid == VM_PAGE_BITS_ALL ||
571 				    (ma[j]->oflags & VPO_BUSY),
572 				    ("lost busy 2"));
573 				if (ma[j]->valid == VM_PAGE_BITS_ALL)
574 					break;
575 			}
576 			rv = vm_pager_get_pages(ksobj, ma + i, j - i, 0);
577 			if (rv != VM_PAGER_OK)
578 	panic("vm_thread_swapin: cannot get kstack for proc: %d",
579 				    td->td_proc->p_pid);
580 			vm_object_pip_wakeup(ksobj);
581 			for (k = i; k < j; k++)
582 				ma[k] = vm_page_lookup(ksobj, k);
583 			vm_page_wakeup(ma[i]);
584 		} else if (ma[i]->oflags & VPO_BUSY)
585 			vm_page_wakeup(ma[i]);
586 	}
587 	VM_OBJECT_UNLOCK(ksobj);
588 	pmap_qenter(td->td_kstack, ma, pages);
589 	cpu_thread_swapin(td);
590 }
591 #endif /* !NO_SWAPPING */
592 
593 /*
594  * Implement fork's actions on an address space.
595  * Here we arrange for the address space to be copied or referenced,
596  * allocate a user struct (pcb and kernel stack), then call the
597  * machine-dependent layer to fill those in and make the new process
598  * ready to run.  The new process is set up so that it returns directly
599  * to user mode to avoid stack copying and relocation problems.
600  */
601 int
602 vm_forkproc(td, p2, td2, vm2, flags)
603 	struct thread *td;
604 	struct proc *p2;
605 	struct thread *td2;
606 	struct vmspace *vm2;
607 	int flags;
608 {
609 	struct proc *p1 = td->td_proc;
610 	int error;
611 
612 	if ((flags & RFPROC) == 0) {
613 		/*
614 		 * Divorce the memory, if it is shared, essentially
615 		 * this changes shared memory amongst threads, into
616 		 * COW locally.
617 		 */
618 		if ((flags & RFMEM) == 0) {
619 			if (p1->p_vmspace->vm_refcnt > 1) {
620 				error = vmspace_unshare(p1);
621 				if (error)
622 					return (error);
623 			}
624 		}
625 		cpu_fork(td, p2, td2, flags);
626 		return (0);
627 	}
628 
629 	if (flags & RFMEM) {
630 		p2->p_vmspace = p1->p_vmspace;
631 		atomic_add_int(&p1->p_vmspace->vm_refcnt, 1);
632 	}
633 
634 	while (vm_page_count_severe()) {
635 		VM_WAIT;
636 	}
637 
638 	if ((flags & RFMEM) == 0) {
639 		p2->p_vmspace = vm2;
640 		if (p1->p_vmspace->vm_shm)
641 			shmfork(p1, p2);
642 	}
643 
644 	/*
645 	 * cpu_fork will copy and update the pcb, set up the kernel stack,
646 	 * and make the child ready to run.
647 	 */
648 	cpu_fork(td, p2, td2, flags);
649 	return (0);
650 }
651 
652 /*
653  * Called after process has been wait(2)'ed apon and is being reaped.
654  * The idea is to reclaim resources that we could not reclaim while
655  * the process was still executing.
656  */
657 void
658 vm_waitproc(p)
659 	struct proc *p;
660 {
661 
662 	vmspace_exitfree(p);		/* and clean-out the vmspace */
663 }
664 
665 void
666 faultin(p)
667 	struct proc *p;
668 {
669 #ifdef NO_SWAPPING
670 
671 	PROC_LOCK_ASSERT(p, MA_OWNED);
672 	if ((p->p_flag & P_INMEM) == 0)
673 		panic("faultin: proc swapped out with NO_SWAPPING!");
674 #else /* !NO_SWAPPING */
675 	struct thread *td;
676 
677 	PROC_LOCK_ASSERT(p, MA_OWNED);
678 	/*
679 	 * If another process is swapping in this process,
680 	 * just wait until it finishes.
681 	 */
682 	if (p->p_flag & P_SWAPPINGIN) {
683 		while (p->p_flag & P_SWAPPINGIN)
684 			msleep(&p->p_flag, &p->p_mtx, PVM, "faultin", 0);
685 		return;
686 	}
687 	if ((p->p_flag & P_INMEM) == 0) {
688 		/*
689 		 * Don't let another thread swap process p out while we are
690 		 * busy swapping it in.
691 		 */
692 		++p->p_lock;
693 		p->p_flag |= P_SWAPPINGIN;
694 		PROC_UNLOCK(p);
695 
696 		/*
697 		 * We hold no lock here because the list of threads
698 		 * can not change while all threads in the process are
699 		 * swapped out.
700 		 */
701 		FOREACH_THREAD_IN_PROC(p, td)
702 			vm_thread_swapin(td);
703 		PROC_LOCK(p);
704 		swapclear(p);
705 		p->p_swtick = ticks;
706 
707 		wakeup(&p->p_flag);
708 
709 		/* Allow other threads to swap p out now. */
710 		--p->p_lock;
711 	}
712 #endif /* NO_SWAPPING */
713 }
714 
715 /*
716  * This swapin algorithm attempts to swap-in processes only if there
717  * is enough space for them.  Of course, if a process waits for a long
718  * time, it will be swapped in anyway.
719  *
720  * Giant is held on entry.
721  */
722 /* ARGSUSED*/
723 static void
724 scheduler(dummy)
725 	void *dummy;
726 {
727 	struct proc *p;
728 	struct thread *td;
729 	struct proc *pp;
730 	int slptime;
731 	int swtime;
732 	int ppri;
733 	int pri;
734 
735 	mtx_assert(&Giant, MA_OWNED | MA_NOTRECURSED);
736 	mtx_unlock(&Giant);
737 
738 loop:
739 	if (vm_page_count_min()) {
740 		VM_WAIT;
741 		goto loop;
742 	}
743 
744 	pp = NULL;
745 	ppri = INT_MIN;
746 	sx_slock(&allproc_lock);
747 	FOREACH_PROC_IN_SYSTEM(p) {
748 		PROC_LOCK(p);
749 		if (p->p_state == PRS_NEW ||
750 		    p->p_flag & (P_SWAPPINGOUT | P_SWAPPINGIN | P_INMEM)) {
751 			PROC_UNLOCK(p);
752 			continue;
753 		}
754 		swtime = (ticks - p->p_swtick) / hz;
755 		FOREACH_THREAD_IN_PROC(p, td) {
756 			/*
757 			 * An otherwise runnable thread of a process
758 			 * swapped out has only the TDI_SWAPPED bit set.
759 			 *
760 			 */
761 			thread_lock(td);
762 			if (td->td_inhibitors == TDI_SWAPPED) {
763 				slptime = (ticks - td->td_slptick) / hz;
764 				pri = swtime + slptime;
765 				if ((td->td_flags & TDF_SWAPINREQ) == 0)
766 					pri -= p->p_nice * 8;
767 				/*
768 				 * if this thread is higher priority
769 				 * and there is enough space, then select
770 				 * this process instead of the previous
771 				 * selection.
772 				 */
773 				if (pri > ppri) {
774 					pp = p;
775 					ppri = pri;
776 				}
777 			}
778 			thread_unlock(td);
779 		}
780 		PROC_UNLOCK(p);
781 	}
782 	sx_sunlock(&allproc_lock);
783 
784 	/*
785 	 * Nothing to do, back to sleep.
786 	 */
787 	if ((p = pp) == NULL) {
788 		tsleep(&proc0, PVM, "sched", MAXSLP * hz / 2);
789 		goto loop;
790 	}
791 	PROC_LOCK(p);
792 
793 	/*
794 	 * Another process may be bringing or may have already
795 	 * brought this process in while we traverse all threads.
796 	 * Or, this process may even be being swapped out again.
797 	 */
798 	if (p->p_flag & (P_INMEM | P_SWAPPINGOUT | P_SWAPPINGIN)) {
799 		PROC_UNLOCK(p);
800 		goto loop;
801 	}
802 
803 	/*
804 	 * We would like to bring someone in. (only if there is space).
805 	 * [What checks the space? ]
806 	 */
807 	faultin(p);
808 	PROC_UNLOCK(p);
809 	goto loop;
810 }
811 
812 void
813 kick_proc0(void)
814 {
815 
816 	wakeup(&proc0);
817 }
818 
819 #ifndef NO_SWAPPING
820 
821 /*
822  * Swap_idle_threshold1 is the guaranteed swapped in time for a process
823  */
824 static int swap_idle_threshold1 = 2;
825 SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold1, CTLFLAG_RW,
826     &swap_idle_threshold1, 0, "Guaranteed swapped in time for a process");
827 
828 /*
829  * Swap_idle_threshold2 is the time that a process can be idle before
830  * it will be swapped out, if idle swapping is enabled.
831  */
832 static int swap_idle_threshold2 = 10;
833 SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold2, CTLFLAG_RW,
834     &swap_idle_threshold2, 0, "Time before a process will be swapped out");
835 
836 /*
837  * First, if any processes have been sleeping or stopped for at least
838  * "swap_idle_threshold1" seconds, they are swapped out.  If, however,
839  * no such processes exist, then the longest-sleeping or stopped
840  * process is swapped out.  Finally, and only as a last resort, if
841  * there are no sleeping or stopped processes, the longest-resident
842  * process is swapped out.
843  */
844 void
845 swapout_procs(action)
846 int action;
847 {
848 	struct proc *p;
849 	struct thread *td;
850 	int didswap = 0;
851 
852 retry:
853 	sx_slock(&allproc_lock);
854 	FOREACH_PROC_IN_SYSTEM(p) {
855 		struct vmspace *vm;
856 		int minslptime = 100000;
857 		int slptime;
858 
859 		/*
860 		 * Watch out for a process in
861 		 * creation.  It may have no
862 		 * address space or lock yet.
863 		 */
864 		if (p->p_state == PRS_NEW)
865 			continue;
866 		/*
867 		 * An aio daemon switches its
868 		 * address space while running.
869 		 * Perform a quick check whether
870 		 * a process has P_SYSTEM.
871 		 */
872 		if ((p->p_flag & P_SYSTEM) != 0)
873 			continue;
874 		/*
875 		 * Do not swapout a process that
876 		 * is waiting for VM data
877 		 * structures as there is a possible
878 		 * deadlock.  Test this first as
879 		 * this may block.
880 		 *
881 		 * Lock the map until swapout
882 		 * finishes, or a thread of this
883 		 * process may attempt to alter
884 		 * the map.
885 		 */
886 		vm = vmspace_acquire_ref(p);
887 		if (vm == NULL)
888 			continue;
889 		if (!vm_map_trylock(&vm->vm_map))
890 			goto nextproc1;
891 
892 		PROC_LOCK(p);
893 		if (p->p_lock != 0 ||
894 		    (p->p_flag & (P_STOPPED_SINGLE|P_TRACED|P_SYSTEM|P_WEXIT)
895 		    ) != 0) {
896 			goto nextproc;
897 		}
898 		/*
899 		 * only aiod changes vmspace, however it will be
900 		 * skipped because of the if statement above checking
901 		 * for P_SYSTEM
902 		 */
903 		if ((p->p_flag & (P_INMEM|P_SWAPPINGOUT|P_SWAPPINGIN)) != P_INMEM)
904 			goto nextproc;
905 
906 		switch (p->p_state) {
907 		default:
908 			/* Don't swap out processes in any sort
909 			 * of 'special' state. */
910 			break;
911 
912 		case PRS_NORMAL:
913 			/*
914 			 * do not swapout a realtime process
915 			 * Check all the thread groups..
916 			 */
917 			FOREACH_THREAD_IN_PROC(p, td) {
918 				thread_lock(td);
919 				if (PRI_IS_REALTIME(td->td_pri_class)) {
920 					thread_unlock(td);
921 					goto nextproc;
922 				}
923 				slptime = (ticks - td->td_slptick) / hz;
924 				/*
925 				 * Guarantee swap_idle_threshold1
926 				 * time in memory.
927 				 */
928 				if (slptime < swap_idle_threshold1) {
929 					thread_unlock(td);
930 					goto nextproc;
931 				}
932 
933 				/*
934 				 * Do not swapout a process if it is
935 				 * waiting on a critical event of some
936 				 * kind or there is a thread whose
937 				 * pageable memory may be accessed.
938 				 *
939 				 * This could be refined to support
940 				 * swapping out a thread.
941 				 */
942 				if (!thread_safetoswapout(td)) {
943 					thread_unlock(td);
944 					goto nextproc;
945 				}
946 				/*
947 				 * If the system is under memory stress,
948 				 * or if we are swapping
949 				 * idle processes >= swap_idle_threshold2,
950 				 * then swap the process out.
951 				 */
952 				if (((action & VM_SWAP_NORMAL) == 0) &&
953 				    (((action & VM_SWAP_IDLE) == 0) ||
954 				    (slptime < swap_idle_threshold2))) {
955 					thread_unlock(td);
956 					goto nextproc;
957 				}
958 
959 				if (minslptime > slptime)
960 					minslptime = slptime;
961 				thread_unlock(td);
962 			}
963 
964 			/*
965 			 * If the pageout daemon didn't free enough pages,
966 			 * or if this process is idle and the system is
967 			 * configured to swap proactively, swap it out.
968 			 */
969 			if ((action & VM_SWAP_NORMAL) ||
970 				((action & VM_SWAP_IDLE) &&
971 				 (minslptime > swap_idle_threshold2))) {
972 				if (swapout(p) == 0)
973 					didswap++;
974 				PROC_UNLOCK(p);
975 				vm_map_unlock(&vm->vm_map);
976 				vmspace_free(vm);
977 				sx_sunlock(&allproc_lock);
978 				goto retry;
979 			}
980 		}
981 nextproc:
982 		PROC_UNLOCK(p);
983 		vm_map_unlock(&vm->vm_map);
984 nextproc1:
985 		vmspace_free(vm);
986 		continue;
987 	}
988 	sx_sunlock(&allproc_lock);
989 	/*
990 	 * If we swapped something out, and another process needed memory,
991 	 * then wakeup the sched process.
992 	 */
993 	if (didswap)
994 		wakeup(&proc0);
995 }
996 
997 static void
998 swapclear(p)
999 	struct proc *p;
1000 {
1001 	struct thread *td;
1002 
1003 	PROC_LOCK_ASSERT(p, MA_OWNED);
1004 
1005 	FOREACH_THREAD_IN_PROC(p, td) {
1006 		thread_lock(td);
1007 		td->td_flags |= TDF_INMEM;
1008 		td->td_flags &= ~TDF_SWAPINREQ;
1009 		TD_CLR_SWAPPED(td);
1010 		if (TD_CAN_RUN(td))
1011 			if (setrunnable(td)) {
1012 #ifdef INVARIANTS
1013 				/*
1014 				 * XXX: We just cleared TDI_SWAPPED
1015 				 * above and set TDF_INMEM, so this
1016 				 * should never happen.
1017 				 */
1018 				panic("not waking up swapper");
1019 #endif
1020 			}
1021 		thread_unlock(td);
1022 	}
1023 	p->p_flag &= ~(P_SWAPPINGIN|P_SWAPPINGOUT);
1024 	p->p_flag |= P_INMEM;
1025 }
1026 
1027 static int
1028 swapout(p)
1029 	struct proc *p;
1030 {
1031 	struct thread *td;
1032 
1033 	PROC_LOCK_ASSERT(p, MA_OWNED);
1034 #if defined(SWAP_DEBUG)
1035 	printf("swapping out %d\n", p->p_pid);
1036 #endif
1037 
1038 	/*
1039 	 * The states of this process and its threads may have changed
1040 	 * by now.  Assuming that there is only one pageout daemon thread,
1041 	 * this process should still be in memory.
1042 	 */
1043 	KASSERT((p->p_flag & (P_INMEM|P_SWAPPINGOUT|P_SWAPPINGIN)) == P_INMEM,
1044 		("swapout: lost a swapout race?"));
1045 
1046 	/*
1047 	 * remember the process resident count
1048 	 */
1049 	p->p_vmspace->vm_swrss = vmspace_resident_count(p->p_vmspace);
1050 	/*
1051 	 * Check and mark all threads before we proceed.
1052 	 */
1053 	p->p_flag &= ~P_INMEM;
1054 	p->p_flag |= P_SWAPPINGOUT;
1055 	FOREACH_THREAD_IN_PROC(p, td) {
1056 		thread_lock(td);
1057 		if (!thread_safetoswapout(td)) {
1058 			thread_unlock(td);
1059 			swapclear(p);
1060 			return (EBUSY);
1061 		}
1062 		td->td_flags &= ~TDF_INMEM;
1063 		TD_SET_SWAPPED(td);
1064 		thread_unlock(td);
1065 	}
1066 	td = FIRST_THREAD_IN_PROC(p);
1067 	++td->td_ru.ru_nswap;
1068 	PROC_UNLOCK(p);
1069 
1070 	/*
1071 	 * This list is stable because all threads are now prevented from
1072 	 * running.  The list is only modified in the context of a running
1073 	 * thread in this process.
1074 	 */
1075 	FOREACH_THREAD_IN_PROC(p, td)
1076 		vm_thread_swapout(td);
1077 
1078 	PROC_LOCK(p);
1079 	p->p_flag &= ~P_SWAPPINGOUT;
1080 	p->p_swtick = ticks;
1081 	return (0);
1082 }
1083 #endif /* !NO_SWAPPING */
1084