xref: /freebsd/sys/vm/vm_glue.c (revision 05c7a37afb48ddd5ee1bd921a5d46fe59cc70b15)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_glue.c	8.6 (Berkeley) 1/5/94
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  *
62  * $Id: vm_glue.c,v 1.46 1996/04/08 03:42:01 dyson Exp $
63  */
64 
65 #include "opt_ddb.h"
66 
67 #include <sys/param.h>
68 #include <sys/systm.h>
69 #include <sys/proc.h>
70 #include <sys/resourcevar.h>
71 #include <sys/buf.h>
72 #include <sys/shm.h>
73 #include <sys/vmmeter.h>
74 
75 #include <sys/kernel.h>
76 #include <sys/dkstat.h>
77 
78 #include <vm/vm.h>
79 #include <vm/vm_param.h>
80 #include <vm/vm_inherit.h>
81 #include <vm/vm_prot.h>
82 #include <vm/lock.h>
83 #include <vm/pmap.h>
84 #include <vm/vm_map.h>
85 #include <vm/vm_page.h>
86 #include <vm/vm_pageout.h>
87 #include <vm/vm_kern.h>
88 #include <vm/vm_extern.h>
89 #include <vm/vm_object.h>
90 #include <vm/vm_pager.h>
91 
92 #include <sys/user.h>
93 
94 #include <machine/stdarg.h>
95 
96 /*
97  * System initialization
98  *
99  * Note: proc0 from proc.h
100  */
101 
102 static void vm_init_limits __P((void *));
103 SYSINIT(vm_limits, SI_SUB_VM_CONF, SI_ORDER_FIRST, vm_init_limits, &proc0)
104 
105 /*
106  * THIS MUST BE THE LAST INITIALIZATION ITEM!!!
107  *
108  * Note: run scheduling should be divorced from the vm system.
109  */
110 static void scheduler __P((void *));
111 SYSINIT(scheduler, SI_SUB_RUN_SCHEDULER, SI_ORDER_FIRST, scheduler, NULL)
112 
113 
114 static void swapout __P((struct proc *));
115 
116 extern char kstack[];
117 
118 /* vm_map_t upages_map; */
119 
120 int
121 kernacc(addr, len, rw)
122 	caddr_t addr;
123 	int len, rw;
124 {
125 	boolean_t rv;
126 	vm_offset_t saddr, eaddr;
127 	vm_prot_t prot = rw == B_READ ? VM_PROT_READ : VM_PROT_WRITE;
128 
129 	saddr = trunc_page(addr);
130 	eaddr = round_page(addr + len);
131 	rv = vm_map_check_protection(kernel_map, saddr, eaddr, prot);
132 	return (rv == TRUE);
133 }
134 
135 int
136 useracc(addr, len, rw)
137 	caddr_t addr;
138 	int len, rw;
139 {
140 	boolean_t rv;
141 	vm_prot_t prot = rw == B_READ ? VM_PROT_READ : VM_PROT_WRITE;
142 
143 	/*
144 	 * XXX - check separately to disallow access to user area and user
145 	 * page tables - they are in the map.
146 	 *
147 	 * XXX - VM_MAXUSER_ADDRESS is an end address, not a max.  It was once
148 	 * only used (as an end address) in trap.c.  Use it as an end address
149 	 * here too.  This bogusness has spread.  I just fixed where it was
150 	 * used as a max in vm_mmap.c.
151 	 */
152 	if ((vm_offset_t) addr + len > /* XXX */ VM_MAXUSER_ADDRESS
153 	    || (vm_offset_t) addr + len < (vm_offset_t) addr) {
154 		return (FALSE);
155 	}
156 	rv = vm_map_check_protection(&curproc->p_vmspace->vm_map,
157 	    trunc_page(addr), round_page(addr + len), prot);
158 	return (rv == TRUE);
159 }
160 
161 #ifdef KGDB
162 /*
163  * Change protections on kernel pages from addr to addr+len
164  * (presumably so debugger can plant a breakpoint).
165  * All addresses are assumed to reside in the Sysmap,
166  */
167 chgkprot(addr, len, rw)
168 	register caddr_t addr;
169 	int len, rw;
170 {
171 	vm_prot_t prot = rw == B_READ ? VM_PROT_READ : VM_PROT_WRITE;
172 
173 	vm_map_protect(kernel_map, trunc_page(addr),
174 	    round_page(addr + len), prot, FALSE);
175 }
176 #endif
177 void
178 vslock(addr, len)
179 	caddr_t addr;
180 	u_int len;
181 {
182 	vm_map_pageable(&curproc->p_vmspace->vm_map, trunc_page(addr),
183 	    round_page(addr + len), FALSE);
184 }
185 
186 void
187 vsunlock(addr, len, dirtied)
188 	caddr_t addr;
189 	u_int len;
190 	int dirtied;
191 {
192 #ifdef	lint
193 	dirtied++;
194 #endif	/* lint */
195 	vm_map_pageable(&curproc->p_vmspace->vm_map, trunc_page(addr),
196 	    round_page(addr + len), TRUE);
197 }
198 
199 /*
200  * Implement fork's actions on an address space.
201  * Here we arrange for the address space to be copied or referenced,
202  * allocate a user struct (pcb and kernel stack), then call the
203  * machine-dependent layer to fill those in and make the new process
204  * ready to run.
205  * NOTE: the kernel stack may be at a different location in the child
206  * process, and thus addresses of automatic variables may be invalid
207  * after cpu_fork returns in the child process.  We do nothing here
208  * after cpu_fork returns.
209  */
210 int
211 vm_fork(p1, p2)
212 	register struct proc *p1, *p2;
213 {
214 	register struct user *up;
215 	vm_offset_t addr, ptaddr, ptpa;
216 	int error, i;
217 	vm_map_t map;
218 	pmap_t pvp;
219 	vm_page_t stkm;
220 
221 	while ((cnt.v_free_count + cnt.v_cache_count) < cnt.v_free_min) {
222 		VM_WAIT;
223 	}
224 
225 	/*
226 	 * avoid copying any of the parent's pagetables or other per-process
227 	 * objects that reside in the map by marking all of them
228 	 * non-inheritable
229 	 */
230 	(void) vm_map_inherit(&p1->p_vmspace->vm_map,
231 	    UPT_MIN_ADDRESS - UPAGES * PAGE_SIZE, VM_MAX_ADDRESS, VM_INHERIT_NONE);
232 	p2->p_vmspace = vmspace_fork(p1->p_vmspace);
233 
234 	if (p1->p_vmspace->vm_shm)
235 		shmfork(p1, p2);
236 
237 	/*
238 	 * Allocate a wired-down (for now) pcb and kernel stack for the
239 	 * process
240 	 */
241 
242 	addr = (vm_offset_t) kstack;
243 
244 	map = &p2->p_vmspace->vm_map;
245 	pvp = &p2->p_vmspace->vm_pmap;
246 
247 	/*
248 	 * allocate object for the upages
249 	 */
250 	p2->p_vmspace->vm_upages_obj = vm_object_allocate( OBJT_DEFAULT,
251 		UPAGES);
252 
253 	/*
254 	 * put upages into the address space
255 	 */
256 	error = vm_map_find(map, p2->p_vmspace->vm_upages_obj, 0,
257 		&addr, UPT_MIN_ADDRESS - addr, FALSE, VM_PROT_ALL,
258 		VM_PROT_ALL, 0);
259 	if (error != KERN_SUCCESS)
260 		panic("vm_fork: vm_map_find (UPAGES) failed, addr=0x%x, error=%d", addr, error);
261 
262 	addr += UPAGES * PAGE_SIZE;
263 	/* allocate space for page tables */
264 	error = vm_map_find(map, NULL, 0, &addr, UPT_MAX_ADDRESS - addr, FALSE,
265 		VM_PROT_ALL, VM_PROT_ALL, 0);
266 	if (error != KERN_SUCCESS)
267 		panic("vm_fork: vm_map_find (PTES) failed, addr=0x%x, error=%d", addr, error);
268 
269 	/* get a kernel virtual address for the UPAGES for this proc */
270 	up = (struct user *) kmem_alloc_pageable(u_map, UPAGES * PAGE_SIZE);
271 	if (up == NULL)
272 		panic("vm_fork: u_map allocation failed");
273 
274 	/*
275 	 * create a pagetable page for the UPAGES in the process address space
276 	 */
277 	ptaddr = trunc_page((u_int) vtopte(kstack));
278 	(void) vm_fault(map, ptaddr, VM_PROT_READ|VM_PROT_WRITE, FALSE);
279 	ptpa = pmap_extract(pvp, ptaddr);
280 	if (ptpa == 0) {
281 		panic("vm_fork: no pte for UPAGES");
282 	}
283 
284 	/*
285 	 * hold the page table page for the kernel stack, and fault them in
286 	 */
287 	stkm = PHYS_TO_VM_PAGE(ptpa);
288 	vm_page_hold(stkm);
289 
290 	for(i=0;i<UPAGES;i++) {
291 		vm_page_t m;
292 
293 		/*
294 		 * Get a kernel stack page
295 		 */
296 		while ((m = vm_page_alloc(p2->p_vmspace->vm_upages_obj,
297 			i, VM_ALLOC_NORMAL)) == NULL) {
298 			VM_WAIT;
299 		}
300 
301 		/*
302 		 * Wire the page
303 		 */
304 		vm_page_wire(m);
305 		m->flags &= ~PG_BUSY;
306 
307 		/*
308 		 * Enter the page into both the kernel and the process
309 		 * address space.
310 		 */
311 		pmap_enter( pvp, (vm_offset_t) kstack + i * PAGE_SIZE,
312 			VM_PAGE_TO_PHYS(m), VM_PROT_READ|VM_PROT_WRITE, 1);
313 		pmap_kenter(((vm_offset_t) up) + i * PAGE_SIZE,
314 			VM_PAGE_TO_PHYS(m));
315 		m->flags &= ~PG_ZERO;
316 		m->valid = VM_PAGE_BITS_ALL;
317 	}
318 	/*
319 	 * The page table page for the kernel stack should be held in memory
320 	 * now.
321 	 */
322 	vm_page_unhold(stkm);
323 
324 	p2->p_addr = up;
325 
326 	/*
327 	 * p_stats and p_sigacts currently point at fields in the user struct
328 	 * but not at &u, instead at p_addr. Copy p_sigacts and parts of
329 	 * p_stats; zero the rest of p_stats (statistics).
330 	 */
331 	p2->p_stats = &up->u_stats;
332 	p2->p_sigacts = &up->u_sigacts;
333 	up->u_sigacts = *p1->p_sigacts;
334 	bzero(&up->u_stats.pstat_startzero,
335 	    (unsigned) ((caddr_t) &up->u_stats.pstat_endzero -
336 		(caddr_t) &up->u_stats.pstat_startzero));
337 	bcopy(&p1->p_stats->pstat_startcopy, &up->u_stats.pstat_startcopy,
338 	    ((caddr_t) &up->u_stats.pstat_endcopy -
339 		(caddr_t) &up->u_stats.pstat_startcopy));
340 
341 
342 	/*
343 	 * cpu_fork will copy and update the kernel stack and pcb, and make
344 	 * the child ready to run.  It marks the child so that it can return
345 	 * differently than the parent. It returns twice, once in the parent
346 	 * process and once in the child.
347 	 */
348 	return (cpu_fork(p1, p2));
349 }
350 
351 /*
352  * Set default limits for VM system.
353  * Called for proc 0, and then inherited by all others.
354  *
355  * XXX should probably act directly on proc0.
356  */
357 static void
358 vm_init_limits(udata)
359 	void *udata;
360 {
361 	register struct proc *p = udata;
362 	int rss_limit;
363 
364 	/*
365 	 * Set up the initial limits on process VM. Set the maximum resident
366 	 * set size to be half of (reasonably) available memory.  Since this
367 	 * is a soft limit, it comes into effect only when the system is out
368 	 * of memory - half of main memory helps to favor smaller processes,
369 	 * and reduces thrashing of the object cache.
370 	 */
371 	p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
372 	p->p_rlimit[RLIMIT_STACK].rlim_max = MAXSSIZ;
373 	p->p_rlimit[RLIMIT_DATA].rlim_cur = DFLDSIZ;
374 	p->p_rlimit[RLIMIT_DATA].rlim_max = MAXDSIZ;
375 	/* limit the limit to no less than 2MB */
376 	rss_limit = max(cnt.v_free_count, 512);
377 	p->p_rlimit[RLIMIT_RSS].rlim_cur = ptoa(rss_limit);
378 	p->p_rlimit[RLIMIT_RSS].rlim_max = RLIM_INFINITY;
379 }
380 
381 void
382 faultin(p)
383 	struct proc *p;
384 {
385 	vm_offset_t i;
386 	vm_offset_t ptaddr;
387 	int s;
388 
389 	if ((p->p_flag & P_INMEM) == 0) {
390 		vm_map_t map = &p->p_vmspace->vm_map;
391 		pmap_t pmap = &p->p_vmspace->vm_pmap;
392 		vm_page_t stkm, m;
393 		vm_offset_t ptpa;
394 		int error;
395 
396 		++p->p_lock;
397 #if defined(SWAP_DEBUG)
398 		printf("swapping in %d\n", p->p_pid);
399 #endif
400 
401 		ptaddr = trunc_page((u_int) vtopte(kstack));
402 		(void) vm_fault(map, ptaddr, VM_PROT_READ|VM_PROT_WRITE, FALSE);
403 		ptpa = pmap_extract(&p->p_vmspace->vm_pmap, ptaddr);
404 		if (ptpa == 0) {
405 			panic("vm_fork: no pte for UPAGES");
406 		}
407 		stkm = PHYS_TO_VM_PAGE(ptpa);
408 		vm_page_hold(stkm);
409 
410 		for(i=0;i<UPAGES;i++) {
411 			int s;
412 			s = splhigh();
413 
414 retry:
415 			if ((m = vm_page_lookup(p->p_vmspace->vm_upages_obj, i)) == NULL) {
416 				if ((m = vm_page_alloc(p->p_vmspace->vm_upages_obj, i, VM_ALLOC_NORMAL)) == NULL) {
417 					VM_WAIT;
418 					goto retry;
419 				}
420 			} else {
421 				if ((m->flags & PG_BUSY) || m->busy) {
422 					m->flags |= PG_WANTED;
423 					tsleep(m, PVM, "swinuw",0);
424 					goto retry;
425 				}
426 			}
427 			vm_page_wire(m);
428 			if (m->valid == VM_PAGE_BITS_ALL)
429 				m->flags &= ~PG_BUSY;
430 			splx(s);
431 
432 			pmap_enter( pmap, (vm_offset_t) kstack + i * PAGE_SIZE,
433 				VM_PAGE_TO_PHYS(m), VM_PROT_READ|VM_PROT_WRITE, TRUE);
434 			pmap_kenter(((vm_offset_t) p->p_addr) + i * PAGE_SIZE,
435 				VM_PAGE_TO_PHYS(m));
436 			if (m->valid != VM_PAGE_BITS_ALL) {
437 				int rv;
438 				rv = vm_pager_get_pages(p->p_vmspace->vm_upages_obj,
439 					&m, 1, 0);
440 				if (rv != VM_PAGER_OK)
441 					panic("faultin: cannot get upages for proc: %d\n", p->p_pid);
442 				m->valid = VM_PAGE_BITS_ALL;
443 				m->flags &= ~PG_BUSY;
444 			}
445 		}
446 		vm_page_unhold(stkm);
447 
448 
449 		s = splhigh();
450 
451 		if (p->p_stat == SRUN)
452 			setrunqueue(p);
453 
454 		p->p_flag |= P_INMEM;
455 
456 		/* undo the effect of setting SLOCK above */
457 		--p->p_lock;
458 		splx(s);
459 
460 	}
461 }
462 
463 /*
464  * This swapin algorithm attempts to swap-in processes only if there
465  * is enough space for them.  Of course, if a process waits for a long
466  * time, it will be swapped in anyway.
467  */
468 /* ARGSUSED*/
469 static void
470 scheduler(dummy)
471 	void *dummy;
472 {
473 	register struct proc *p;
474 	register int pri;
475 	struct proc *pp;
476 	int ppri;
477 
478 	spl0();
479 loop:
480 	while ((cnt.v_free_count + cnt.v_cache_count) < cnt.v_free_min) {
481 		VM_WAIT;
482 	}
483 
484 	pp = NULL;
485 	ppri = INT_MIN;
486 	for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
487 		if (p->p_stat == SRUN &&
488 			(p->p_flag & (P_INMEM | P_SWAPPING)) == 0) {
489 			int mempri;
490 
491 			pri = p->p_swtime + p->p_slptime - p->p_nice * 8;
492 			mempri = pri > 0 ? pri : 0;
493 			/*
494 			 * if this process is higher priority and there is
495 			 * enough space, then select this process instead of
496 			 * the previous selection.
497 			 */
498 			if (pri > ppri) {
499 				pp = p;
500 				ppri = pri;
501 			}
502 		}
503 	}
504 
505 	/*
506 	 * Nothing to do, back to sleep
507 	 */
508 	if ((p = pp) == NULL) {
509 		tsleep(&proc0, PVM, "sched", 0);
510 		goto loop;
511 	}
512 	/*
513 	 * We would like to bring someone in. (only if there is space).
514 	 */
515 	faultin(p);
516 	p->p_swtime = 0;
517 	goto loop;
518 }
519 
520 #ifndef NO_SWAPPING
521 
522 #define	swappable(p) \
523 	(((p)->p_lock == 0) && \
524 		((p)->p_flag & (P_TRACED|P_NOSWAP|P_SYSTEM|P_INMEM|P_WEXIT|P_PHYSIO|P_SWAPPING)) == P_INMEM)
525 
526 /*
527  * Swapout is driven by the pageout daemon.  Very simple, we find eligible
528  * procs and unwire their u-areas.  We try to always "swap" at least one
529  * process in case we need the room for a swapin.
530  * If any procs have been sleeping/stopped for at least maxslp seconds,
531  * they are swapped.  Else, we swap the longest-sleeping or stopped process,
532  * if any, otherwise the longest-resident process.
533  */
534 void
535 swapout_procs()
536 {
537 	register struct proc *p;
538 	struct proc *outp, *outp2;
539 	int outpri, outpri2;
540 	int didswap = 0;
541 
542 	outp = outp2 = NULL;
543 	outpri = outpri2 = INT_MIN;
544 retry:
545 	for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
546 		if (!swappable(p))
547 			continue;
548 		switch (p->p_stat) {
549 		default:
550 			continue;
551 
552 		case SSLEEP:
553 		case SSTOP:
554 			/*
555 			 * do not swapout a realtime process
556 			 */
557 			if (p->p_rtprio.type == RTP_PRIO_REALTIME)
558 				continue;
559 
560 			/*
561 			 * do not swapout a process waiting on a critical
562 			 * event of some kind
563 			 */
564 			if (((p->p_priority & 0x7f) < PSOCK) ||
565 				(p->p_slptime <= 4))
566 				continue;
567 
568 			vm_map_reference(&p->p_vmspace->vm_map);
569 			/*
570 			 * do not swapout a process that is waiting for VM
571 			 * datastructures there is a possible deadlock.
572 			 */
573 			if (!lock_try_write(&p->p_vmspace->vm_map.lock)) {
574 				vm_map_deallocate(&p->p_vmspace->vm_map);
575 				continue;
576 			}
577 			vm_map_unlock(&p->p_vmspace->vm_map);
578 			/*
579 			 * If the process has been asleep for awhile and had
580 			 * most of its pages taken away already, swap it out.
581 			 */
582 			swapout(p);
583 			vm_map_deallocate(&p->p_vmspace->vm_map);
584 			didswap++;
585 			goto retry;
586 		}
587 	}
588 	/*
589 	 * If we swapped something out, and another process needed memory,
590 	 * then wakeup the sched process.
591 	 */
592 	if (didswap)
593 		wakeup(&proc0);
594 }
595 
596 static void
597 swapout(p)
598 	register struct proc *p;
599 {
600 	vm_map_t map = &p->p_vmspace->vm_map;
601 	pmap_t pmap = &p->p_vmspace->vm_pmap;
602 	vm_offset_t ptaddr;
603 	int i;
604 
605 #if defined(SWAP_DEBUG)
606 	printf("swapping out %d\n", p->p_pid);
607 #endif
608 	++p->p_stats->p_ru.ru_nswap;
609 	/*
610 	 * remember the process resident count
611 	 */
612 	p->p_vmspace->vm_swrss =
613 	    p->p_vmspace->vm_pmap.pm_stats.resident_count;
614 
615 	(void) splhigh();
616 	p->p_flag &= ~P_INMEM;
617 	p->p_flag |= P_SWAPPING;
618 	if (p->p_stat == SRUN)
619 		remrq(p);
620 	(void) spl0();
621 
622 	/*
623 	 * let the upages be paged
624 	 */
625 	for(i=0;i<UPAGES;i++) {
626 		vm_page_t m;
627 		if ((m = vm_page_lookup(p->p_vmspace->vm_upages_obj, i)) == NULL)
628 			panic("swapout: upage already missing???");
629 		m->dirty = VM_PAGE_BITS_ALL;
630 		vm_page_unwire(m);
631 		pmap_kremove( (vm_offset_t) p->p_addr + PAGE_SIZE * i);
632 	}
633 	pmap_remove(pmap, (vm_offset_t) kstack,
634 		(vm_offset_t) kstack + PAGE_SIZE * UPAGES);
635 
636 	p->p_flag &= ~P_SWAPPING;
637 	p->p_swtime = 0;
638 }
639 #endif /* !NO_SWAPPING */
640 
641 #ifdef DDB
642 /*
643  * DEBUG stuff
644  */
645 
646 int indent;
647 
648 #include <machine/stdarg.h>	/* see subr_prf.c */
649 
650 /*ARGSUSED2*/
651 void
652 #if __STDC__
653 iprintf(const char *fmt,...)
654 #else
655 iprintf(fmt /* , va_alist */ )
656 	char *fmt;
657 
658  /* va_dcl */
659 #endif
660 {
661 	register int i;
662 	va_list ap;
663 
664 	for (i = indent; i >= 8; i -= 8)
665 		printf("\t");
666 	while (--i >= 0)
667 		printf(" ");
668 	va_start(ap, fmt);
669 	vprintf(fmt, ap);
670 	va_end(ap);
671 }
672 #endif /* DDB */
673