xref: /freebsd/sys/vm/vm_glue.c (revision 2e36db147e0edeb1b213f283f9b41a8d1a902a88)
1 /*-
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)vm_glue.c	8.6 (Berkeley) 1/5/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Permission to use, copy, modify and distribute this software and
39  * its documentation is hereby granted, provided that both the copyright
40  * notice and this permission notice appear in all copies of the
41  * software, derivative works or modified versions, and any portions
42  * thereof, and that both notices appear in supporting documentation.
43  *
44  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
45  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
46  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
47  *
48  * Carnegie Mellon requests users of this software to return to
49  *
50  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
51  *  School of Computer Science
52  *  Carnegie Mellon University
53  *  Pittsburgh PA 15213-3890
54  *
55  * any improvements or extensions that they make and grant Carnegie the
56  * rights to redistribute these changes.
57  */
58 
59 #include <sys/cdefs.h>
60 __FBSDID("$FreeBSD$");
61 
62 #include "opt_vm.h"
63 #include "opt_kstack_pages.h"
64 #include "opt_kstack_max_pages.h"
65 #include "opt_kstack_usage_prof.h"
66 
67 #include <sys/param.h>
68 #include <sys/systm.h>
69 #include <sys/limits.h>
70 #include <sys/lock.h>
71 #include <sys/malloc.h>
72 #include <sys/mutex.h>
73 #include <sys/proc.h>
74 #include <sys/racct.h>
75 #include <sys/resourcevar.h>
76 #include <sys/rwlock.h>
77 #include <sys/sched.h>
78 #include <sys/sf_buf.h>
79 #include <sys/shm.h>
80 #include <sys/vmmeter.h>
81 #include <sys/vmem.h>
82 #include <sys/sx.h>
83 #include <sys/sysctl.h>
84 #include <sys/_kstack_cache.h>
85 #include <sys/eventhandler.h>
86 #include <sys/kernel.h>
87 #include <sys/ktr.h>
88 #include <sys/unistd.h>
89 
90 #include <vm/vm.h>
91 #include <vm/vm_param.h>
92 #include <vm/pmap.h>
93 #include <vm/vm_map.h>
94 #include <vm/vm_page.h>
95 #include <vm/vm_pageout.h>
96 #include <vm/vm_object.h>
97 #include <vm/vm_kern.h>
98 #include <vm/vm_extern.h>
99 #include <vm/vm_pager.h>
100 #include <vm/swap_pager.h>
101 
102 #include <machine/cpu.h>
103 
104 /*
105  * MPSAFE
106  *
107  * WARNING!  This code calls vm_map_check_protection() which only checks
108  * the associated vm_map_entry range.  It does not determine whether the
109  * contents of the memory is actually readable or writable.  In most cases
110  * just checking the vm_map_entry is sufficient within the kernel's address
111  * space.
112  */
113 int
114 kernacc(addr, len, rw)
115 	void *addr;
116 	int len, rw;
117 {
118 	boolean_t rv;
119 	vm_offset_t saddr, eaddr;
120 	vm_prot_t prot;
121 
122 	KASSERT((rw & ~VM_PROT_ALL) == 0,
123 	    ("illegal ``rw'' argument to kernacc (%x)\n", rw));
124 
125 	if ((vm_offset_t)addr + len > kernel_map->max_offset ||
126 	    (vm_offset_t)addr + len < (vm_offset_t)addr)
127 		return (FALSE);
128 
129 	prot = rw;
130 	saddr = trunc_page((vm_offset_t)addr);
131 	eaddr = round_page((vm_offset_t)addr + len);
132 	vm_map_lock_read(kernel_map);
133 	rv = vm_map_check_protection(kernel_map, saddr, eaddr, prot);
134 	vm_map_unlock_read(kernel_map);
135 	return (rv == TRUE);
136 }
137 
138 /*
139  * MPSAFE
140  *
141  * WARNING!  This code calls vm_map_check_protection() which only checks
142  * the associated vm_map_entry range.  It does not determine whether the
143  * contents of the memory is actually readable or writable.  vmapbuf(),
144  * vm_fault_quick(), or copyin()/copout()/su*()/fu*() functions should be
145  * used in conjunction with this call.
146  */
147 int
148 useracc(addr, len, rw)
149 	void *addr;
150 	int len, rw;
151 {
152 	boolean_t rv;
153 	vm_prot_t prot;
154 	vm_map_t map;
155 
156 	KASSERT((rw & ~VM_PROT_ALL) == 0,
157 	    ("illegal ``rw'' argument to useracc (%x)\n", rw));
158 	prot = rw;
159 	map = &curproc->p_vmspace->vm_map;
160 	if ((vm_offset_t)addr + len > vm_map_max(map) ||
161 	    (vm_offset_t)addr + len < (vm_offset_t)addr) {
162 		return (FALSE);
163 	}
164 	vm_map_lock_read(map);
165 	rv = vm_map_check_protection(map, trunc_page((vm_offset_t)addr),
166 	    round_page((vm_offset_t)addr + len), prot);
167 	vm_map_unlock_read(map);
168 	return (rv == TRUE);
169 }
170 
171 int
172 vslock(void *addr, size_t len)
173 {
174 	vm_offset_t end, last, start;
175 	vm_size_t npages;
176 	int error;
177 
178 	last = (vm_offset_t)addr + len;
179 	start = trunc_page((vm_offset_t)addr);
180 	end = round_page(last);
181 	if (last < (vm_offset_t)addr || end < (vm_offset_t)addr)
182 		return (EINVAL);
183 	npages = atop(end - start);
184 	if (npages > vm_page_max_wired)
185 		return (ENOMEM);
186 #if 0
187 	/*
188 	 * XXX - not yet
189 	 *
190 	 * The limit for transient usage of wired pages should be
191 	 * larger than for "permanent" wired pages (mlock()).
192 	 *
193 	 * Also, the sysctl code, which is the only present user
194 	 * of vslock(), does a hard loop on EAGAIN.
195 	 */
196 	if (npages + vm_cnt.v_wire_count > vm_page_max_wired)
197 		return (EAGAIN);
198 #endif
199 	error = vm_map_wire(&curproc->p_vmspace->vm_map, start, end,
200 	    VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
201 	/*
202 	 * Return EFAULT on error to match copy{in,out}() behaviour
203 	 * rather than returning ENOMEM like mlock() would.
204 	 */
205 	return (error == KERN_SUCCESS ? 0 : EFAULT);
206 }
207 
208 void
209 vsunlock(void *addr, size_t len)
210 {
211 
212 	/* Rely on the parameter sanity checks performed by vslock(). */
213 	(void)vm_map_unwire(&curproc->p_vmspace->vm_map,
214 	    trunc_page((vm_offset_t)addr), round_page((vm_offset_t)addr + len),
215 	    VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
216 }
217 
218 /*
219  * Pin the page contained within the given object at the given offset.  If the
220  * page is not resident, allocate and load it using the given object's pager.
221  * Return the pinned page if successful; otherwise, return NULL.
222  */
223 static vm_page_t
224 vm_imgact_hold_page(vm_object_t object, vm_ooffset_t offset)
225 {
226 	vm_page_t m;
227 	vm_pindex_t pindex;
228 	int rv;
229 
230 	VM_OBJECT_WLOCK(object);
231 	pindex = OFF_TO_IDX(offset);
232 	m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY);
233 	if (m->valid != VM_PAGE_BITS_ALL) {
234 		vm_page_xbusy(m);
235 		rv = vm_pager_get_pages(object, &m, 1, NULL, NULL);
236 		if (rv != VM_PAGER_OK) {
237 			vm_page_lock(m);
238 			vm_page_free(m);
239 			vm_page_unlock(m);
240 			m = NULL;
241 			goto out;
242 		}
243 		vm_page_xunbusy(m);
244 	}
245 	vm_page_lock(m);
246 	vm_page_hold(m);
247 	vm_page_activate(m);
248 	vm_page_unlock(m);
249 out:
250 	VM_OBJECT_WUNLOCK(object);
251 	return (m);
252 }
253 
254 /*
255  * Return a CPU private mapping to the page at the given offset within the
256  * given object.  The page is pinned before it is mapped.
257  */
258 struct sf_buf *
259 vm_imgact_map_page(vm_object_t object, vm_ooffset_t offset)
260 {
261 	vm_page_t m;
262 
263 	m = vm_imgact_hold_page(object, offset);
264 	if (m == NULL)
265 		return (NULL);
266 	sched_pin();
267 	return (sf_buf_alloc(m, SFB_CPUPRIVATE));
268 }
269 
270 /*
271  * Destroy the given CPU private mapping and unpin the page that it mapped.
272  */
273 void
274 vm_imgact_unmap_page(struct sf_buf *sf)
275 {
276 	vm_page_t m;
277 
278 	m = sf_buf_page(sf);
279 	sf_buf_free(sf);
280 	sched_unpin();
281 	vm_page_lock(m);
282 	vm_page_unhold(m);
283 	vm_page_unlock(m);
284 }
285 
286 void
287 vm_sync_icache(vm_map_t map, vm_offset_t va, vm_offset_t sz)
288 {
289 
290 	pmap_sync_icache(map->pmap, va, sz);
291 }
292 
293 struct kstack_cache_entry *kstack_cache;
294 static int kstack_cache_size = 128;
295 static int kstacks;
296 static struct mtx kstack_cache_mtx;
297 MTX_SYSINIT(kstack_cache, &kstack_cache_mtx, "kstkch", MTX_DEF);
298 
299 SYSCTL_INT(_vm, OID_AUTO, kstack_cache_size, CTLFLAG_RW, &kstack_cache_size, 0,
300     "");
301 SYSCTL_INT(_vm, OID_AUTO, kstacks, CTLFLAG_RD, &kstacks, 0,
302     "");
303 
304 /*
305  * Create the kernel stack (including pcb for i386) for a new thread.
306  * This routine directly affects the fork perf for a process and
307  * create performance for a thread.
308  */
309 int
310 vm_thread_new(struct thread *td, int pages)
311 {
312 	vm_object_t ksobj;
313 	vm_offset_t ks;
314 	vm_page_t ma[KSTACK_MAX_PAGES];
315 	struct kstack_cache_entry *ks_ce;
316 	int i;
317 
318 	/* Bounds check */
319 	if (pages <= 1)
320 		pages = kstack_pages;
321 	else if (pages > KSTACK_MAX_PAGES)
322 		pages = KSTACK_MAX_PAGES;
323 
324 	if (pages == kstack_pages) {
325 		mtx_lock(&kstack_cache_mtx);
326 		if (kstack_cache != NULL) {
327 			ks_ce = kstack_cache;
328 			kstack_cache = ks_ce->next_ks_entry;
329 			mtx_unlock(&kstack_cache_mtx);
330 
331 			td->td_kstack_obj = ks_ce->ksobj;
332 			td->td_kstack = (vm_offset_t)ks_ce;
333 			td->td_kstack_pages = kstack_pages;
334 			return (1);
335 		}
336 		mtx_unlock(&kstack_cache_mtx);
337 	}
338 
339 	/*
340 	 * Allocate an object for the kstack.
341 	 */
342 	ksobj = vm_object_allocate(OBJT_DEFAULT, pages);
343 
344 	/*
345 	 * Get a kernel virtual address for this thread's kstack.
346 	 */
347 #if defined(__mips__)
348 	/*
349 	 * We need to align the kstack's mapped address to fit within
350 	 * a single TLB entry.
351 	 */
352 	if (vmem_xalloc(kernel_arena, (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE,
353 	    PAGE_SIZE * 2, 0, 0, VMEM_ADDR_MIN, VMEM_ADDR_MAX,
354 	    M_BESTFIT | M_NOWAIT, &ks)) {
355 		ks = 0;
356 	}
357 #else
358 	ks = kva_alloc((pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
359 #endif
360 	if (ks == 0) {
361 		printf("vm_thread_new: kstack allocation failed\n");
362 		vm_object_deallocate(ksobj);
363 		return (0);
364 	}
365 
366 	atomic_add_int(&kstacks, 1);
367 	if (KSTACK_GUARD_PAGES != 0) {
368 		pmap_qremove(ks, KSTACK_GUARD_PAGES);
369 		ks += KSTACK_GUARD_PAGES * PAGE_SIZE;
370 	}
371 	td->td_kstack_obj = ksobj;
372 	td->td_kstack = ks;
373 	/*
374 	 * Knowing the number of pages allocated is useful when you
375 	 * want to deallocate them.
376 	 */
377 	td->td_kstack_pages = pages;
378 	/*
379 	 * For the length of the stack, link in a real page of ram for each
380 	 * page of stack.
381 	 */
382 	VM_OBJECT_WLOCK(ksobj);
383 	(void)vm_page_grab_pages(ksobj, 0, VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY |
384 	    VM_ALLOC_WIRED, ma, pages);
385 	for (i = 0; i < pages; i++)
386 		ma[i]->valid = VM_PAGE_BITS_ALL;
387 	VM_OBJECT_WUNLOCK(ksobj);
388 	pmap_qenter(ks, ma, pages);
389 	return (1);
390 }
391 
392 static void
393 vm_thread_stack_dispose(vm_object_t ksobj, vm_offset_t ks, int pages)
394 {
395 	vm_page_t m;
396 	int i;
397 
398 	atomic_add_int(&kstacks, -1);
399 	pmap_qremove(ks, pages);
400 	VM_OBJECT_WLOCK(ksobj);
401 	for (i = 0; i < pages; i++) {
402 		m = vm_page_lookup(ksobj, i);
403 		if (m == NULL)
404 			panic("vm_thread_dispose: kstack already missing?");
405 		vm_page_lock(m);
406 		vm_page_unwire(m, PQ_NONE);
407 		vm_page_free(m);
408 		vm_page_unlock(m);
409 	}
410 	VM_OBJECT_WUNLOCK(ksobj);
411 	vm_object_deallocate(ksobj);
412 	kva_free(ks - (KSTACK_GUARD_PAGES * PAGE_SIZE),
413 	    (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
414 }
415 
416 /*
417  * Dispose of a thread's kernel stack.
418  */
419 void
420 vm_thread_dispose(struct thread *td)
421 {
422 	vm_object_t ksobj;
423 	vm_offset_t ks;
424 	struct kstack_cache_entry *ks_ce;
425 	int pages;
426 
427 	pages = td->td_kstack_pages;
428 	ksobj = td->td_kstack_obj;
429 	ks = td->td_kstack;
430 	td->td_kstack = 0;
431 	td->td_kstack_pages = 0;
432 	if (pages == kstack_pages && kstacks <= kstack_cache_size) {
433 		ks_ce = (struct kstack_cache_entry *)ks;
434 		ks_ce->ksobj = ksobj;
435 		mtx_lock(&kstack_cache_mtx);
436 		ks_ce->next_ks_entry = kstack_cache;
437 		kstack_cache = ks_ce;
438 		mtx_unlock(&kstack_cache_mtx);
439 		return;
440 	}
441 	vm_thread_stack_dispose(ksobj, ks, pages);
442 }
443 
444 static void
445 vm_thread_stack_lowmem(void *nulll)
446 {
447 	struct kstack_cache_entry *ks_ce, *ks_ce1;
448 
449 	mtx_lock(&kstack_cache_mtx);
450 	ks_ce = kstack_cache;
451 	kstack_cache = NULL;
452 	mtx_unlock(&kstack_cache_mtx);
453 
454 	while (ks_ce != NULL) {
455 		ks_ce1 = ks_ce;
456 		ks_ce = ks_ce->next_ks_entry;
457 
458 		vm_thread_stack_dispose(ks_ce1->ksobj, (vm_offset_t)ks_ce1,
459 		    kstack_pages);
460 	}
461 }
462 
463 static void
464 kstack_cache_init(void *nulll)
465 {
466 
467 	EVENTHANDLER_REGISTER(vm_lowmem, vm_thread_stack_lowmem, NULL,
468 	    EVENTHANDLER_PRI_ANY);
469 }
470 
471 SYSINIT(vm_kstacks, SI_SUB_KTHREAD_INIT, SI_ORDER_ANY, kstack_cache_init, NULL);
472 
473 #ifdef KSTACK_USAGE_PROF
474 /*
475  * Track maximum stack used by a thread in kernel.
476  */
477 static int max_kstack_used;
478 
479 SYSCTL_INT(_debug, OID_AUTO, max_kstack_used, CTLFLAG_RD,
480     &max_kstack_used, 0,
481     "Maxiumum stack depth used by a thread in kernel");
482 
483 void
484 intr_prof_stack_use(struct thread *td, struct trapframe *frame)
485 {
486 	vm_offset_t stack_top;
487 	vm_offset_t current;
488 	int used, prev_used;
489 
490 	/*
491 	 * Testing for interrupted kernel mode isn't strictly
492 	 * needed. It optimizes the execution, since interrupts from
493 	 * usermode will have only the trap frame on the stack.
494 	 */
495 	if (TRAPF_USERMODE(frame))
496 		return;
497 
498 	stack_top = td->td_kstack + td->td_kstack_pages * PAGE_SIZE;
499 	current = (vm_offset_t)(uintptr_t)&stack_top;
500 
501 	/*
502 	 * Try to detect if interrupt is using kernel thread stack.
503 	 * Hardware could use a dedicated stack for interrupt handling.
504 	 */
505 	if (stack_top <= current || current < td->td_kstack)
506 		return;
507 
508 	used = stack_top - current;
509 	for (;;) {
510 		prev_used = max_kstack_used;
511 		if (prev_used >= used)
512 			break;
513 		if (atomic_cmpset_int(&max_kstack_used, prev_used, used))
514 			break;
515 	}
516 }
517 #endif /* KSTACK_USAGE_PROF */
518 
519 /*
520  * Implement fork's actions on an address space.
521  * Here we arrange for the address space to be copied or referenced,
522  * allocate a user struct (pcb and kernel stack), then call the
523  * machine-dependent layer to fill those in and make the new process
524  * ready to run.  The new process is set up so that it returns directly
525  * to user mode to avoid stack copying and relocation problems.
526  */
527 int
528 vm_forkproc(td, p2, td2, vm2, flags)
529 	struct thread *td;
530 	struct proc *p2;
531 	struct thread *td2;
532 	struct vmspace *vm2;
533 	int flags;
534 {
535 	struct proc *p1 = td->td_proc;
536 	int error;
537 
538 	if ((flags & RFPROC) == 0) {
539 		/*
540 		 * Divorce the memory, if it is shared, essentially
541 		 * this changes shared memory amongst threads, into
542 		 * COW locally.
543 		 */
544 		if ((flags & RFMEM) == 0) {
545 			if (p1->p_vmspace->vm_refcnt > 1) {
546 				error = vmspace_unshare(p1);
547 				if (error)
548 					return (error);
549 			}
550 		}
551 		cpu_fork(td, p2, td2, flags);
552 		return (0);
553 	}
554 
555 	if (flags & RFMEM) {
556 		p2->p_vmspace = p1->p_vmspace;
557 		atomic_add_int(&p1->p_vmspace->vm_refcnt, 1);
558 	}
559 
560 	while (vm_page_count_severe()) {
561 		VM_WAIT;
562 	}
563 
564 	if ((flags & RFMEM) == 0) {
565 		p2->p_vmspace = vm2;
566 		if (p1->p_vmspace->vm_shm)
567 			shmfork(p1, p2);
568 	}
569 
570 	/*
571 	 * cpu_fork will copy and update the pcb, set up the kernel stack,
572 	 * and make the child ready to run.
573 	 */
574 	cpu_fork(td, p2, td2, flags);
575 	return (0);
576 }
577 
578 /*
579  * Called after process has been wait(2)'ed upon and is being reaped.
580  * The idea is to reclaim resources that we could not reclaim while
581  * the process was still executing.
582  */
583 void
584 vm_waitproc(p)
585 	struct proc *p;
586 {
587 
588 	vmspace_exitfree(p);		/* and clean-out the vmspace */
589 }
590 
591 void
592 kick_proc0(void)
593 {
594 
595 	wakeup(&proc0);
596 }
597