xref: /freebsd/sys/vm/vm_glue.c (revision 390e8cc2974df1888369c06339ef8e0e92b312b6)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_glue.c	8.6 (Berkeley) 1/5/94
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  *
62  * $FreeBSD$
63  */
64 
65 #include "opt_vm.h"
66 
67 #include <sys/param.h>
68 #include <sys/systm.h>
69 #include <sys/limits.h>
70 #include <sys/lock.h>
71 #include <sys/mutex.h>
72 #include <sys/proc.h>
73 #include <sys/resourcevar.h>
74 #include <sys/shm.h>
75 #include <sys/vmmeter.h>
76 #include <sys/sx.h>
77 #include <sys/sysctl.h>
78 
79 #include <sys/kernel.h>
80 #include <sys/ktr.h>
81 #include <sys/unistd.h>
82 
83 #include <vm/vm.h>
84 #include <vm/vm_param.h>
85 #include <vm/pmap.h>
86 #include <vm/vm_map.h>
87 #include <vm/vm_page.h>
88 #include <vm/vm_pageout.h>
89 #include <vm/vm_object.h>
90 #include <vm/vm_kern.h>
91 #include <vm/vm_extern.h>
92 #include <vm/vm_pager.h>
93 #include <vm/swap_pager.h>
94 
95 #include <sys/user.h>
96 
97 extern int maxslp;
98 
99 /*
100  * System initialization
101  *
102  * Note: proc0 from proc.h
103  */
104 static void vm_init_limits(void *);
105 SYSINIT(vm_limits, SI_SUB_VM_CONF, SI_ORDER_FIRST, vm_init_limits, &proc0)
106 
107 /*
108  * THIS MUST BE THE LAST INITIALIZATION ITEM!!!
109  *
110  * Note: run scheduling should be divorced from the vm system.
111  */
112 static void scheduler(void *);
113 SYSINIT(scheduler, SI_SUB_RUN_SCHEDULER, SI_ORDER_FIRST, scheduler, NULL)
114 
115 #ifndef NO_SWAPPING
116 static void swapout(struct proc *);
117 static void vm_proc_swapin(struct proc *p);
118 static void vm_proc_swapout(struct proc *p);
119 #endif
120 
121 /*
122  * MPSAFE
123  *
124  * WARNING!  This code calls vm_map_check_protection() which only checks
125  * the associated vm_map_entry range.  It does not determine whether the
126  * contents of the memory is actually readable or writable.  In most cases
127  * just checking the vm_map_entry is sufficient within the kernel's address
128  * space.
129  */
130 int
131 kernacc(addr, len, rw)
132 	void *addr;
133 	int len, rw;
134 {
135 	boolean_t rv;
136 	vm_offset_t saddr, eaddr;
137 	vm_prot_t prot;
138 
139 	KASSERT((rw & ~VM_PROT_ALL) == 0,
140 	    ("illegal ``rw'' argument to kernacc (%x)\n", rw));
141 	prot = rw;
142 	saddr = trunc_page((vm_offset_t)addr);
143 	eaddr = round_page((vm_offset_t)addr + len);
144 	rv = vm_map_check_protection(kernel_map, saddr, eaddr, prot);
145 	return (rv == TRUE);
146 }
147 
148 /*
149  * MPSAFE
150  *
151  * WARNING!  This code calls vm_map_check_protection() which only checks
152  * the associated vm_map_entry range.  It does not determine whether the
153  * contents of the memory is actually readable or writable.  vmapbuf(),
154  * vm_fault_quick(), or copyin()/copout()/su*()/fu*() functions should be
155  * used in conjuction with this call.
156  */
157 int
158 useracc(addr, len, rw)
159 	void *addr;
160 	int len, rw;
161 {
162 	boolean_t rv;
163 	vm_prot_t prot;
164 	vm_map_t map;
165 
166 	KASSERT((rw & ~VM_PROT_ALL) == 0,
167 	    ("illegal ``rw'' argument to useracc (%x)\n", rw));
168 	prot = rw;
169 	map = &curproc->p_vmspace->vm_map;
170 	if ((vm_offset_t)addr + len > vm_map_max(map) ||
171 	    (vm_offset_t)addr + len < (vm_offset_t)addr) {
172 		return (FALSE);
173 	}
174 	rv = vm_map_check_protection(map, trunc_page((vm_offset_t)addr),
175 	    round_page((vm_offset_t)addr + len), prot);
176 	return (rv == TRUE);
177 }
178 
179 /*
180  * MPSAFE
181  */
182 void
183 vslock(addr, len)
184 	void *addr;
185 	u_int len;
186 {
187 
188 	vm_map_wire(&curproc->p_vmspace->vm_map, trunc_page((vm_offset_t)addr),
189 	    round_page((vm_offset_t)addr + len), FALSE);
190 }
191 
192 /*
193  * MPSAFE
194  */
195 void
196 vsunlock(addr, len)
197 	void *addr;
198 	u_int len;
199 {
200 
201 	vm_map_unwire(&curproc->p_vmspace->vm_map,
202 	    trunc_page((vm_offset_t)addr),
203 	    round_page((vm_offset_t)addr + len), FALSE);
204 }
205 
206 /*
207  * Create the U area for a new process.
208  * This routine directly affects the fork perf for a process.
209  */
210 void
211 vm_proc_new(struct proc *p)
212 {
213 	vm_page_t ma[UAREA_PAGES];
214 	vm_object_t upobj;
215 	vm_offset_t up;
216 	vm_page_t m;
217 	u_int i;
218 
219 	/*
220 	 * Allocate object for the upage.
221 	 */
222 	upobj = vm_object_allocate(OBJT_DEFAULT, UAREA_PAGES);
223 	p->p_upages_obj = upobj;
224 
225 	/*
226 	 * Get a kernel virtual address for the U area for this process.
227 	 */
228 	up = kmem_alloc_nofault(kernel_map, UAREA_PAGES * PAGE_SIZE);
229 	if (up == 0)
230 		panic("vm_proc_new: upage allocation failed");
231 	p->p_uarea = (struct user *)up;
232 
233 	for (i = 0; i < UAREA_PAGES; i++) {
234 		/*
235 		 * Get a uarea page.
236 		 */
237 		m = vm_page_grab(upobj, i,
238 		    VM_ALLOC_NORMAL | VM_ALLOC_RETRY | VM_ALLOC_WIRED);
239 		ma[i] = m;
240 
241 		vm_page_lock_queues();
242 		vm_page_wakeup(m);
243 		vm_page_flag_clear(m, PG_ZERO);
244 		m->valid = VM_PAGE_BITS_ALL;
245 		vm_page_unlock_queues();
246 	}
247 
248 	/*
249 	 * Enter the pages into the kernel address space.
250 	 */
251 	pmap_qenter(up, ma, UAREA_PAGES);
252 }
253 
254 /*
255  * Dispose the U area for a process that has exited.
256  * This routine directly impacts the exit perf of a process.
257  * XXX proc_zone is marked UMA_ZONE_NOFREE, so this should never be called.
258  */
259 void
260 vm_proc_dispose(struct proc *p)
261 {
262 	vm_object_t upobj;
263 	vm_offset_t up;
264 	vm_page_t m;
265 
266 	upobj = p->p_upages_obj;
267 	VM_OBJECT_LOCK(upobj);
268 	if (upobj->resident_page_count != UAREA_PAGES)
269 		panic("vm_proc_dispose: incorrect number of pages in upobj");
270 	vm_page_lock_queues();
271 	while ((m = TAILQ_FIRST(&upobj->memq)) != NULL) {
272 		vm_page_busy(m);
273 		vm_page_unwire(m, 0);
274 		vm_page_free(m);
275 	}
276 	vm_page_unlock_queues();
277 	VM_OBJECT_UNLOCK(upobj);
278 	up = (vm_offset_t)p->p_uarea;
279 	pmap_qremove(up, UAREA_PAGES);
280 	kmem_free(kernel_map, up, UAREA_PAGES * PAGE_SIZE);
281 	vm_object_deallocate(upobj);
282 }
283 
284 #ifndef NO_SWAPPING
285 /*
286  * Allow the U area for a process to be prejudicially paged out.
287  */
288 static void
289 vm_proc_swapout(struct proc *p)
290 {
291 	vm_object_t upobj;
292 	vm_offset_t up;
293 	vm_page_t m;
294 
295 	upobj = p->p_upages_obj;
296 	VM_OBJECT_LOCK(upobj);
297 	if (upobj->resident_page_count != UAREA_PAGES)
298 		panic("vm_proc_dispose: incorrect number of pages in upobj");
299 	vm_page_lock_queues();
300 	TAILQ_FOREACH(m, &upobj->memq, listq) {
301 		vm_page_dirty(m);
302 		vm_page_unwire(m, 0);
303 	}
304 	vm_page_unlock_queues();
305 	VM_OBJECT_UNLOCK(upobj);
306 	up = (vm_offset_t)p->p_uarea;
307 	pmap_qremove(up, UAREA_PAGES);
308 }
309 
310 /*
311  * Bring the U area for a specified process back in.
312  */
313 static void
314 vm_proc_swapin(struct proc *p)
315 {
316 	vm_page_t ma[UAREA_PAGES];
317 	vm_object_t upobj;
318 	vm_offset_t up;
319 	vm_page_t m;
320 	int rv;
321 	int i;
322 
323 	upobj = p->p_upages_obj;
324 	for (i = 0; i < UAREA_PAGES; i++) {
325 		m = vm_page_grab(upobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
326 		if (m->valid != VM_PAGE_BITS_ALL) {
327 			rv = vm_pager_get_pages(upobj, &m, 1, 0);
328 			if (rv != VM_PAGER_OK)
329 				panic("vm_proc_swapin: cannot get upage");
330 		}
331 		ma[i] = m;
332 	}
333 	VM_OBJECT_LOCK(upobj);
334 	if (upobj->resident_page_count != UAREA_PAGES)
335 		panic("vm_proc_swapin: lost pages from upobj");
336 	vm_page_lock_queues();
337 	TAILQ_FOREACH(m, &upobj->memq, listq) {
338 		m->valid = VM_PAGE_BITS_ALL;
339 		vm_page_wire(m);
340 		vm_page_wakeup(m);
341 	}
342 	vm_page_unlock_queues();
343 	VM_OBJECT_UNLOCK(upobj);
344 	up = (vm_offset_t)p->p_uarea;
345 	pmap_qenter(up, ma, UAREA_PAGES);
346 }
347 
348 /*
349  * Swap in the UAREAs of all processes swapped out to the given device.
350  * The pages in the UAREA are marked dirty and their swap metadata is freed.
351  */
352 void
353 vm_proc_swapin_all(int devidx)
354 {
355 	struct proc *p;
356 	vm_object_t object;
357 	vm_page_t m;
358 
359 retry:
360 	sx_slock(&allproc_lock);
361 	FOREACH_PROC_IN_SYSTEM(p) {
362 		PROC_LOCK(p);
363 		object = p->p_upages_obj;
364 		if (object != NULL) {
365 			VM_OBJECT_LOCK(object);
366 			if (swap_pager_isswapped(object, devidx)) {
367 				VM_OBJECT_UNLOCK(object);
368 				sx_sunlock(&allproc_lock);
369 				faultin(p);
370 				PROC_UNLOCK(p);
371 				VM_OBJECT_LOCK(object);
372 				vm_page_lock_queues();
373 				TAILQ_FOREACH(m, &object->memq, listq)
374 					vm_page_dirty(m);
375 				vm_page_unlock_queues();
376 				swap_pager_freespace(object, 0,
377 				    object->un_pager.swp.swp_bcount);
378 				VM_OBJECT_UNLOCK(object);
379 				goto retry;
380 			}
381 			VM_OBJECT_UNLOCK(object);
382 		}
383 		PROC_UNLOCK(p);
384 	}
385 	sx_sunlock(&allproc_lock);
386 }
387 #endif
388 
389 /*
390  * Implement fork's actions on an address space.
391  * Here we arrange for the address space to be copied or referenced,
392  * allocate a user struct (pcb and kernel stack), then call the
393  * machine-dependent layer to fill those in and make the new process
394  * ready to run.  The new process is set up so that it returns directly
395  * to user mode to avoid stack copying and relocation problems.
396  */
397 void
398 vm_forkproc(td, p2, td2, flags)
399 	struct thread *td;
400 	struct proc *p2;
401 	struct thread *td2;
402 	int flags;
403 {
404 	struct proc *p1 = td->td_proc;
405 	struct user *up;
406 
407 	GIANT_REQUIRED;
408 
409 	if ((flags & RFPROC) == 0) {
410 		/*
411 		 * Divorce the memory, if it is shared, essentially
412 		 * this changes shared memory amongst threads, into
413 		 * COW locally.
414 		 */
415 		if ((flags & RFMEM) == 0) {
416 			if (p1->p_vmspace->vm_refcnt > 1) {
417 				vmspace_unshare(p1);
418 			}
419 		}
420 		cpu_fork(td, p2, td2, flags);
421 		return;
422 	}
423 
424 	if (flags & RFMEM) {
425 		p2->p_vmspace = p1->p_vmspace;
426 		p1->p_vmspace->vm_refcnt++;
427 	}
428 
429 	while (vm_page_count_severe()) {
430 		VM_WAIT;
431 	}
432 
433 	if ((flags & RFMEM) == 0) {
434 		p2->p_vmspace = vmspace_fork(p1->p_vmspace);
435 
436 		pmap_pinit2(vmspace_pmap(p2->p_vmspace));
437 
438 		if (p1->p_vmspace->vm_shm)
439 			shmfork(p1, p2);
440 	}
441 
442 	/* XXXKSE this is unsatisfactory but should be adequate */
443 	up = p2->p_uarea;
444 	MPASS(p2->p_sigacts != NULL);
445 
446 	/*
447 	 * p_stats currently points at fields in the user struct
448 	 * but not at &u, instead at p_addr. Copy parts of
449 	 * p_stats; zero the rest of p_stats (statistics).
450 	 */
451 	p2->p_stats = &up->u_stats;
452 	bzero(&up->u_stats.pstat_startzero,
453 	    (unsigned) ((caddr_t) &up->u_stats.pstat_endzero -
454 		(caddr_t) &up->u_stats.pstat_startzero));
455 	bcopy(&p1->p_stats->pstat_startcopy, &up->u_stats.pstat_startcopy,
456 	    ((caddr_t) &up->u_stats.pstat_endcopy -
457 		(caddr_t) &up->u_stats.pstat_startcopy));
458 
459 	/*
460 	 * cpu_fork will copy and update the pcb, set up the kernel stack,
461 	 * and make the child ready to run.
462 	 */
463 	cpu_fork(td, p2, td2, flags);
464 }
465 
466 /*
467  * Called after process has been wait(2)'ed apon and is being reaped.
468  * The idea is to reclaim resources that we could not reclaim while
469  * the process was still executing.
470  */
471 void
472 vm_waitproc(p)
473 	struct proc *p;
474 {
475 
476 	GIANT_REQUIRED;
477 	cpu_wait(p);
478 	vmspace_exitfree(p);		/* and clean-out the vmspace */
479 }
480 
481 /*
482  * Set default limits for VM system.
483  * Called for proc 0, and then inherited by all others.
484  *
485  * XXX should probably act directly on proc0.
486  */
487 static void
488 vm_init_limits(udata)
489 	void *udata;
490 {
491 	struct proc *p = udata;
492 	int rss_limit;
493 
494 	/*
495 	 * Set up the initial limits on process VM. Set the maximum resident
496 	 * set size to be half of (reasonably) available memory.  Since this
497 	 * is a soft limit, it comes into effect only when the system is out
498 	 * of memory - half of main memory helps to favor smaller processes,
499 	 * and reduces thrashing of the object cache.
500 	 */
501 	p->p_rlimit[RLIMIT_STACK].rlim_cur = dflssiz;
502 	p->p_rlimit[RLIMIT_STACK].rlim_max = maxssiz;
503 	p->p_rlimit[RLIMIT_DATA].rlim_cur = dfldsiz;
504 	p->p_rlimit[RLIMIT_DATA].rlim_max = maxdsiz;
505 	/* limit the limit to no less than 2MB */
506 	rss_limit = max(cnt.v_free_count, 512);
507 	p->p_rlimit[RLIMIT_RSS].rlim_cur = ptoa(rss_limit);
508 	p->p_rlimit[RLIMIT_RSS].rlim_max = RLIM_INFINITY;
509 }
510 
511 void
512 faultin(p)
513 	struct proc *p;
514 {
515 #ifdef NO_SWAPPING
516 
517 	PROC_LOCK_ASSERT(p, MA_OWNED);
518 	if ((p->p_sflag & PS_INMEM) == 0)
519 		panic("faultin: proc swapped out with NO_SWAPPING!");
520 #else /* !NO_SWAPPING */
521 	struct thread *td;
522 
523 	GIANT_REQUIRED;
524 	PROC_LOCK_ASSERT(p, MA_OWNED);
525 	/*
526 	 * If another process is swapping in this process,
527 	 * just wait until it finishes.
528 	 */
529 	if (p->p_sflag & PS_SWAPPINGIN)
530 		msleep(&p->p_sflag, &p->p_mtx, PVM, "faultin", 0);
531 	else if ((p->p_sflag & PS_INMEM) == 0) {
532 		/*
533 		 * Don't let another thread swap process p out while we are
534 		 * busy swapping it in.
535 		 */
536 		++p->p_lock;
537 		mtx_lock_spin(&sched_lock);
538 		p->p_sflag |= PS_SWAPPINGIN;
539 		mtx_unlock_spin(&sched_lock);
540 		PROC_UNLOCK(p);
541 
542 		vm_proc_swapin(p);
543 		FOREACH_THREAD_IN_PROC(p, td)
544 			pmap_swapin_thread(td);
545 
546 		PROC_LOCK(p);
547 		mtx_lock_spin(&sched_lock);
548 		p->p_sflag &= ~PS_SWAPPINGIN;
549 		p->p_sflag |= PS_INMEM;
550 		FOREACH_THREAD_IN_PROC(p, td) {
551 			TD_CLR_SWAPPED(td);
552 			if (TD_CAN_RUN(td))
553 				setrunnable(td);
554 		}
555 		mtx_unlock_spin(&sched_lock);
556 
557 		wakeup(&p->p_sflag);
558 
559 		/* Allow other threads to swap p out now. */
560 		--p->p_lock;
561 	}
562 #endif /* NO_SWAPPING */
563 }
564 
565 /*
566  * This swapin algorithm attempts to swap-in processes only if there
567  * is enough space for them.  Of course, if a process waits for a long
568  * time, it will be swapped in anyway.
569  *
570  *  XXXKSE - process with the thread with highest priority counts..
571  *
572  * Giant is still held at this point, to be released in tsleep.
573  */
574 /* ARGSUSED*/
575 static void
576 scheduler(dummy)
577 	void *dummy;
578 {
579 	struct proc *p;
580 	struct thread *td;
581 	int pri;
582 	struct proc *pp;
583 	int ppri;
584 
585 	mtx_assert(&Giant, MA_OWNED | MA_NOTRECURSED);
586 	/* GIANT_REQUIRED */
587 
588 loop:
589 	if (vm_page_count_min()) {
590 		VM_WAIT;
591 		goto loop;
592 	}
593 
594 	pp = NULL;
595 	ppri = INT_MIN;
596 	sx_slock(&allproc_lock);
597 	FOREACH_PROC_IN_SYSTEM(p) {
598 		struct ksegrp *kg;
599 		if (p->p_sflag & (PS_INMEM | PS_SWAPPINGOUT | PS_SWAPPINGIN)) {
600 			continue;
601 		}
602 		mtx_lock_spin(&sched_lock);
603 		FOREACH_THREAD_IN_PROC(p, td) {
604 			/*
605 			 * An otherwise runnable thread of a process
606 			 * swapped out has only the TDI_SWAPPED bit set.
607 			 *
608 			 */
609 			if (td->td_inhibitors == TDI_SWAPPED) {
610 				kg = td->td_ksegrp;
611 				pri = p->p_swtime + kg->kg_slptime;
612 				if ((p->p_sflag & PS_SWAPINREQ) == 0) {
613 					pri -= kg->kg_nice * 8;
614 				}
615 
616 				/*
617 				 * if this ksegrp is higher priority
618 				 * and there is enough space, then select
619 				 * this process instead of the previous
620 				 * selection.
621 				 */
622 				if (pri > ppri) {
623 					pp = p;
624 					ppri = pri;
625 				}
626 			}
627 		}
628 		mtx_unlock_spin(&sched_lock);
629 	}
630 	sx_sunlock(&allproc_lock);
631 
632 	/*
633 	 * Nothing to do, back to sleep.
634 	 */
635 	if ((p = pp) == NULL) {
636 		tsleep(&proc0, PVM, "sched", maxslp * hz / 2);
637 		goto loop;
638 	}
639 	PROC_LOCK(p);
640 
641 	/*
642 	 * Another process may be bringing or may have already
643 	 * brought this process in while we traverse all threads.
644 	 * Or, this process may even be being swapped out again.
645 	 */
646 	if (p->p_sflag & (PS_INMEM | PS_SWAPPINGOUT | PS_SWAPPINGIN)) {
647 		PROC_UNLOCK(p);
648 		goto loop;
649 	}
650 
651 	mtx_lock_spin(&sched_lock);
652 	p->p_sflag &= ~PS_SWAPINREQ;
653 	mtx_unlock_spin(&sched_lock);
654 
655 	/*
656 	 * We would like to bring someone in. (only if there is space).
657 	 * [What checks the space? ]
658 	 */
659 	faultin(p);
660 	PROC_UNLOCK(p);
661 	mtx_lock_spin(&sched_lock);
662 	p->p_swtime = 0;
663 	mtx_unlock_spin(&sched_lock);
664 	goto loop;
665 }
666 
667 #ifndef NO_SWAPPING
668 
669 /*
670  * Swap_idle_threshold1 is the guaranteed swapped in time for a process
671  */
672 static int swap_idle_threshold1 = 2;
673 SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold1, CTLFLAG_RW,
674     &swap_idle_threshold1, 0, "Guaranteed swapped in time for a process");
675 
676 /*
677  * Swap_idle_threshold2 is the time that a process can be idle before
678  * it will be swapped out, if idle swapping is enabled.
679  */
680 static int swap_idle_threshold2 = 10;
681 SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold2, CTLFLAG_RW,
682     &swap_idle_threshold2, 0, "Time before a process will be swapped out");
683 
684 /*
685  * Swapout is driven by the pageout daemon.  Very simple, we find eligible
686  * procs and unwire their u-areas.  We try to always "swap" at least one
687  * process in case we need the room for a swapin.
688  * If any procs have been sleeping/stopped for at least maxslp seconds,
689  * they are swapped.  Else, we swap the longest-sleeping or stopped process,
690  * if any, otherwise the longest-resident process.
691  */
692 void
693 swapout_procs(action)
694 int action;
695 {
696 	struct proc *p;
697 	struct thread *td;
698 	struct ksegrp *kg;
699 	int didswap = 0;
700 
701 	GIANT_REQUIRED;
702 
703 retry:
704 	sx_slock(&allproc_lock);
705 	FOREACH_PROC_IN_SYSTEM(p) {
706 		struct vmspace *vm;
707 		int minslptime = 100000;
708 
709 		/*
710 		 * Watch out for a process in
711 		 * creation.  It may have no
712 		 * address space or lock yet.
713 		 */
714 		mtx_lock_spin(&sched_lock);
715 		if (p->p_state == PRS_NEW) {
716 			mtx_unlock_spin(&sched_lock);
717 			continue;
718 		}
719 		mtx_unlock_spin(&sched_lock);
720 
721 		/*
722 		 * An aio daemon switches its
723 		 * address space while running.
724 		 * Perform a quick check whether
725 		 * a process has P_SYSTEM.
726 		 */
727 		if ((p->p_flag & P_SYSTEM) != 0)
728 			continue;
729 
730 		/*
731 		 * Do not swapout a process that
732 		 * is waiting for VM data
733 		 * structures as there is a possible
734 		 * deadlock.  Test this first as
735 		 * this may block.
736 		 *
737 		 * Lock the map until swapout
738 		 * finishes, or a thread of this
739 		 * process may attempt to alter
740 		 * the map.
741 		 */
742 		PROC_LOCK(p);
743 		vm = p->p_vmspace;
744 		KASSERT(vm != NULL,
745 			("swapout_procs: a process has no address space"));
746 		++vm->vm_refcnt;
747 		PROC_UNLOCK(p);
748 		if (!vm_map_trylock(&vm->vm_map))
749 			goto nextproc1;
750 
751 		PROC_LOCK(p);
752 		if (p->p_lock != 0 ||
753 		    (p->p_flag & (P_STOPPED_SINGLE|P_TRACED|P_SYSTEM|P_WEXIT)
754 		    ) != 0) {
755 			goto nextproc2;
756 		}
757 		/*
758 		 * only aiod changes vmspace, however it will be
759 		 * skipped because of the if statement above checking
760 		 * for P_SYSTEM
761 		 */
762 		if ((p->p_sflag & (PS_INMEM|PS_SWAPPINGOUT|PS_SWAPPINGIN)) != PS_INMEM)
763 			goto nextproc2;
764 
765 		switch (p->p_state) {
766 		default:
767 			/* Don't swap out processes in any sort
768 			 * of 'special' state. */
769 			break;
770 
771 		case PRS_NORMAL:
772 			mtx_lock_spin(&sched_lock);
773 			/*
774 			 * do not swapout a realtime process
775 			 * Check all the thread groups..
776 			 */
777 			FOREACH_KSEGRP_IN_PROC(p, kg) {
778 				if (PRI_IS_REALTIME(kg->kg_pri_class))
779 					goto nextproc;
780 
781 				/*
782 				 * Guarantee swap_idle_threshold1
783 				 * time in memory.
784 				 */
785 				if (kg->kg_slptime < swap_idle_threshold1)
786 					goto nextproc;
787 
788 				/*
789 				 * Do not swapout a process if it is
790 				 * waiting on a critical event of some
791 				 * kind or there is a thread whose
792 				 * pageable memory may be accessed.
793 				 *
794 				 * This could be refined to support
795 				 * swapping out a thread.
796 				 */
797 				FOREACH_THREAD_IN_GROUP(kg, td) {
798 					if ((td->td_priority) < PSOCK ||
799 					    !thread_safetoswapout(td))
800 						goto nextproc;
801 				}
802 				/*
803 				 * If the system is under memory stress,
804 				 * or if we are swapping
805 				 * idle processes >= swap_idle_threshold2,
806 				 * then swap the process out.
807 				 */
808 				if (((action & VM_SWAP_NORMAL) == 0) &&
809 				    (((action & VM_SWAP_IDLE) == 0) ||
810 				    (kg->kg_slptime < swap_idle_threshold2)))
811 					goto nextproc;
812 
813 				if (minslptime > kg->kg_slptime)
814 					minslptime = kg->kg_slptime;
815 			}
816 
817 			/*
818 			 * If the process has been asleep for awhile and had
819 			 * most of its pages taken away already, swap it out.
820 			 */
821 			if ((action & VM_SWAP_NORMAL) ||
822 				((action & VM_SWAP_IDLE) &&
823 				 (minslptime > swap_idle_threshold2))) {
824 				swapout(p);
825 				didswap++;
826 				mtx_unlock_spin(&sched_lock);
827 				PROC_UNLOCK(p);
828 				vm_map_unlock(&vm->vm_map);
829 				vmspace_free(vm);
830 				sx_sunlock(&allproc_lock);
831 				goto retry;
832 			}
833 nextproc:
834 			mtx_unlock_spin(&sched_lock);
835 		}
836 nextproc2:
837 		PROC_UNLOCK(p);
838 		vm_map_unlock(&vm->vm_map);
839 nextproc1:
840 		vmspace_free(vm);
841 		continue;
842 	}
843 	sx_sunlock(&allproc_lock);
844 	/*
845 	 * If we swapped something out, and another process needed memory,
846 	 * then wakeup the sched process.
847 	 */
848 	if (didswap)
849 		wakeup(&proc0);
850 }
851 
852 static void
853 swapout(p)
854 	struct proc *p;
855 {
856 	struct thread *td;
857 
858 	PROC_LOCK_ASSERT(p, MA_OWNED);
859 	mtx_assert(&sched_lock, MA_OWNED | MA_NOTRECURSED);
860 #if defined(SWAP_DEBUG)
861 	printf("swapping out %d\n", p->p_pid);
862 #endif
863 
864 	/*
865 	 * The states of this process and its threads may have changed
866 	 * by now.  Assuming that there is only one pageout daemon thread,
867 	 * this process should still be in memory.
868 	 */
869 	KASSERT((p->p_sflag & (PS_INMEM|PS_SWAPPINGOUT|PS_SWAPPINGIN)) == PS_INMEM,
870 		("swapout: lost a swapout race?"));
871 
872 #if defined(INVARIANTS)
873 	/*
874 	 * Make sure that all threads are safe to be swapped out.
875 	 *
876 	 * Alternatively, we could swap out only safe threads.
877 	 */
878 	FOREACH_THREAD_IN_PROC(p, td) {
879 		KASSERT(thread_safetoswapout(td),
880 			("swapout: there is a thread not safe for swapout"));
881 	}
882 #endif /* INVARIANTS */
883 
884 	++p->p_stats->p_ru.ru_nswap;
885 	/*
886 	 * remember the process resident count
887 	 */
888 	p->p_vmspace->vm_swrss = vmspace_resident_count(p->p_vmspace);
889 
890 	p->p_sflag &= ~PS_INMEM;
891 	p->p_sflag |= PS_SWAPPINGOUT;
892 	PROC_UNLOCK(p);
893 	FOREACH_THREAD_IN_PROC(p, td)
894 		TD_SET_SWAPPED(td);
895 	mtx_unlock_spin(&sched_lock);
896 
897 	vm_proc_swapout(p);
898 	FOREACH_THREAD_IN_PROC(p, td)
899 		pmap_swapout_thread(td);
900 
901 	PROC_LOCK(p);
902 	mtx_lock_spin(&sched_lock);
903 	p->p_sflag &= ~PS_SWAPPINGOUT;
904 	p->p_swtime = 0;
905 }
906 #endif /* !NO_SWAPPING */
907