1 /*- 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * from: @(#)vm_glue.c 8.6 (Berkeley) 1/5/94 33 * 34 * 35 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 36 * All rights reserved. 37 * 38 * Permission to use, copy, modify and distribute this software and 39 * its documentation is hereby granted, provided that both the copyright 40 * notice and this permission notice appear in all copies of the 41 * software, derivative works or modified versions, and any portions 42 * thereof, and that both notices appear in supporting documentation. 43 * 44 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 45 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 46 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 47 * 48 * Carnegie Mellon requests users of this software to return to 49 * 50 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 51 * School of Computer Science 52 * Carnegie Mellon University 53 * Pittsburgh PA 15213-3890 54 * 55 * any improvements or extensions that they make and grant Carnegie the 56 * rights to redistribute these changes. 57 */ 58 59 #include <sys/cdefs.h> 60 __FBSDID("$FreeBSD$"); 61 62 #include "opt_vm.h" 63 #include "opt_kstack_pages.h" 64 #include "opt_kstack_max_pages.h" 65 66 #include <sys/param.h> 67 #include <sys/systm.h> 68 #include <sys/limits.h> 69 #include <sys/lock.h> 70 #include <sys/mutex.h> 71 #include <sys/proc.h> 72 #include <sys/resourcevar.h> 73 #include <sys/sched.h> 74 #include <sys/sf_buf.h> 75 #include <sys/shm.h> 76 #include <sys/vmmeter.h> 77 #include <sys/sx.h> 78 #include <sys/sysctl.h> 79 80 #include <sys/eventhandler.h> 81 #include <sys/kernel.h> 82 #include <sys/ktr.h> 83 #include <sys/unistd.h> 84 85 #include <vm/vm.h> 86 #include <vm/vm_param.h> 87 #include <vm/pmap.h> 88 #include <vm/vm_map.h> 89 #include <vm/vm_page.h> 90 #include <vm/vm_pageout.h> 91 #include <vm/vm_object.h> 92 #include <vm/vm_kern.h> 93 #include <vm/vm_extern.h> 94 #include <vm/vm_pager.h> 95 #include <vm/swap_pager.h> 96 97 /* 98 * System initialization 99 * 100 * THIS MUST BE THE LAST INITIALIZATION ITEM!!! 101 * 102 * Note: run scheduling should be divorced from the vm system. 103 */ 104 static void scheduler(void *); 105 SYSINIT(scheduler, SI_SUB_RUN_SCHEDULER, SI_ORDER_ANY, scheduler, NULL); 106 107 #ifndef NO_SWAPPING 108 static int swapout(struct proc *); 109 static void swapclear(struct proc *); 110 static void vm_thread_swapin(struct thread *td); 111 static void vm_thread_swapout(struct thread *td); 112 #endif 113 114 /* 115 * MPSAFE 116 * 117 * WARNING! This code calls vm_map_check_protection() which only checks 118 * the associated vm_map_entry range. It does not determine whether the 119 * contents of the memory is actually readable or writable. In most cases 120 * just checking the vm_map_entry is sufficient within the kernel's address 121 * space. 122 */ 123 int 124 kernacc(addr, len, rw) 125 void *addr; 126 int len, rw; 127 { 128 boolean_t rv; 129 vm_offset_t saddr, eaddr; 130 vm_prot_t prot; 131 132 KASSERT((rw & ~VM_PROT_ALL) == 0, 133 ("illegal ``rw'' argument to kernacc (%x)\n", rw)); 134 135 if ((vm_offset_t)addr + len > kernel_map->max_offset || 136 (vm_offset_t)addr + len < (vm_offset_t)addr) 137 return (FALSE); 138 139 prot = rw; 140 saddr = trunc_page((vm_offset_t)addr); 141 eaddr = round_page((vm_offset_t)addr + len); 142 vm_map_lock_read(kernel_map); 143 rv = vm_map_check_protection(kernel_map, saddr, eaddr, prot); 144 vm_map_unlock_read(kernel_map); 145 return (rv == TRUE); 146 } 147 148 /* 149 * MPSAFE 150 * 151 * WARNING! This code calls vm_map_check_protection() which only checks 152 * the associated vm_map_entry range. It does not determine whether the 153 * contents of the memory is actually readable or writable. vmapbuf(), 154 * vm_fault_quick(), or copyin()/copout()/su*()/fu*() functions should be 155 * used in conjuction with this call. 156 */ 157 int 158 useracc(addr, len, rw) 159 void *addr; 160 int len, rw; 161 { 162 boolean_t rv; 163 vm_prot_t prot; 164 vm_map_t map; 165 166 KASSERT((rw & ~VM_PROT_ALL) == 0, 167 ("illegal ``rw'' argument to useracc (%x)\n", rw)); 168 prot = rw; 169 map = &curproc->p_vmspace->vm_map; 170 if ((vm_offset_t)addr + len > vm_map_max(map) || 171 (vm_offset_t)addr + len < (vm_offset_t)addr) { 172 return (FALSE); 173 } 174 vm_map_lock_read(map); 175 rv = vm_map_check_protection(map, trunc_page((vm_offset_t)addr), 176 round_page((vm_offset_t)addr + len), prot); 177 vm_map_unlock_read(map); 178 return (rv == TRUE); 179 } 180 181 int 182 vslock(void *addr, size_t len) 183 { 184 vm_offset_t end, last, start; 185 vm_size_t npages; 186 int error; 187 188 last = (vm_offset_t)addr + len; 189 start = trunc_page((vm_offset_t)addr); 190 end = round_page(last); 191 if (last < (vm_offset_t)addr || end < (vm_offset_t)addr) 192 return (EINVAL); 193 npages = atop(end - start); 194 if (npages > vm_page_max_wired) 195 return (ENOMEM); 196 PROC_LOCK(curproc); 197 if (ptoa(npages + 198 pmap_wired_count(vm_map_pmap(&curproc->p_vmspace->vm_map))) > 199 lim_cur(curproc, RLIMIT_MEMLOCK)) { 200 PROC_UNLOCK(curproc); 201 return (ENOMEM); 202 } 203 PROC_UNLOCK(curproc); 204 #if 0 205 /* 206 * XXX - not yet 207 * 208 * The limit for transient usage of wired pages should be 209 * larger than for "permanent" wired pages (mlock()). 210 * 211 * Also, the sysctl code, which is the only present user 212 * of vslock(), does a hard loop on EAGAIN. 213 */ 214 if (npages + cnt.v_wire_count > vm_page_max_wired) 215 return (EAGAIN); 216 #endif 217 error = vm_map_wire(&curproc->p_vmspace->vm_map, start, end, 218 VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES); 219 /* 220 * Return EFAULT on error to match copy{in,out}() behaviour 221 * rather than returning ENOMEM like mlock() would. 222 */ 223 return (error == KERN_SUCCESS ? 0 : EFAULT); 224 } 225 226 void 227 vsunlock(void *addr, size_t len) 228 { 229 230 /* Rely on the parameter sanity checks performed by vslock(). */ 231 (void)vm_map_unwire(&curproc->p_vmspace->vm_map, 232 trunc_page((vm_offset_t)addr), round_page((vm_offset_t)addr + len), 233 VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES); 234 } 235 236 /* 237 * Pin the page contained within the given object at the given offset. If the 238 * page is not resident, allocate and load it using the given object's pager. 239 * Return the pinned page if successful; otherwise, return NULL. 240 */ 241 static vm_page_t 242 vm_imgact_hold_page(vm_object_t object, vm_ooffset_t offset) 243 { 244 vm_page_t m, ma[1]; 245 vm_pindex_t pindex; 246 int rv; 247 248 VM_OBJECT_LOCK(object); 249 pindex = OFF_TO_IDX(offset); 250 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL | VM_ALLOC_RETRY); 251 if (m->valid != VM_PAGE_BITS_ALL) { 252 ma[0] = m; 253 rv = vm_pager_get_pages(object, ma, 1, 0); 254 m = vm_page_lookup(object, pindex); 255 if (m == NULL) 256 goto out; 257 if (rv != VM_PAGER_OK) { 258 vm_page_lock(m); 259 vm_page_free(m); 260 vm_page_unlock(m); 261 m = NULL; 262 goto out; 263 } 264 } 265 vm_page_lock(m); 266 vm_page_hold(m); 267 vm_page_unlock(m); 268 vm_page_wakeup(m); 269 out: 270 VM_OBJECT_UNLOCK(object); 271 return (m); 272 } 273 274 /* 275 * Return a CPU private mapping to the page at the given offset within the 276 * given object. The page is pinned before it is mapped. 277 */ 278 struct sf_buf * 279 vm_imgact_map_page(vm_object_t object, vm_ooffset_t offset) 280 { 281 vm_page_t m; 282 283 m = vm_imgact_hold_page(object, offset); 284 if (m == NULL) 285 return (NULL); 286 sched_pin(); 287 return (sf_buf_alloc(m, SFB_CPUPRIVATE)); 288 } 289 290 /* 291 * Destroy the given CPU private mapping and unpin the page that it mapped. 292 */ 293 void 294 vm_imgact_unmap_page(struct sf_buf *sf) 295 { 296 vm_page_t m; 297 298 m = sf_buf_page(sf); 299 sf_buf_free(sf); 300 sched_unpin(); 301 vm_page_lock(m); 302 vm_page_unhold(m); 303 vm_page_unlock(m); 304 } 305 306 void 307 vm_sync_icache(vm_map_t map, vm_offset_t va, vm_offset_t sz) 308 { 309 310 pmap_sync_icache(map->pmap, va, sz); 311 } 312 313 struct kstack_cache_entry { 314 vm_object_t ksobj; 315 struct kstack_cache_entry *next_ks_entry; 316 }; 317 318 static struct kstack_cache_entry *kstack_cache; 319 static int kstack_cache_size = 128; 320 static int kstacks; 321 static struct mtx kstack_cache_mtx; 322 SYSCTL_INT(_vm, OID_AUTO, kstack_cache_size, CTLFLAG_RW, &kstack_cache_size, 0, 323 ""); 324 SYSCTL_INT(_vm, OID_AUTO, kstacks, CTLFLAG_RD, &kstacks, 0, 325 ""); 326 327 #ifndef KSTACK_MAX_PAGES 328 #define KSTACK_MAX_PAGES 32 329 #endif 330 331 /* 332 * Create the kernel stack (including pcb for i386) for a new thread. 333 * This routine directly affects the fork perf for a process and 334 * create performance for a thread. 335 */ 336 int 337 vm_thread_new(struct thread *td, int pages) 338 { 339 vm_object_t ksobj; 340 vm_offset_t ks; 341 vm_page_t m, ma[KSTACK_MAX_PAGES]; 342 struct kstack_cache_entry *ks_ce; 343 int i; 344 345 /* Bounds check */ 346 if (pages <= 1) 347 pages = KSTACK_PAGES; 348 else if (pages > KSTACK_MAX_PAGES) 349 pages = KSTACK_MAX_PAGES; 350 351 if (pages == KSTACK_PAGES) { 352 mtx_lock(&kstack_cache_mtx); 353 if (kstack_cache != NULL) { 354 ks_ce = kstack_cache; 355 kstack_cache = ks_ce->next_ks_entry; 356 mtx_unlock(&kstack_cache_mtx); 357 358 td->td_kstack_obj = ks_ce->ksobj; 359 td->td_kstack = (vm_offset_t)ks_ce; 360 td->td_kstack_pages = KSTACK_PAGES; 361 return (1); 362 } 363 mtx_unlock(&kstack_cache_mtx); 364 } 365 366 /* 367 * Allocate an object for the kstack. 368 */ 369 ksobj = vm_object_allocate(OBJT_DEFAULT, pages); 370 371 /* 372 * Get a kernel virtual address for this thread's kstack. 373 */ 374 #if defined(__mips__) 375 /* 376 * We need to align the kstack's mapped address to fit within 377 * a single TLB entry. 378 */ 379 ks = kmem_alloc_nofault_space(kernel_map, 380 (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE, VMFS_TLB_ALIGNED_SPACE); 381 #else 382 ks = kmem_alloc_nofault(kernel_map, 383 (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE); 384 #endif 385 if (ks == 0) { 386 printf("vm_thread_new: kstack allocation failed\n"); 387 vm_object_deallocate(ksobj); 388 return (0); 389 } 390 391 atomic_add_int(&kstacks, 1); 392 if (KSTACK_GUARD_PAGES != 0) { 393 pmap_qremove(ks, KSTACK_GUARD_PAGES); 394 ks += KSTACK_GUARD_PAGES * PAGE_SIZE; 395 } 396 td->td_kstack_obj = ksobj; 397 td->td_kstack = ks; 398 /* 399 * Knowing the number of pages allocated is useful when you 400 * want to deallocate them. 401 */ 402 td->td_kstack_pages = pages; 403 /* 404 * For the length of the stack, link in a real page of ram for each 405 * page of stack. 406 */ 407 VM_OBJECT_LOCK(ksobj); 408 for (i = 0; i < pages; i++) { 409 /* 410 * Get a kernel stack page. 411 */ 412 m = vm_page_grab(ksobj, i, VM_ALLOC_NOBUSY | 413 VM_ALLOC_NORMAL | VM_ALLOC_RETRY | VM_ALLOC_WIRED); 414 ma[i] = m; 415 m->valid = VM_PAGE_BITS_ALL; 416 } 417 VM_OBJECT_UNLOCK(ksobj); 418 pmap_qenter(ks, ma, pages); 419 return (1); 420 } 421 422 static void 423 vm_thread_stack_dispose(vm_object_t ksobj, vm_offset_t ks, int pages) 424 { 425 vm_page_t m; 426 int i; 427 428 atomic_add_int(&kstacks, -1); 429 pmap_qremove(ks, pages); 430 VM_OBJECT_LOCK(ksobj); 431 for (i = 0; i < pages; i++) { 432 m = vm_page_lookup(ksobj, i); 433 if (m == NULL) 434 panic("vm_thread_dispose: kstack already missing?"); 435 vm_page_lock(m); 436 vm_page_unwire(m, 0); 437 vm_page_free(m); 438 vm_page_unlock(m); 439 } 440 VM_OBJECT_UNLOCK(ksobj); 441 vm_object_deallocate(ksobj); 442 kmem_free(kernel_map, ks - (KSTACK_GUARD_PAGES * PAGE_SIZE), 443 (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE); 444 } 445 446 /* 447 * Dispose of a thread's kernel stack. 448 */ 449 void 450 vm_thread_dispose(struct thread *td) 451 { 452 vm_object_t ksobj; 453 vm_offset_t ks; 454 struct kstack_cache_entry *ks_ce; 455 int pages; 456 457 pages = td->td_kstack_pages; 458 ksobj = td->td_kstack_obj; 459 ks = td->td_kstack; 460 td->td_kstack = 0; 461 td->td_kstack_pages = 0; 462 if (pages == KSTACK_PAGES && kstacks <= kstack_cache_size) { 463 ks_ce = (struct kstack_cache_entry *)ks; 464 ks_ce->ksobj = ksobj; 465 mtx_lock(&kstack_cache_mtx); 466 ks_ce->next_ks_entry = kstack_cache; 467 kstack_cache = ks_ce; 468 mtx_unlock(&kstack_cache_mtx); 469 return; 470 } 471 vm_thread_stack_dispose(ksobj, ks, pages); 472 } 473 474 static void 475 vm_thread_stack_lowmem(void *nulll) 476 { 477 struct kstack_cache_entry *ks_ce, *ks_ce1; 478 479 mtx_lock(&kstack_cache_mtx); 480 ks_ce = kstack_cache; 481 kstack_cache = NULL; 482 mtx_unlock(&kstack_cache_mtx); 483 484 while (ks_ce != NULL) { 485 ks_ce1 = ks_ce; 486 ks_ce = ks_ce->next_ks_entry; 487 488 vm_thread_stack_dispose(ks_ce1->ksobj, (vm_offset_t)ks_ce1, 489 KSTACK_PAGES); 490 } 491 } 492 493 static void 494 kstack_cache_init(void *nulll) 495 { 496 497 EVENTHANDLER_REGISTER(vm_lowmem, vm_thread_stack_lowmem, NULL, 498 EVENTHANDLER_PRI_ANY); 499 } 500 501 MTX_SYSINIT(kstack_cache, &kstack_cache_mtx, "kstkch", MTX_DEF); 502 SYSINIT(vm_kstacks, SI_SUB_KTHREAD_INIT, SI_ORDER_ANY, kstack_cache_init, NULL); 503 504 #ifndef NO_SWAPPING 505 /* 506 * Allow a thread's kernel stack to be paged out. 507 */ 508 static void 509 vm_thread_swapout(struct thread *td) 510 { 511 vm_object_t ksobj; 512 vm_page_t m; 513 int i, pages; 514 515 cpu_thread_swapout(td); 516 pages = td->td_kstack_pages; 517 ksobj = td->td_kstack_obj; 518 pmap_qremove(td->td_kstack, pages); 519 VM_OBJECT_LOCK(ksobj); 520 for (i = 0; i < pages; i++) { 521 m = vm_page_lookup(ksobj, i); 522 if (m == NULL) 523 panic("vm_thread_swapout: kstack already missing?"); 524 vm_page_dirty(m); 525 vm_page_lock(m); 526 vm_page_unwire(m, 0); 527 vm_page_unlock(m); 528 } 529 VM_OBJECT_UNLOCK(ksobj); 530 } 531 532 /* 533 * Bring the kernel stack for a specified thread back in. 534 */ 535 static void 536 vm_thread_swapin(struct thread *td) 537 { 538 vm_object_t ksobj; 539 vm_page_t ma[KSTACK_MAX_PAGES]; 540 int i, j, k, pages, rv; 541 542 pages = td->td_kstack_pages; 543 ksobj = td->td_kstack_obj; 544 VM_OBJECT_LOCK(ksobj); 545 for (i = 0; i < pages; i++) 546 ma[i] = vm_page_grab(ksobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY | 547 VM_ALLOC_WIRED); 548 for (i = 0; i < pages; i++) { 549 if (ma[i]->valid != VM_PAGE_BITS_ALL) { 550 KASSERT(ma[i]->oflags & VPO_BUSY, 551 ("lost busy 1")); 552 vm_object_pip_add(ksobj, 1); 553 for (j = i + 1; j < pages; j++) { 554 KASSERT(ma[j]->valid == VM_PAGE_BITS_ALL || 555 (ma[j]->oflags & VPO_BUSY), 556 ("lost busy 2")); 557 if (ma[j]->valid == VM_PAGE_BITS_ALL) 558 break; 559 } 560 rv = vm_pager_get_pages(ksobj, ma + i, j - i, 0); 561 if (rv != VM_PAGER_OK) 562 panic("vm_thread_swapin: cannot get kstack for proc: %d", 563 td->td_proc->p_pid); 564 vm_object_pip_wakeup(ksobj); 565 for (k = i; k < j; k++) 566 ma[k] = vm_page_lookup(ksobj, k); 567 vm_page_wakeup(ma[i]); 568 } else if (ma[i]->oflags & VPO_BUSY) 569 vm_page_wakeup(ma[i]); 570 } 571 VM_OBJECT_UNLOCK(ksobj); 572 pmap_qenter(td->td_kstack, ma, pages); 573 cpu_thread_swapin(td); 574 } 575 #endif /* !NO_SWAPPING */ 576 577 /* 578 * Implement fork's actions on an address space. 579 * Here we arrange for the address space to be copied or referenced, 580 * allocate a user struct (pcb and kernel stack), then call the 581 * machine-dependent layer to fill those in and make the new process 582 * ready to run. The new process is set up so that it returns directly 583 * to user mode to avoid stack copying and relocation problems. 584 */ 585 int 586 vm_forkproc(td, p2, td2, vm2, flags) 587 struct thread *td; 588 struct proc *p2; 589 struct thread *td2; 590 struct vmspace *vm2; 591 int flags; 592 { 593 struct proc *p1 = td->td_proc; 594 int error; 595 596 if ((flags & RFPROC) == 0) { 597 /* 598 * Divorce the memory, if it is shared, essentially 599 * this changes shared memory amongst threads, into 600 * COW locally. 601 */ 602 if ((flags & RFMEM) == 0) { 603 if (p1->p_vmspace->vm_refcnt > 1) { 604 error = vmspace_unshare(p1); 605 if (error) 606 return (error); 607 } 608 } 609 cpu_fork(td, p2, td2, flags); 610 return (0); 611 } 612 613 if (flags & RFMEM) { 614 p2->p_vmspace = p1->p_vmspace; 615 atomic_add_int(&p1->p_vmspace->vm_refcnt, 1); 616 } 617 618 while (vm_page_count_severe()) { 619 VM_WAIT; 620 } 621 622 if ((flags & RFMEM) == 0) { 623 p2->p_vmspace = vm2; 624 if (p1->p_vmspace->vm_shm) 625 shmfork(p1, p2); 626 } 627 628 /* 629 * cpu_fork will copy and update the pcb, set up the kernel stack, 630 * and make the child ready to run. 631 */ 632 cpu_fork(td, p2, td2, flags); 633 return (0); 634 } 635 636 /* 637 * Called after process has been wait(2)'ed apon and is being reaped. 638 * The idea is to reclaim resources that we could not reclaim while 639 * the process was still executing. 640 */ 641 void 642 vm_waitproc(p) 643 struct proc *p; 644 { 645 646 vmspace_exitfree(p); /* and clean-out the vmspace */ 647 } 648 649 void 650 faultin(p) 651 struct proc *p; 652 { 653 #ifdef NO_SWAPPING 654 655 PROC_LOCK_ASSERT(p, MA_OWNED); 656 if ((p->p_flag & P_INMEM) == 0) 657 panic("faultin: proc swapped out with NO_SWAPPING!"); 658 #else /* !NO_SWAPPING */ 659 struct thread *td; 660 661 PROC_LOCK_ASSERT(p, MA_OWNED); 662 /* 663 * If another process is swapping in this process, 664 * just wait until it finishes. 665 */ 666 if (p->p_flag & P_SWAPPINGIN) { 667 while (p->p_flag & P_SWAPPINGIN) 668 msleep(&p->p_flag, &p->p_mtx, PVM, "faultin", 0); 669 return; 670 } 671 if ((p->p_flag & P_INMEM) == 0) { 672 /* 673 * Don't let another thread swap process p out while we are 674 * busy swapping it in. 675 */ 676 ++p->p_lock; 677 p->p_flag |= P_SWAPPINGIN; 678 PROC_UNLOCK(p); 679 680 /* 681 * We hold no lock here because the list of threads 682 * can not change while all threads in the process are 683 * swapped out. 684 */ 685 FOREACH_THREAD_IN_PROC(p, td) 686 vm_thread_swapin(td); 687 PROC_LOCK(p); 688 swapclear(p); 689 p->p_swtick = ticks; 690 691 wakeup(&p->p_flag); 692 693 /* Allow other threads to swap p out now. */ 694 --p->p_lock; 695 } 696 #endif /* NO_SWAPPING */ 697 } 698 699 /* 700 * This swapin algorithm attempts to swap-in processes only if there 701 * is enough space for them. Of course, if a process waits for a long 702 * time, it will be swapped in anyway. 703 * 704 * Giant is held on entry. 705 */ 706 /* ARGSUSED*/ 707 static void 708 scheduler(dummy) 709 void *dummy; 710 { 711 struct proc *p; 712 struct thread *td; 713 struct proc *pp; 714 int slptime; 715 int swtime; 716 int ppri; 717 int pri; 718 719 mtx_assert(&Giant, MA_OWNED | MA_NOTRECURSED); 720 mtx_unlock(&Giant); 721 722 loop: 723 if (vm_page_count_min()) { 724 VM_WAIT; 725 goto loop; 726 } 727 728 pp = NULL; 729 ppri = INT_MIN; 730 sx_slock(&allproc_lock); 731 FOREACH_PROC_IN_SYSTEM(p) { 732 PROC_LOCK(p); 733 if (p->p_flag & (P_SWAPPINGOUT | P_SWAPPINGIN | P_INMEM)) { 734 PROC_UNLOCK(p); 735 continue; 736 } 737 swtime = (ticks - p->p_swtick) / hz; 738 FOREACH_THREAD_IN_PROC(p, td) { 739 /* 740 * An otherwise runnable thread of a process 741 * swapped out has only the TDI_SWAPPED bit set. 742 * 743 */ 744 thread_lock(td); 745 if (td->td_inhibitors == TDI_SWAPPED) { 746 slptime = (ticks - td->td_slptick) / hz; 747 pri = swtime + slptime; 748 if ((td->td_flags & TDF_SWAPINREQ) == 0) 749 pri -= p->p_nice * 8; 750 /* 751 * if this thread is higher priority 752 * and there is enough space, then select 753 * this process instead of the previous 754 * selection. 755 */ 756 if (pri > ppri) { 757 pp = p; 758 ppri = pri; 759 } 760 } 761 thread_unlock(td); 762 } 763 PROC_UNLOCK(p); 764 } 765 sx_sunlock(&allproc_lock); 766 767 /* 768 * Nothing to do, back to sleep. 769 */ 770 if ((p = pp) == NULL) { 771 tsleep(&proc0, PVM, "sched", MAXSLP * hz / 2); 772 goto loop; 773 } 774 PROC_LOCK(p); 775 776 /* 777 * Another process may be bringing or may have already 778 * brought this process in while we traverse all threads. 779 * Or, this process may even be being swapped out again. 780 */ 781 if (p->p_flag & (P_INMEM | P_SWAPPINGOUT | P_SWAPPINGIN)) { 782 PROC_UNLOCK(p); 783 goto loop; 784 } 785 786 /* 787 * We would like to bring someone in. (only if there is space). 788 * [What checks the space? ] 789 */ 790 faultin(p); 791 PROC_UNLOCK(p); 792 goto loop; 793 } 794 795 void 796 kick_proc0(void) 797 { 798 799 wakeup(&proc0); 800 } 801 802 #ifndef NO_SWAPPING 803 804 /* 805 * Swap_idle_threshold1 is the guaranteed swapped in time for a process 806 */ 807 static int swap_idle_threshold1 = 2; 808 SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold1, CTLFLAG_RW, 809 &swap_idle_threshold1, 0, "Guaranteed swapped in time for a process"); 810 811 /* 812 * Swap_idle_threshold2 is the time that a process can be idle before 813 * it will be swapped out, if idle swapping is enabled. 814 */ 815 static int swap_idle_threshold2 = 10; 816 SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold2, CTLFLAG_RW, 817 &swap_idle_threshold2, 0, "Time before a process will be swapped out"); 818 819 /* 820 * First, if any processes have been sleeping or stopped for at least 821 * "swap_idle_threshold1" seconds, they are swapped out. If, however, 822 * no such processes exist, then the longest-sleeping or stopped 823 * process is swapped out. Finally, and only as a last resort, if 824 * there are no sleeping or stopped processes, the longest-resident 825 * process is swapped out. 826 */ 827 void 828 swapout_procs(action) 829 int action; 830 { 831 struct proc *p; 832 struct thread *td; 833 int didswap = 0; 834 835 retry: 836 sx_slock(&allproc_lock); 837 FOREACH_PROC_IN_SYSTEM(p) { 838 struct vmspace *vm; 839 int minslptime = 100000; 840 int slptime; 841 842 /* 843 * Watch out for a process in 844 * creation. It may have no 845 * address space or lock yet. 846 */ 847 if (p->p_state == PRS_NEW) 848 continue; 849 /* 850 * An aio daemon switches its 851 * address space while running. 852 * Perform a quick check whether 853 * a process has P_SYSTEM. 854 */ 855 if ((p->p_flag & P_SYSTEM) != 0) 856 continue; 857 /* 858 * Do not swapout a process that 859 * is waiting for VM data 860 * structures as there is a possible 861 * deadlock. Test this first as 862 * this may block. 863 * 864 * Lock the map until swapout 865 * finishes, or a thread of this 866 * process may attempt to alter 867 * the map. 868 */ 869 vm = vmspace_acquire_ref(p); 870 if (vm == NULL) 871 continue; 872 if (!vm_map_trylock(&vm->vm_map)) 873 goto nextproc1; 874 875 PROC_LOCK(p); 876 if (p->p_lock != 0 || 877 (p->p_flag & (P_STOPPED_SINGLE|P_TRACED|P_SYSTEM|P_WEXIT) 878 ) != 0) { 879 goto nextproc; 880 } 881 /* 882 * only aiod changes vmspace, however it will be 883 * skipped because of the if statement above checking 884 * for P_SYSTEM 885 */ 886 if ((p->p_flag & (P_INMEM|P_SWAPPINGOUT|P_SWAPPINGIN)) != P_INMEM) 887 goto nextproc; 888 889 switch (p->p_state) { 890 default: 891 /* Don't swap out processes in any sort 892 * of 'special' state. */ 893 break; 894 895 case PRS_NORMAL: 896 /* 897 * do not swapout a realtime process 898 * Check all the thread groups.. 899 */ 900 FOREACH_THREAD_IN_PROC(p, td) { 901 thread_lock(td); 902 if (PRI_IS_REALTIME(td->td_pri_class)) { 903 thread_unlock(td); 904 goto nextproc; 905 } 906 slptime = (ticks - td->td_slptick) / hz; 907 /* 908 * Guarantee swap_idle_threshold1 909 * time in memory. 910 */ 911 if (slptime < swap_idle_threshold1) { 912 thread_unlock(td); 913 goto nextproc; 914 } 915 916 /* 917 * Do not swapout a process if it is 918 * waiting on a critical event of some 919 * kind or there is a thread whose 920 * pageable memory may be accessed. 921 * 922 * This could be refined to support 923 * swapping out a thread. 924 */ 925 if (!thread_safetoswapout(td)) { 926 thread_unlock(td); 927 goto nextproc; 928 } 929 /* 930 * If the system is under memory stress, 931 * or if we are swapping 932 * idle processes >= swap_idle_threshold2, 933 * then swap the process out. 934 */ 935 if (((action & VM_SWAP_NORMAL) == 0) && 936 (((action & VM_SWAP_IDLE) == 0) || 937 (slptime < swap_idle_threshold2))) { 938 thread_unlock(td); 939 goto nextproc; 940 } 941 942 if (minslptime > slptime) 943 minslptime = slptime; 944 thread_unlock(td); 945 } 946 947 /* 948 * If the pageout daemon didn't free enough pages, 949 * or if this process is idle and the system is 950 * configured to swap proactively, swap it out. 951 */ 952 if ((action & VM_SWAP_NORMAL) || 953 ((action & VM_SWAP_IDLE) && 954 (minslptime > swap_idle_threshold2))) { 955 if (swapout(p) == 0) 956 didswap++; 957 PROC_UNLOCK(p); 958 vm_map_unlock(&vm->vm_map); 959 vmspace_free(vm); 960 sx_sunlock(&allproc_lock); 961 goto retry; 962 } 963 } 964 nextproc: 965 PROC_UNLOCK(p); 966 vm_map_unlock(&vm->vm_map); 967 nextproc1: 968 vmspace_free(vm); 969 continue; 970 } 971 sx_sunlock(&allproc_lock); 972 /* 973 * If we swapped something out, and another process needed memory, 974 * then wakeup the sched process. 975 */ 976 if (didswap) 977 wakeup(&proc0); 978 } 979 980 static void 981 swapclear(p) 982 struct proc *p; 983 { 984 struct thread *td; 985 986 PROC_LOCK_ASSERT(p, MA_OWNED); 987 988 FOREACH_THREAD_IN_PROC(p, td) { 989 thread_lock(td); 990 td->td_flags |= TDF_INMEM; 991 td->td_flags &= ~TDF_SWAPINREQ; 992 TD_CLR_SWAPPED(td); 993 if (TD_CAN_RUN(td)) 994 if (setrunnable(td)) { 995 #ifdef INVARIANTS 996 /* 997 * XXX: We just cleared TDI_SWAPPED 998 * above and set TDF_INMEM, so this 999 * should never happen. 1000 */ 1001 panic("not waking up swapper"); 1002 #endif 1003 } 1004 thread_unlock(td); 1005 } 1006 p->p_flag &= ~(P_SWAPPINGIN|P_SWAPPINGOUT); 1007 p->p_flag |= P_INMEM; 1008 } 1009 1010 static int 1011 swapout(p) 1012 struct proc *p; 1013 { 1014 struct thread *td; 1015 1016 PROC_LOCK_ASSERT(p, MA_OWNED); 1017 #if defined(SWAP_DEBUG) 1018 printf("swapping out %d\n", p->p_pid); 1019 #endif 1020 1021 /* 1022 * The states of this process and its threads may have changed 1023 * by now. Assuming that there is only one pageout daemon thread, 1024 * this process should still be in memory. 1025 */ 1026 KASSERT((p->p_flag & (P_INMEM|P_SWAPPINGOUT|P_SWAPPINGIN)) == P_INMEM, 1027 ("swapout: lost a swapout race?")); 1028 1029 /* 1030 * remember the process resident count 1031 */ 1032 p->p_vmspace->vm_swrss = vmspace_resident_count(p->p_vmspace); 1033 /* 1034 * Check and mark all threads before we proceed. 1035 */ 1036 p->p_flag &= ~P_INMEM; 1037 p->p_flag |= P_SWAPPINGOUT; 1038 FOREACH_THREAD_IN_PROC(p, td) { 1039 thread_lock(td); 1040 if (!thread_safetoswapout(td)) { 1041 thread_unlock(td); 1042 swapclear(p); 1043 return (EBUSY); 1044 } 1045 td->td_flags &= ~TDF_INMEM; 1046 TD_SET_SWAPPED(td); 1047 thread_unlock(td); 1048 } 1049 td = FIRST_THREAD_IN_PROC(p); 1050 ++td->td_ru.ru_nswap; 1051 PROC_UNLOCK(p); 1052 1053 /* 1054 * This list is stable because all threads are now prevented from 1055 * running. The list is only modified in the context of a running 1056 * thread in this process. 1057 */ 1058 FOREACH_THREAD_IN_PROC(p, td) 1059 vm_thread_swapout(td); 1060 1061 PROC_LOCK(p); 1062 p->p_flag &= ~P_SWAPPINGOUT; 1063 p->p_swtick = ticks; 1064 return (0); 1065 } 1066 #endif /* !NO_SWAPPING */ 1067