xref: /freebsd/sys/vm/vm_fault.c (revision ff19fd624233a938b6a09ac75a87a2c69d65df08)
1 /*-
2  * SPDX-License-Identifier: (BSD-4-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * Copyright (c) 1994 John S. Dyson
7  * All rights reserved.
8  * Copyright (c) 1994 David Greenman
9  * All rights reserved.
10  *
11  *
12  * This code is derived from software contributed to Berkeley by
13  * The Mach Operating System project at Carnegie-Mellon University.
14  *
15  * Redistribution and use in source and binary forms, with or without
16  * modification, are permitted provided that the following conditions
17  * are met:
18  * 1. Redistributions of source code must retain the above copyright
19  *    notice, this list of conditions and the following disclaimer.
20  * 2. Redistributions in binary form must reproduce the above copyright
21  *    notice, this list of conditions and the following disclaimer in the
22  *    documentation and/or other materials provided with the distribution.
23  * 3. All advertising materials mentioning features or use of this software
24  *    must display the following acknowledgement:
25  *	This product includes software developed by the University of
26  *	California, Berkeley and its contributors.
27  * 4. Neither the name of the University nor the names of its contributors
28  *    may be used to endorse or promote products derived from this software
29  *    without specific prior written permission.
30  *
31  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41  * SUCH DAMAGE.
42  *
43  *	from: @(#)vm_fault.c	8.4 (Berkeley) 1/12/94
44  *
45  *
46  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
47  * All rights reserved.
48  *
49  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
50  *
51  * Permission to use, copy, modify and distribute this software and
52  * its documentation is hereby granted, provided that both the copyright
53  * notice and this permission notice appear in all copies of the
54  * software, derivative works or modified versions, and any portions
55  * thereof, and that both notices appear in supporting documentation.
56  *
57  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
58  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
59  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
60  *
61  * Carnegie Mellon requests users of this software to return to
62  *
63  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
64  *  School of Computer Science
65  *  Carnegie Mellon University
66  *  Pittsburgh PA 15213-3890
67  *
68  * any improvements or extensions that they make and grant Carnegie the
69  * rights to redistribute these changes.
70  */
71 
72 /*
73  *	Page fault handling module.
74  */
75 
76 #include <sys/cdefs.h>
77 __FBSDID("$FreeBSD$");
78 
79 #include "opt_ktrace.h"
80 #include "opt_vm.h"
81 
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/kernel.h>
85 #include <sys/lock.h>
86 #include <sys/mman.h>
87 #include <sys/mutex.h>
88 #include <sys/proc.h>
89 #include <sys/racct.h>
90 #include <sys/refcount.h>
91 #include <sys/resourcevar.h>
92 #include <sys/rwlock.h>
93 #include <sys/signalvar.h>
94 #include <sys/sysctl.h>
95 #include <sys/sysent.h>
96 #include <sys/vmmeter.h>
97 #include <sys/vnode.h>
98 #ifdef KTRACE
99 #include <sys/ktrace.h>
100 #endif
101 
102 #include <vm/vm.h>
103 #include <vm/vm_param.h>
104 #include <vm/pmap.h>
105 #include <vm/vm_map.h>
106 #include <vm/vm_object.h>
107 #include <vm/vm_page.h>
108 #include <vm/vm_pageout.h>
109 #include <vm/vm_kern.h>
110 #include <vm/vm_pager.h>
111 #include <vm/vm_extern.h>
112 #include <vm/vm_reserv.h>
113 
114 #define PFBAK 4
115 #define PFFOR 4
116 
117 #define	VM_FAULT_READ_DEFAULT	(1 + VM_FAULT_READ_AHEAD_INIT)
118 #define	VM_FAULT_READ_MAX	(1 + VM_FAULT_READ_AHEAD_MAX)
119 
120 #define	VM_FAULT_DONTNEED_MIN	1048576
121 
122 struct faultstate {
123 	/* Fault parameters. */
124 	vm_offset_t	vaddr;
125 	vm_page_t	*m_hold;
126 	vm_prot_t	fault_type;
127 	vm_prot_t	prot;
128 	int		fault_flags;
129 	int		oom;
130 	boolean_t	wired;
131 
132 	/* Page reference for cow. */
133 	vm_page_t m_cow;
134 
135 	/* Current object. */
136 	vm_object_t	object;
137 	vm_pindex_t	pindex;
138 	vm_page_t	m;
139 
140 	/* Top-level map object. */
141 	vm_object_t	first_object;
142 	vm_pindex_t	first_pindex;
143 	vm_page_t	first_m;
144 
145 	/* Map state. */
146 	vm_map_t	map;
147 	vm_map_entry_t	entry;
148 	int		map_generation;
149 	bool		lookup_still_valid;
150 
151 	/* Vnode if locked. */
152 	struct vnode	*vp;
153 };
154 
155 static void vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr,
156 	    int ahead);
157 static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
158 	    int backward, int forward, bool obj_locked);
159 
160 static int vm_pfault_oom_attempts = 3;
161 SYSCTL_INT(_vm, OID_AUTO, pfault_oom_attempts, CTLFLAG_RWTUN,
162     &vm_pfault_oom_attempts, 0,
163     "Number of page allocation attempts in page fault handler before it "
164     "triggers OOM handling");
165 
166 static int vm_pfault_oom_wait = 10;
167 SYSCTL_INT(_vm, OID_AUTO, pfault_oom_wait, CTLFLAG_RWTUN,
168     &vm_pfault_oom_wait, 0,
169     "Number of seconds to wait for free pages before retrying "
170     "the page fault handler");
171 
172 static inline void
173 fault_page_release(vm_page_t *mp)
174 {
175 	vm_page_t m;
176 
177 	m = *mp;
178 	if (m != NULL) {
179 		/*
180 		 * We are likely to loop around again and attempt to busy
181 		 * this page.  Deactivating it leaves it available for
182 		 * pageout while optimizing fault restarts.
183 		 */
184 		vm_page_deactivate(m);
185 		vm_page_xunbusy(m);
186 		*mp = NULL;
187 	}
188 }
189 
190 static inline void
191 fault_page_free(vm_page_t *mp)
192 {
193 	vm_page_t m;
194 
195 	m = *mp;
196 	if (m != NULL) {
197 		VM_OBJECT_ASSERT_WLOCKED(m->object);
198 		if (!vm_page_wired(m))
199 			vm_page_free(m);
200 		else
201 			vm_page_xunbusy(m);
202 		*mp = NULL;
203 	}
204 }
205 
206 static inline void
207 unlock_map(struct faultstate *fs)
208 {
209 
210 	if (fs->lookup_still_valid) {
211 		vm_map_lookup_done(fs->map, fs->entry);
212 		fs->lookup_still_valid = false;
213 	}
214 }
215 
216 static void
217 unlock_vp(struct faultstate *fs)
218 {
219 
220 	if (fs->vp != NULL) {
221 		vput(fs->vp);
222 		fs->vp = NULL;
223 	}
224 }
225 
226 static void
227 fault_deallocate(struct faultstate *fs)
228 {
229 
230 	fault_page_release(&fs->m_cow);
231 	fault_page_release(&fs->m);
232 	vm_object_pip_wakeup(fs->object);
233 	if (fs->object != fs->first_object) {
234 		VM_OBJECT_WLOCK(fs->first_object);
235 		fault_page_free(&fs->first_m);
236 		VM_OBJECT_WUNLOCK(fs->first_object);
237 		vm_object_pip_wakeup(fs->first_object);
238 	}
239 	vm_object_deallocate(fs->first_object);
240 	unlock_map(fs);
241 	unlock_vp(fs);
242 }
243 
244 static void
245 unlock_and_deallocate(struct faultstate *fs)
246 {
247 
248 	VM_OBJECT_WUNLOCK(fs->object);
249 	fault_deallocate(fs);
250 }
251 
252 static void
253 vm_fault_dirty(struct faultstate *fs, vm_page_t m)
254 {
255 	bool need_dirty;
256 
257 	if (((fs->prot & VM_PROT_WRITE) == 0 &&
258 	    (fs->fault_flags & VM_FAULT_DIRTY) == 0) ||
259 	    (m->oflags & VPO_UNMANAGED) != 0)
260 		return;
261 
262 	VM_PAGE_OBJECT_BUSY_ASSERT(m);
263 
264 	need_dirty = ((fs->fault_type & VM_PROT_WRITE) != 0 &&
265 	    (fs->fault_flags & VM_FAULT_WIRE) == 0) ||
266 	    (fs->fault_flags & VM_FAULT_DIRTY) != 0;
267 
268 	vm_object_set_writeable_dirty(m->object);
269 
270 	/*
271 	 * If the fault is a write, we know that this page is being
272 	 * written NOW so dirty it explicitly to save on
273 	 * pmap_is_modified() calls later.
274 	 *
275 	 * Also, since the page is now dirty, we can possibly tell
276 	 * the pager to release any swap backing the page.
277 	 */
278 	if (need_dirty && vm_page_set_dirty(m) == 0) {
279 		/*
280 		 * If this is a NOSYNC mmap we do not want to set PGA_NOSYNC
281 		 * if the page is already dirty to prevent data written with
282 		 * the expectation of being synced from not being synced.
283 		 * Likewise if this entry does not request NOSYNC then make
284 		 * sure the page isn't marked NOSYNC.  Applications sharing
285 		 * data should use the same flags to avoid ping ponging.
286 		 */
287 		if ((fs->entry->eflags & MAP_ENTRY_NOSYNC) != 0)
288 			vm_page_aflag_set(m, PGA_NOSYNC);
289 		else
290 			vm_page_aflag_clear(m, PGA_NOSYNC);
291 	}
292 
293 }
294 
295 /*
296  * Unlocks fs.first_object and fs.map on success.
297  */
298 static int
299 vm_fault_soft_fast(struct faultstate *fs)
300 {
301 	vm_page_t m, m_map;
302 #if VM_NRESERVLEVEL > 0
303 	vm_page_t m_super;
304 	int flags;
305 #endif
306 	int psind, rv;
307 	vm_offset_t vaddr;
308 
309 	MPASS(fs->vp == NULL);
310 	vaddr = fs->vaddr;
311 	vm_object_busy(fs->first_object);
312 	m = vm_page_lookup(fs->first_object, fs->first_pindex);
313 	/* A busy page can be mapped for read|execute access. */
314 	if (m == NULL || ((fs->prot & VM_PROT_WRITE) != 0 &&
315 	    vm_page_busied(m)) || !vm_page_all_valid(m)) {
316 		rv = KERN_FAILURE;
317 		goto out;
318 	}
319 	m_map = m;
320 	psind = 0;
321 #if VM_NRESERVLEVEL > 0
322 	if ((m->flags & PG_FICTITIOUS) == 0 &&
323 	    (m_super = vm_reserv_to_superpage(m)) != NULL &&
324 	    rounddown2(vaddr, pagesizes[m_super->psind]) >= fs->entry->start &&
325 	    roundup2(vaddr + 1, pagesizes[m_super->psind]) <= fs->entry->end &&
326 	    (vaddr & (pagesizes[m_super->psind] - 1)) == (VM_PAGE_TO_PHYS(m) &
327 	    (pagesizes[m_super->psind] - 1)) && !fs->wired &&
328 	    pmap_ps_enabled(fs->map->pmap)) {
329 		flags = PS_ALL_VALID;
330 		if ((fs->prot & VM_PROT_WRITE) != 0) {
331 			/*
332 			 * Create a superpage mapping allowing write access
333 			 * only if none of the constituent pages are busy and
334 			 * all of them are already dirty (except possibly for
335 			 * the page that was faulted on).
336 			 */
337 			flags |= PS_NONE_BUSY;
338 			if ((fs->first_object->flags & OBJ_UNMANAGED) == 0)
339 				flags |= PS_ALL_DIRTY;
340 		}
341 		if (vm_page_ps_test(m_super, flags, m)) {
342 			m_map = m_super;
343 			psind = m_super->psind;
344 			vaddr = rounddown2(vaddr, pagesizes[psind]);
345 			/* Preset the modified bit for dirty superpages. */
346 			if ((flags & PS_ALL_DIRTY) != 0)
347 				fs->fault_type |= VM_PROT_WRITE;
348 		}
349 	}
350 #endif
351 	rv = pmap_enter(fs->map->pmap, vaddr, m_map, fs->prot, fs->fault_type |
352 	    PMAP_ENTER_NOSLEEP | (fs->wired ? PMAP_ENTER_WIRED : 0), psind);
353 	if (rv != KERN_SUCCESS)
354 		goto out;
355 	if (fs->m_hold != NULL) {
356 		(*fs->m_hold) = m;
357 		vm_page_wire(m);
358 	}
359 	if (psind == 0 && !fs->wired)
360 		vm_fault_prefault(fs, vaddr, PFBAK, PFFOR, true);
361 	VM_OBJECT_RUNLOCK(fs->first_object);
362 	vm_fault_dirty(fs, m);
363 	vm_map_lookup_done(fs->map, fs->entry);
364 	curthread->td_ru.ru_minflt++;
365 
366 out:
367 	vm_object_unbusy(fs->first_object);
368 	return (rv);
369 }
370 
371 static void
372 vm_fault_restore_map_lock(struct faultstate *fs)
373 {
374 
375 	VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
376 	MPASS(blockcount_read(&fs->first_object->paging_in_progress) > 0);
377 
378 	if (!vm_map_trylock_read(fs->map)) {
379 		VM_OBJECT_WUNLOCK(fs->first_object);
380 		vm_map_lock_read(fs->map);
381 		VM_OBJECT_WLOCK(fs->first_object);
382 	}
383 	fs->lookup_still_valid = true;
384 }
385 
386 static void
387 vm_fault_populate_check_page(vm_page_t m)
388 {
389 
390 	/*
391 	 * Check each page to ensure that the pager is obeying the
392 	 * interface: the page must be installed in the object, fully
393 	 * valid, and exclusively busied.
394 	 */
395 	MPASS(m != NULL);
396 	MPASS(vm_page_all_valid(m));
397 	MPASS(vm_page_xbusied(m));
398 }
399 
400 static void
401 vm_fault_populate_cleanup(vm_object_t object, vm_pindex_t first,
402     vm_pindex_t last)
403 {
404 	vm_page_t m;
405 	vm_pindex_t pidx;
406 
407 	VM_OBJECT_ASSERT_WLOCKED(object);
408 	MPASS(first <= last);
409 	for (pidx = first, m = vm_page_lookup(object, pidx);
410 	    pidx <= last; pidx++, m = vm_page_next(m)) {
411 		vm_fault_populate_check_page(m);
412 		vm_page_deactivate(m);
413 		vm_page_xunbusy(m);
414 	}
415 }
416 
417 static int
418 vm_fault_populate(struct faultstate *fs)
419 {
420 	vm_offset_t vaddr;
421 	vm_page_t m;
422 	vm_pindex_t map_first, map_last, pager_first, pager_last, pidx;
423 	int bdry_idx, i, npages, psind, rv;
424 
425 	MPASS(fs->object == fs->first_object);
426 	VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
427 	MPASS(blockcount_read(&fs->first_object->paging_in_progress) > 0);
428 	MPASS(fs->first_object->backing_object == NULL);
429 	MPASS(fs->lookup_still_valid);
430 
431 	pager_first = OFF_TO_IDX(fs->entry->offset);
432 	pager_last = pager_first + atop(fs->entry->end - fs->entry->start) - 1;
433 	unlock_map(fs);
434 	unlock_vp(fs);
435 
436 	/*
437 	 * Call the pager (driver) populate() method.
438 	 *
439 	 * There is no guarantee that the method will be called again
440 	 * if the current fault is for read, and a future fault is
441 	 * for write.  Report the entry's maximum allowed protection
442 	 * to the driver.
443 	 */
444 	rv = vm_pager_populate(fs->first_object, fs->first_pindex,
445 	    fs->fault_type, fs->entry->max_protection, &pager_first,
446 	    &pager_last);
447 
448 	VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
449 	if (rv == VM_PAGER_BAD) {
450 		/*
451 		 * VM_PAGER_BAD is the backdoor for a pager to request
452 		 * normal fault handling.
453 		 */
454 		vm_fault_restore_map_lock(fs);
455 		if (fs->map->timestamp != fs->map_generation)
456 			return (KERN_RESTART);
457 		return (KERN_NOT_RECEIVER);
458 	}
459 	if (rv != VM_PAGER_OK)
460 		return (KERN_FAILURE); /* AKA SIGSEGV */
461 
462 	/* Ensure that the driver is obeying the interface. */
463 	MPASS(pager_first <= pager_last);
464 	MPASS(fs->first_pindex <= pager_last);
465 	MPASS(fs->first_pindex >= pager_first);
466 	MPASS(pager_last < fs->first_object->size);
467 
468 	vm_fault_restore_map_lock(fs);
469 	bdry_idx = (fs->entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) >>
470 	    MAP_ENTRY_SPLIT_BOUNDARY_SHIFT;
471 	if (fs->map->timestamp != fs->map_generation) {
472 		if (bdry_idx == 0) {
473 			vm_fault_populate_cleanup(fs->first_object, pager_first,
474 			    pager_last);
475 		} else {
476 			m = vm_page_lookup(fs->first_object, pager_first);
477 			if (m != fs->m)
478 				vm_page_xunbusy(m);
479 		}
480 		return (KERN_RESTART);
481 	}
482 
483 	/*
484 	 * The map is unchanged after our last unlock.  Process the fault.
485 	 *
486 	 * First, the special case of largepage mappings, where
487 	 * populate only busies the first page in superpage run.
488 	 */
489 	if (bdry_idx != 0) {
490 		KASSERT(PMAP_HAS_LARGEPAGES,
491 		    ("missing pmap support for large pages"));
492 		m = vm_page_lookup(fs->first_object, pager_first);
493 		vm_fault_populate_check_page(m);
494 		VM_OBJECT_WUNLOCK(fs->first_object);
495 		vaddr = fs->entry->start + IDX_TO_OFF(pager_first) -
496 		    fs->entry->offset;
497 		/* assert alignment for entry */
498 		KASSERT((vaddr & (pagesizes[bdry_idx] - 1)) == 0,
499     ("unaligned superpage start %#jx pager_first %#jx offset %#jx vaddr %#jx",
500 		    (uintmax_t)fs->entry->start, (uintmax_t)pager_first,
501 		    (uintmax_t)fs->entry->offset, (uintmax_t)vaddr));
502 		KASSERT((VM_PAGE_TO_PHYS(m) & (pagesizes[bdry_idx] - 1)) == 0,
503 		    ("unaligned superpage m %p %#jx", m,
504 		    (uintmax_t)VM_PAGE_TO_PHYS(m)));
505 		rv = pmap_enter(fs->map->pmap, vaddr, m, fs->prot,
506 		    fs->fault_type | (fs->wired ? PMAP_ENTER_WIRED : 0) |
507 		    PMAP_ENTER_LARGEPAGE, bdry_idx);
508 		VM_OBJECT_WLOCK(fs->first_object);
509 		vm_page_xunbusy(m);
510 		if ((fs->fault_flags & VM_FAULT_WIRE) != 0) {
511 			for (i = 0; i < atop(pagesizes[bdry_idx]); i++)
512 				vm_page_wire(m + i);
513 		}
514 		if (fs->m_hold != NULL) {
515 			*fs->m_hold = m + (fs->first_pindex - pager_first);
516 			vm_page_wire(*fs->m_hold);
517 		}
518 		goto out;
519 	}
520 
521 	/*
522 	 * The range [pager_first, pager_last] that is given to the
523 	 * pager is only a hint.  The pager may populate any range
524 	 * within the object that includes the requested page index.
525 	 * In case the pager expanded the range, clip it to fit into
526 	 * the map entry.
527 	 */
528 	map_first = OFF_TO_IDX(fs->entry->offset);
529 	if (map_first > pager_first) {
530 		vm_fault_populate_cleanup(fs->first_object, pager_first,
531 		    map_first - 1);
532 		pager_first = map_first;
533 	}
534 	map_last = map_first + atop(fs->entry->end - fs->entry->start) - 1;
535 	if (map_last < pager_last) {
536 		vm_fault_populate_cleanup(fs->first_object, map_last + 1,
537 		    pager_last);
538 		pager_last = map_last;
539 	}
540 	for (pidx = pager_first, m = vm_page_lookup(fs->first_object, pidx);
541 	    pidx <= pager_last;
542 	    pidx += npages, m = vm_page_next(&m[npages - 1])) {
543 		vaddr = fs->entry->start + IDX_TO_OFF(pidx) - fs->entry->offset;
544 #if defined(__aarch64__) || defined(__amd64__) || (defined(__arm__) && \
545     __ARM_ARCH >= 6) || defined(__i386__) || defined(__riscv) || \
546     defined(__powerpc64__)
547 		psind = m->psind;
548 		if (psind > 0 && ((vaddr & (pagesizes[psind] - 1)) != 0 ||
549 		    pidx + OFF_TO_IDX(pagesizes[psind]) - 1 > pager_last ||
550 		    !pmap_ps_enabled(fs->map->pmap) || fs->wired))
551 			psind = 0;
552 #else
553 		psind = 0;
554 #endif
555 		npages = atop(pagesizes[psind]);
556 		for (i = 0; i < npages; i++) {
557 			vm_fault_populate_check_page(&m[i]);
558 			vm_fault_dirty(fs, &m[i]);
559 		}
560 		VM_OBJECT_WUNLOCK(fs->first_object);
561 		rv = pmap_enter(fs->map->pmap, vaddr, m, fs->prot, fs->fault_type |
562 		    (fs->wired ? PMAP_ENTER_WIRED : 0), psind);
563 #if defined(__amd64__)
564 		if (psind > 0 && rv == KERN_FAILURE) {
565 			for (i = 0; i < npages; i++) {
566 				rv = pmap_enter(fs->map->pmap, vaddr + ptoa(i),
567 				    &m[i], fs->prot, fs->fault_type |
568 				    (fs->wired ? PMAP_ENTER_WIRED : 0), 0);
569 				MPASS(rv == KERN_SUCCESS);
570 			}
571 		}
572 #else
573 		MPASS(rv == KERN_SUCCESS);
574 #endif
575 		VM_OBJECT_WLOCK(fs->first_object);
576 		for (i = 0; i < npages; i++) {
577 			if ((fs->fault_flags & VM_FAULT_WIRE) != 0)
578 				vm_page_wire(&m[i]);
579 			else
580 				vm_page_activate(&m[i]);
581 			if (fs->m_hold != NULL && m[i].pindex == fs->first_pindex) {
582 				(*fs->m_hold) = &m[i];
583 				vm_page_wire(&m[i]);
584 			}
585 			vm_page_xunbusy(&m[i]);
586 		}
587 	}
588 out:
589 	curthread->td_ru.ru_majflt++;
590 	return (KERN_SUCCESS);
591 }
592 
593 static int prot_fault_translation;
594 SYSCTL_INT(_machdep, OID_AUTO, prot_fault_translation, CTLFLAG_RWTUN,
595     &prot_fault_translation, 0,
596     "Control signal to deliver on protection fault");
597 
598 /* compat definition to keep common code for signal translation */
599 #define	UCODE_PAGEFLT	12
600 #ifdef T_PAGEFLT
601 _Static_assert(UCODE_PAGEFLT == T_PAGEFLT, "T_PAGEFLT");
602 #endif
603 
604 /*
605  *	vm_fault_trap:
606  *
607  *	Handle a page fault occurring at the given address,
608  *	requiring the given permissions, in the map specified.
609  *	If successful, the page is inserted into the
610  *	associated physical map.
611  *
612  *	NOTE: the given address should be truncated to the
613  *	proper page address.
614  *
615  *	KERN_SUCCESS is returned if the page fault is handled; otherwise,
616  *	a standard error specifying why the fault is fatal is returned.
617  *
618  *	The map in question must be referenced, and remains so.
619  *	Caller may hold no locks.
620  */
621 int
622 vm_fault_trap(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
623     int fault_flags, int *signo, int *ucode)
624 {
625 	int result;
626 
627 	MPASS(signo == NULL || ucode != NULL);
628 #ifdef KTRACE
629 	if (map != kernel_map && KTRPOINT(curthread, KTR_FAULT))
630 		ktrfault(vaddr, fault_type);
631 #endif
632 	result = vm_fault(map, trunc_page(vaddr), fault_type, fault_flags,
633 	    NULL);
634 	KASSERT(result == KERN_SUCCESS || result == KERN_FAILURE ||
635 	    result == KERN_INVALID_ADDRESS ||
636 	    result == KERN_RESOURCE_SHORTAGE ||
637 	    result == KERN_PROTECTION_FAILURE ||
638 	    result == KERN_OUT_OF_BOUNDS,
639 	    ("Unexpected Mach error %d from vm_fault()", result));
640 #ifdef KTRACE
641 	if (map != kernel_map && KTRPOINT(curthread, KTR_FAULTEND))
642 		ktrfaultend(result);
643 #endif
644 	if (result != KERN_SUCCESS && signo != NULL) {
645 		switch (result) {
646 		case KERN_FAILURE:
647 		case KERN_INVALID_ADDRESS:
648 			*signo = SIGSEGV;
649 			*ucode = SEGV_MAPERR;
650 			break;
651 		case KERN_RESOURCE_SHORTAGE:
652 			*signo = SIGBUS;
653 			*ucode = BUS_OOMERR;
654 			break;
655 		case KERN_OUT_OF_BOUNDS:
656 			*signo = SIGBUS;
657 			*ucode = BUS_OBJERR;
658 			break;
659 		case KERN_PROTECTION_FAILURE:
660 			if (prot_fault_translation == 0) {
661 				/*
662 				 * Autodetect.  This check also covers
663 				 * the images without the ABI-tag ELF
664 				 * note.
665 				 */
666 				if (SV_CURPROC_ABI() == SV_ABI_FREEBSD &&
667 				    curproc->p_osrel >= P_OSREL_SIGSEGV) {
668 					*signo = SIGSEGV;
669 					*ucode = SEGV_ACCERR;
670 				} else {
671 					*signo = SIGBUS;
672 					*ucode = UCODE_PAGEFLT;
673 				}
674 			} else if (prot_fault_translation == 1) {
675 				/* Always compat mode. */
676 				*signo = SIGBUS;
677 				*ucode = UCODE_PAGEFLT;
678 			} else {
679 				/* Always SIGSEGV mode. */
680 				*signo = SIGSEGV;
681 				*ucode = SEGV_ACCERR;
682 			}
683 			break;
684 		default:
685 			KASSERT(0, ("Unexpected Mach error %d from vm_fault()",
686 			    result));
687 			break;
688 		}
689 	}
690 	return (result);
691 }
692 
693 static int
694 vm_fault_lock_vnode(struct faultstate *fs, bool objlocked)
695 {
696 	struct vnode *vp;
697 	int error, locked;
698 
699 	if (fs->object->type != OBJT_VNODE)
700 		return (KERN_SUCCESS);
701 	vp = fs->object->handle;
702 	if (vp == fs->vp) {
703 		ASSERT_VOP_LOCKED(vp, "saved vnode is not locked");
704 		return (KERN_SUCCESS);
705 	}
706 
707 	/*
708 	 * Perform an unlock in case the desired vnode changed while
709 	 * the map was unlocked during a retry.
710 	 */
711 	unlock_vp(fs);
712 
713 	locked = VOP_ISLOCKED(vp);
714 	if (locked != LK_EXCLUSIVE)
715 		locked = LK_SHARED;
716 
717 	/*
718 	 * We must not sleep acquiring the vnode lock while we have
719 	 * the page exclusive busied or the object's
720 	 * paging-in-progress count incremented.  Otherwise, we could
721 	 * deadlock.
722 	 */
723 	error = vget(vp, locked | LK_CANRECURSE | LK_NOWAIT);
724 	if (error == 0) {
725 		fs->vp = vp;
726 		return (KERN_SUCCESS);
727 	}
728 
729 	vhold(vp);
730 	if (objlocked)
731 		unlock_and_deallocate(fs);
732 	else
733 		fault_deallocate(fs);
734 	error = vget(vp, locked | LK_RETRY | LK_CANRECURSE);
735 	vdrop(vp);
736 	fs->vp = vp;
737 	KASSERT(error == 0, ("vm_fault: vget failed %d", error));
738 	return (KERN_RESOURCE_SHORTAGE);
739 }
740 
741 /*
742  * Calculate the desired readahead.  Handle drop-behind.
743  *
744  * Returns the number of readahead blocks to pass to the pager.
745  */
746 static int
747 vm_fault_readahead(struct faultstate *fs)
748 {
749 	int era, nera;
750 	u_char behavior;
751 
752 	KASSERT(fs->lookup_still_valid, ("map unlocked"));
753 	era = fs->entry->read_ahead;
754 	behavior = vm_map_entry_behavior(fs->entry);
755 	if (behavior == MAP_ENTRY_BEHAV_RANDOM) {
756 		nera = 0;
757 	} else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) {
758 		nera = VM_FAULT_READ_AHEAD_MAX;
759 		if (fs->vaddr == fs->entry->next_read)
760 			vm_fault_dontneed(fs, fs->vaddr, nera);
761 	} else if (fs->vaddr == fs->entry->next_read) {
762 		/*
763 		 * This is a sequential fault.  Arithmetically
764 		 * increase the requested number of pages in
765 		 * the read-ahead window.  The requested
766 		 * number of pages is "# of sequential faults
767 		 * x (read ahead min + 1) + read ahead min"
768 		 */
769 		nera = VM_FAULT_READ_AHEAD_MIN;
770 		if (era > 0) {
771 			nera += era + 1;
772 			if (nera > VM_FAULT_READ_AHEAD_MAX)
773 				nera = VM_FAULT_READ_AHEAD_MAX;
774 		}
775 		if (era == VM_FAULT_READ_AHEAD_MAX)
776 			vm_fault_dontneed(fs, fs->vaddr, nera);
777 	} else {
778 		/*
779 		 * This is a non-sequential fault.
780 		 */
781 		nera = 0;
782 	}
783 	if (era != nera) {
784 		/*
785 		 * A read lock on the map suffices to update
786 		 * the read ahead count safely.
787 		 */
788 		fs->entry->read_ahead = nera;
789 	}
790 
791 	return (nera);
792 }
793 
794 static int
795 vm_fault_lookup(struct faultstate *fs)
796 {
797 	int result;
798 
799 	KASSERT(!fs->lookup_still_valid,
800 	   ("vm_fault_lookup: Map already locked."));
801 	result = vm_map_lookup(&fs->map, fs->vaddr, fs->fault_type |
802 	    VM_PROT_FAULT_LOOKUP, &fs->entry, &fs->first_object,
803 	    &fs->first_pindex, &fs->prot, &fs->wired);
804 	if (result != KERN_SUCCESS) {
805 		unlock_vp(fs);
806 		return (result);
807 	}
808 
809 	fs->map_generation = fs->map->timestamp;
810 
811 	if (fs->entry->eflags & MAP_ENTRY_NOFAULT) {
812 		panic("%s: fault on nofault entry, addr: %#lx",
813 		    __func__, (u_long)fs->vaddr);
814 	}
815 
816 	if (fs->entry->eflags & MAP_ENTRY_IN_TRANSITION &&
817 	    fs->entry->wiring_thread != curthread) {
818 		vm_map_unlock_read(fs->map);
819 		vm_map_lock(fs->map);
820 		if (vm_map_lookup_entry(fs->map, fs->vaddr, &fs->entry) &&
821 		    (fs->entry->eflags & MAP_ENTRY_IN_TRANSITION)) {
822 			unlock_vp(fs);
823 			fs->entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
824 			vm_map_unlock_and_wait(fs->map, 0);
825 		} else
826 			vm_map_unlock(fs->map);
827 		return (KERN_RESOURCE_SHORTAGE);
828 	}
829 
830 	MPASS((fs->entry->eflags & MAP_ENTRY_GUARD) == 0);
831 
832 	if (fs->wired)
833 		fs->fault_type = fs->prot | (fs->fault_type & VM_PROT_COPY);
834 	else
835 		KASSERT((fs->fault_flags & VM_FAULT_WIRE) == 0,
836 		    ("!fs->wired && VM_FAULT_WIRE"));
837 	fs->lookup_still_valid = true;
838 
839 	return (KERN_SUCCESS);
840 }
841 
842 static int
843 vm_fault_relookup(struct faultstate *fs)
844 {
845 	vm_object_t retry_object;
846 	vm_pindex_t retry_pindex;
847 	vm_prot_t retry_prot;
848 	int result;
849 
850 	if (!vm_map_trylock_read(fs->map))
851 		return (KERN_RESTART);
852 
853 	fs->lookup_still_valid = true;
854 	if (fs->map->timestamp == fs->map_generation)
855 		return (KERN_SUCCESS);
856 
857 	result = vm_map_lookup_locked(&fs->map, fs->vaddr, fs->fault_type,
858 	    &fs->entry, &retry_object, &retry_pindex, &retry_prot,
859 	    &fs->wired);
860 	if (result != KERN_SUCCESS) {
861 		/*
862 		 * If retry of map lookup would have blocked then
863 		 * retry fault from start.
864 		 */
865 		if (result == KERN_FAILURE)
866 			return (KERN_RESTART);
867 		return (result);
868 	}
869 	if (retry_object != fs->first_object ||
870 	    retry_pindex != fs->first_pindex)
871 		return (KERN_RESTART);
872 
873 	/*
874 	 * Check whether the protection has changed or the object has
875 	 * been copied while we left the map unlocked. Changing from
876 	 * read to write permission is OK - we leave the page
877 	 * write-protected, and catch the write fault. Changing from
878 	 * write to read permission means that we can't mark the page
879 	 * write-enabled after all.
880 	 */
881 	fs->prot &= retry_prot;
882 	fs->fault_type &= retry_prot;
883 	if (fs->prot == 0)
884 		return (KERN_RESTART);
885 
886 	/* Reassert because wired may have changed. */
887 	KASSERT(fs->wired || (fs->fault_flags & VM_FAULT_WIRE) == 0,
888 	    ("!wired && VM_FAULT_WIRE"));
889 
890 	return (KERN_SUCCESS);
891 }
892 
893 static void
894 vm_fault_cow(struct faultstate *fs)
895 {
896 	bool is_first_object_locked;
897 
898 	/*
899 	 * This allows pages to be virtually copied from a backing_object
900 	 * into the first_object, where the backing object has no other
901 	 * refs to it, and cannot gain any more refs.  Instead of a bcopy,
902 	 * we just move the page from the backing object to the first
903 	 * object.  Note that we must mark the page dirty in the first
904 	 * object so that it will go out to swap when needed.
905 	 */
906 	is_first_object_locked = false;
907 	if (
908 	    /*
909 	     * Only one shadow object and no other refs.
910 	     */
911 	    fs->object->shadow_count == 1 && fs->object->ref_count == 1 &&
912 	    /*
913 	     * No other ways to look the object up
914 	     */
915 	    fs->object->handle == NULL && (fs->object->flags & OBJ_ANON) != 0 &&
916 	    /*
917 	     * We don't chase down the shadow chain and we can acquire locks.
918 	     */
919 	    (is_first_object_locked = VM_OBJECT_TRYWLOCK(fs->first_object)) &&
920 	    fs->object == fs->first_object->backing_object &&
921 	    VM_OBJECT_TRYWLOCK(fs->object)) {
922 		/*
923 		 * Remove but keep xbusy for replace.  fs->m is moved into
924 		 * fs->first_object and left busy while fs->first_m is
925 		 * conditionally freed.
926 		 */
927 		vm_page_remove_xbusy(fs->m);
928 		vm_page_replace(fs->m, fs->first_object, fs->first_pindex,
929 		    fs->first_m);
930 		vm_page_dirty(fs->m);
931 #if VM_NRESERVLEVEL > 0
932 		/*
933 		 * Rename the reservation.
934 		 */
935 		vm_reserv_rename(fs->m, fs->first_object, fs->object,
936 		    OFF_TO_IDX(fs->first_object->backing_object_offset));
937 #endif
938 		VM_OBJECT_WUNLOCK(fs->object);
939 		VM_OBJECT_WUNLOCK(fs->first_object);
940 		fs->first_m = fs->m;
941 		fs->m = NULL;
942 		VM_CNT_INC(v_cow_optim);
943 	} else {
944 		if (is_first_object_locked)
945 			VM_OBJECT_WUNLOCK(fs->first_object);
946 		/*
947 		 * Oh, well, lets copy it.
948 		 */
949 		pmap_copy_page(fs->m, fs->first_m);
950 		vm_page_valid(fs->first_m);
951 		if (fs->wired && (fs->fault_flags & VM_FAULT_WIRE) == 0) {
952 			vm_page_wire(fs->first_m);
953 			vm_page_unwire(fs->m, PQ_INACTIVE);
954 		}
955 		/*
956 		 * Save the cow page to be released after
957 		 * pmap_enter is complete.
958 		 */
959 		fs->m_cow = fs->m;
960 		fs->m = NULL;
961 	}
962 	/*
963 	 * fs->object != fs->first_object due to above
964 	 * conditional
965 	 */
966 	vm_object_pip_wakeup(fs->object);
967 
968 	/*
969 	 * Only use the new page below...
970 	 */
971 	fs->object = fs->first_object;
972 	fs->pindex = fs->first_pindex;
973 	fs->m = fs->first_m;
974 	VM_CNT_INC(v_cow_faults);
975 	curthread->td_cow++;
976 }
977 
978 static bool
979 vm_fault_next(struct faultstate *fs)
980 {
981 	vm_object_t next_object;
982 
983 	/*
984 	 * The requested page does not exist at this object/
985 	 * offset.  Remove the invalid page from the object,
986 	 * waking up anyone waiting for it, and continue on to
987 	 * the next object.  However, if this is the top-level
988 	 * object, we must leave the busy page in place to
989 	 * prevent another process from rushing past us, and
990 	 * inserting the page in that object at the same time
991 	 * that we are.
992 	 */
993 	if (fs->object == fs->first_object) {
994 		fs->first_m = fs->m;
995 		fs->m = NULL;
996 	} else
997 		fault_page_free(&fs->m);
998 
999 	/*
1000 	 * Move on to the next object.  Lock the next object before
1001 	 * unlocking the current one.
1002 	 */
1003 	VM_OBJECT_ASSERT_WLOCKED(fs->object);
1004 	next_object = fs->object->backing_object;
1005 	if (next_object == NULL)
1006 		return (false);
1007 	MPASS(fs->first_m != NULL);
1008 	KASSERT(fs->object != next_object, ("object loop %p", next_object));
1009 	VM_OBJECT_WLOCK(next_object);
1010 	vm_object_pip_add(next_object, 1);
1011 	if (fs->object != fs->first_object)
1012 		vm_object_pip_wakeup(fs->object);
1013 	fs->pindex += OFF_TO_IDX(fs->object->backing_object_offset);
1014 	VM_OBJECT_WUNLOCK(fs->object);
1015 	fs->object = next_object;
1016 
1017 	return (true);
1018 }
1019 
1020 static void
1021 vm_fault_zerofill(struct faultstate *fs)
1022 {
1023 
1024 	/*
1025 	 * If there's no object left, fill the page in the top
1026 	 * object with zeros.
1027 	 */
1028 	if (fs->object != fs->first_object) {
1029 		vm_object_pip_wakeup(fs->object);
1030 		fs->object = fs->first_object;
1031 		fs->pindex = fs->first_pindex;
1032 	}
1033 	MPASS(fs->first_m != NULL);
1034 	MPASS(fs->m == NULL);
1035 	fs->m = fs->first_m;
1036 	fs->first_m = NULL;
1037 
1038 	/*
1039 	 * Zero the page if necessary and mark it valid.
1040 	 */
1041 	if ((fs->m->flags & PG_ZERO) == 0) {
1042 		pmap_zero_page(fs->m);
1043 	} else {
1044 		VM_CNT_INC(v_ozfod);
1045 	}
1046 	VM_CNT_INC(v_zfod);
1047 	vm_page_valid(fs->m);
1048 }
1049 
1050 /*
1051  * Allocate a page directly or via the object populate method.
1052  */
1053 static int
1054 vm_fault_allocate(struct faultstate *fs)
1055 {
1056 	struct domainset *dset;
1057 	int alloc_req;
1058 	int rv;
1059 
1060 	if ((fs->object->flags & OBJ_SIZEVNLOCK) != 0) {
1061 		rv = vm_fault_lock_vnode(fs, true);
1062 		MPASS(rv == KERN_SUCCESS || rv == KERN_RESOURCE_SHORTAGE);
1063 		if (rv == KERN_RESOURCE_SHORTAGE)
1064 			return (rv);
1065 	}
1066 
1067 	if (fs->pindex >= fs->object->size)
1068 		return (KERN_OUT_OF_BOUNDS);
1069 
1070 	if (fs->object == fs->first_object &&
1071 	    (fs->first_object->flags & OBJ_POPULATE) != 0 &&
1072 	    fs->first_object->shadow_count == 0) {
1073 		rv = vm_fault_populate(fs);
1074 		switch (rv) {
1075 		case KERN_SUCCESS:
1076 		case KERN_FAILURE:
1077 		case KERN_RESTART:
1078 			return (rv);
1079 		case KERN_NOT_RECEIVER:
1080 			/*
1081 			 * Pager's populate() method
1082 			 * returned VM_PAGER_BAD.
1083 			 */
1084 			break;
1085 		default:
1086 			panic("inconsistent return codes");
1087 		}
1088 	}
1089 
1090 	/*
1091 	 * Allocate a new page for this object/offset pair.
1092 	 *
1093 	 * Unlocked read of the p_flag is harmless. At worst, the P_KILLED
1094 	 * might be not observed there, and allocation can fail, causing
1095 	 * restart and new reading of the p_flag.
1096 	 */
1097 	dset = fs->object->domain.dr_policy;
1098 	if (dset == NULL)
1099 		dset = curthread->td_domain.dr_policy;
1100 	if (!vm_page_count_severe_set(&dset->ds_mask) || P_KILLED(curproc)) {
1101 #if VM_NRESERVLEVEL > 0
1102 		vm_object_color(fs->object, atop(fs->vaddr) - fs->pindex);
1103 #endif
1104 		alloc_req = P_KILLED(curproc) ?
1105 		    VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL;
1106 		if (fs->object->type != OBJT_VNODE &&
1107 		    fs->object->backing_object == NULL)
1108 			alloc_req |= VM_ALLOC_ZERO;
1109 		fs->m = vm_page_alloc(fs->object, fs->pindex, alloc_req);
1110 	}
1111 	if (fs->m == NULL) {
1112 		unlock_and_deallocate(fs);
1113 		if (vm_pfault_oom_attempts < 0 ||
1114 		    fs->oom < vm_pfault_oom_attempts) {
1115 			fs->oom++;
1116 			vm_waitpfault(dset, vm_pfault_oom_wait * hz);
1117 		} else 	{
1118 			if (bootverbose)
1119 				printf(
1120 		"proc %d (%s) failed to alloc page on fault, starting OOM\n",
1121 				    curproc->p_pid, curproc->p_comm);
1122 			vm_pageout_oom(VM_OOM_MEM_PF);
1123 			fs->oom = 0;
1124 		}
1125 		return (KERN_RESOURCE_SHORTAGE);
1126 	}
1127 	fs->oom = 0;
1128 
1129 	return (KERN_NOT_RECEIVER);
1130 }
1131 
1132 /*
1133  * Call the pager to retrieve the page if there is a chance
1134  * that the pager has it, and potentially retrieve additional
1135  * pages at the same time.
1136  */
1137 static int
1138 vm_fault_getpages(struct faultstate *fs, int nera, int *behindp, int *aheadp)
1139 {
1140 	vm_offset_t e_end, e_start;
1141 	int ahead, behind, cluster_offset, rv;
1142 	u_char behavior;
1143 
1144 	/*
1145 	 * Prepare for unlocking the map.  Save the map
1146 	 * entry's start and end addresses, which are used to
1147 	 * optimize the size of the pager operation below.
1148 	 * Even if the map entry's addresses change after
1149 	 * unlocking the map, using the saved addresses is
1150 	 * safe.
1151 	 */
1152 	e_start = fs->entry->start;
1153 	e_end = fs->entry->end;
1154 	behavior = vm_map_entry_behavior(fs->entry);
1155 
1156 	/*
1157 	 * Release the map lock before locking the vnode or
1158 	 * sleeping in the pager.  (If the current object has
1159 	 * a shadow, then an earlier iteration of this loop
1160 	 * may have already unlocked the map.)
1161 	 */
1162 	unlock_map(fs);
1163 
1164 	rv = vm_fault_lock_vnode(fs, false);
1165 	MPASS(rv == KERN_SUCCESS || rv == KERN_RESOURCE_SHORTAGE);
1166 	if (rv == KERN_RESOURCE_SHORTAGE)
1167 		return (rv);
1168 	KASSERT(fs->vp == NULL || !fs->map->system_map,
1169 	    ("vm_fault: vnode-backed object mapped by system map"));
1170 
1171 	/*
1172 	 * Page in the requested page and hint the pager,
1173 	 * that it may bring up surrounding pages.
1174 	 */
1175 	if (nera == -1 || behavior == MAP_ENTRY_BEHAV_RANDOM ||
1176 	    P_KILLED(curproc)) {
1177 		behind = 0;
1178 		ahead = 0;
1179 	} else {
1180 		/* Is this a sequential fault? */
1181 		if (nera > 0) {
1182 			behind = 0;
1183 			ahead = nera;
1184 		} else {
1185 			/*
1186 			 * Request a cluster of pages that is
1187 			 * aligned to a VM_FAULT_READ_DEFAULT
1188 			 * page offset boundary within the
1189 			 * object.  Alignment to a page offset
1190 			 * boundary is more likely to coincide
1191 			 * with the underlying file system
1192 			 * block than alignment to a virtual
1193 			 * address boundary.
1194 			 */
1195 			cluster_offset = fs->pindex % VM_FAULT_READ_DEFAULT;
1196 			behind = ulmin(cluster_offset,
1197 			    atop(fs->vaddr - e_start));
1198 			ahead = VM_FAULT_READ_DEFAULT - 1 - cluster_offset;
1199 		}
1200 		ahead = ulmin(ahead, atop(e_end - fs->vaddr) - 1);
1201 	}
1202 	*behindp = behind;
1203 	*aheadp = ahead;
1204 	rv = vm_pager_get_pages(fs->object, &fs->m, 1, behindp, aheadp);
1205 	if (rv == VM_PAGER_OK)
1206 		return (KERN_SUCCESS);
1207 	if (rv == VM_PAGER_ERROR)
1208 		printf("vm_fault: pager read error, pid %d (%s)\n",
1209 		    curproc->p_pid, curproc->p_comm);
1210 	/*
1211 	 * If an I/O error occurred or the requested page was
1212 	 * outside the range of the pager, clean up and return
1213 	 * an error.
1214 	 */
1215 	if (rv == VM_PAGER_ERROR || rv == VM_PAGER_BAD)
1216 		return (KERN_OUT_OF_BOUNDS);
1217 	return (KERN_NOT_RECEIVER);
1218 }
1219 
1220 /*
1221  * Wait/Retry if the page is busy.  We have to do this if the page is
1222  * either exclusive or shared busy because the vm_pager may be using
1223  * read busy for pageouts (and even pageins if it is the vnode pager),
1224  * and we could end up trying to pagein and pageout the same page
1225  * simultaneously.
1226  *
1227  * We can theoretically allow the busy case on a read fault if the page
1228  * is marked valid, but since such pages are typically already pmap'd,
1229  * putting that special case in might be more effort then it is worth.
1230  * We cannot under any circumstances mess around with a shared busied
1231  * page except, perhaps, to pmap it.
1232  */
1233 static void
1234 vm_fault_busy_sleep(struct faultstate *fs)
1235 {
1236 	/*
1237 	 * Reference the page before unlocking and
1238 	 * sleeping so that the page daemon is less
1239 	 * likely to reclaim it.
1240 	 */
1241 	vm_page_aflag_set(fs->m, PGA_REFERENCED);
1242 	if (fs->object != fs->first_object) {
1243 		fault_page_release(&fs->first_m);
1244 		vm_object_pip_wakeup(fs->first_object);
1245 	}
1246 	vm_object_pip_wakeup(fs->object);
1247 	unlock_map(fs);
1248 	if (fs->m == vm_page_lookup(fs->object, fs->pindex))
1249 		vm_page_busy_sleep(fs->m, "vmpfw", false);
1250 	else
1251 		VM_OBJECT_WUNLOCK(fs->object);
1252 	VM_CNT_INC(v_intrans);
1253 	vm_object_deallocate(fs->first_object);
1254 }
1255 
1256 int
1257 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
1258     int fault_flags, vm_page_t *m_hold)
1259 {
1260 	struct faultstate fs;
1261 	int ahead, behind, faultcount;
1262 	int nera, result, rv;
1263 	bool dead, hardfault;
1264 
1265 	VM_CNT_INC(v_vm_faults);
1266 
1267 	if ((curthread->td_pflags & TDP_NOFAULTING) != 0)
1268 		return (KERN_PROTECTION_FAILURE);
1269 
1270 	fs.vp = NULL;
1271 	fs.vaddr = vaddr;
1272 	fs.m_hold = m_hold;
1273 	fs.fault_flags = fault_flags;
1274 	fs.map = map;
1275 	fs.lookup_still_valid = false;
1276 	fs.oom = 0;
1277 	faultcount = 0;
1278 	nera = -1;
1279 	hardfault = false;
1280 
1281 RetryFault:
1282 	fs.fault_type = fault_type;
1283 
1284 	/*
1285 	 * Find the backing store object and offset into it to begin the
1286 	 * search.
1287 	 */
1288 	result = vm_fault_lookup(&fs);
1289 	if (result != KERN_SUCCESS) {
1290 		if (result == KERN_RESOURCE_SHORTAGE)
1291 			goto RetryFault;
1292 		return (result);
1293 	}
1294 
1295 	/*
1296 	 * Try to avoid lock contention on the top-level object through
1297 	 * special-case handling of some types of page faults, specifically,
1298 	 * those that are mapping an existing page from the top-level object.
1299 	 * Under this condition, a read lock on the object suffices, allowing
1300 	 * multiple page faults of a similar type to run in parallel.
1301 	 */
1302 	if (fs.vp == NULL /* avoid locked vnode leak */ &&
1303 	    (fs.entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) == 0 &&
1304 	    (fs.fault_flags & (VM_FAULT_WIRE | VM_FAULT_DIRTY)) == 0) {
1305 		VM_OBJECT_RLOCK(fs.first_object);
1306 		rv = vm_fault_soft_fast(&fs);
1307 		if (rv == KERN_SUCCESS)
1308 			return (rv);
1309 		if (!VM_OBJECT_TRYUPGRADE(fs.first_object)) {
1310 			VM_OBJECT_RUNLOCK(fs.first_object);
1311 			VM_OBJECT_WLOCK(fs.first_object);
1312 		}
1313 	} else {
1314 		VM_OBJECT_WLOCK(fs.first_object);
1315 	}
1316 
1317 	/*
1318 	 * Make a reference to this object to prevent its disposal while we
1319 	 * are messing with it.  Once we have the reference, the map is free
1320 	 * to be diddled.  Since objects reference their shadows (and copies),
1321 	 * they will stay around as well.
1322 	 *
1323 	 * Bump the paging-in-progress count to prevent size changes (e.g.
1324 	 * truncation operations) during I/O.
1325 	 */
1326 	vm_object_reference_locked(fs.first_object);
1327 	vm_object_pip_add(fs.first_object, 1);
1328 
1329 	fs.m_cow = fs.m = fs.first_m = NULL;
1330 
1331 	/*
1332 	 * Search for the page at object/offset.
1333 	 */
1334 	fs.object = fs.first_object;
1335 	fs.pindex = fs.first_pindex;
1336 
1337 	if ((fs.entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) != 0) {
1338 		rv = vm_fault_allocate(&fs);
1339 		switch (rv) {
1340 		case KERN_RESTART:
1341 			unlock_and_deallocate(&fs);
1342 			/* FALLTHROUGH */
1343 		case KERN_RESOURCE_SHORTAGE:
1344 			goto RetryFault;
1345 		case KERN_SUCCESS:
1346 		case KERN_FAILURE:
1347 		case KERN_OUT_OF_BOUNDS:
1348 			unlock_and_deallocate(&fs);
1349 			return (rv);
1350 		case KERN_NOT_RECEIVER:
1351 			break;
1352 		default:
1353 			panic("vm_fault: Unhandled rv %d", rv);
1354 		}
1355 	}
1356 
1357 	while (TRUE) {
1358 		KASSERT(fs.m == NULL,
1359 		    ("page still set %p at loop start", fs.m));
1360 		/*
1361 		 * If the object is marked for imminent termination,
1362 		 * we retry here, since the collapse pass has raced
1363 		 * with us.  Otherwise, if we see terminally dead
1364 		 * object, return fail.
1365 		 */
1366 		if ((fs.object->flags & OBJ_DEAD) != 0) {
1367 			dead = fs.object->type == OBJT_DEAD;
1368 			unlock_and_deallocate(&fs);
1369 			if (dead)
1370 				return (KERN_PROTECTION_FAILURE);
1371 			pause("vmf_de", 1);
1372 			goto RetryFault;
1373 		}
1374 
1375 		/*
1376 		 * See if page is resident
1377 		 */
1378 		fs.m = vm_page_lookup(fs.object, fs.pindex);
1379 		if (fs.m != NULL) {
1380 			if (vm_page_tryxbusy(fs.m) == 0) {
1381 				vm_fault_busy_sleep(&fs);
1382 				goto RetryFault;
1383 			}
1384 
1385 			/*
1386 			 * The page is marked busy for other processes and the
1387 			 * pagedaemon.  If it still is completely valid we
1388 			 * are done.
1389 			 */
1390 			if (vm_page_all_valid(fs.m)) {
1391 				VM_OBJECT_WUNLOCK(fs.object);
1392 				break; /* break to PAGE HAS BEEN FOUND. */
1393 			}
1394 		}
1395 		VM_OBJECT_ASSERT_WLOCKED(fs.object);
1396 
1397 		/*
1398 		 * Page is not resident.  If the pager might contain the page
1399 		 * or this is the beginning of the search, allocate a new
1400 		 * page.  (Default objects are zero-fill, so there is no real
1401 		 * pager for them.)
1402 		 */
1403 		if (fs.m == NULL && (fs.object->type != OBJT_DEFAULT ||
1404 		    fs.object == fs.first_object)) {
1405 			rv = vm_fault_allocate(&fs);
1406 			switch (rv) {
1407 			case KERN_RESTART:
1408 				unlock_and_deallocate(&fs);
1409 				/* FALLTHROUGH */
1410 			case KERN_RESOURCE_SHORTAGE:
1411 				goto RetryFault;
1412 			case KERN_SUCCESS:
1413 			case KERN_FAILURE:
1414 			case KERN_OUT_OF_BOUNDS:
1415 				unlock_and_deallocate(&fs);
1416 				return (rv);
1417 			case KERN_NOT_RECEIVER:
1418 				break;
1419 			default:
1420 				panic("vm_fault: Unhandled rv %d", rv);
1421 			}
1422 		}
1423 
1424 		/*
1425 		 * Default objects have no pager so no exclusive busy exists
1426 		 * to protect this page in the chain.  Skip to the next
1427 		 * object without dropping the lock to preserve atomicity of
1428 		 * shadow faults.
1429 		 */
1430 		if (fs.object->type != OBJT_DEFAULT) {
1431 			/*
1432 			 * At this point, we have either allocated a new page
1433 			 * or found an existing page that is only partially
1434 			 * valid.
1435 			 *
1436 			 * We hold a reference on the current object and the
1437 			 * page is exclusive busied.  The exclusive busy
1438 			 * prevents simultaneous faults and collapses while
1439 			 * the object lock is dropped.
1440 		 	 */
1441 			VM_OBJECT_WUNLOCK(fs.object);
1442 
1443 			/*
1444 			 * If the pager for the current object might have
1445 			 * the page, then determine the number of additional
1446 			 * pages to read and potentially reprioritize
1447 			 * previously read pages for earlier reclamation.
1448 			 * These operations should only be performed once per
1449 			 * page fault.  Even if the current pager doesn't
1450 			 * have the page, the number of additional pages to
1451 			 * read will apply to subsequent objects in the
1452 			 * shadow chain.
1453 			 */
1454 			if (nera == -1 && !P_KILLED(curproc))
1455 				nera = vm_fault_readahead(&fs);
1456 
1457 			rv = vm_fault_getpages(&fs, nera, &behind, &ahead);
1458 			if (rv == KERN_SUCCESS) {
1459 				faultcount = behind + 1 + ahead;
1460 				hardfault = true;
1461 				break; /* break to PAGE HAS BEEN FOUND. */
1462 			}
1463 			if (rv == KERN_RESOURCE_SHORTAGE)
1464 				goto RetryFault;
1465 			VM_OBJECT_WLOCK(fs.object);
1466 			if (rv == KERN_OUT_OF_BOUNDS) {
1467 				fault_page_free(&fs.m);
1468 				unlock_and_deallocate(&fs);
1469 				return (rv);
1470 			}
1471 		}
1472 
1473 		/*
1474 		 * The page was not found in the current object.  Try to
1475 		 * traverse into a backing object or zero fill if none is
1476 		 * found.
1477 		 */
1478 		if (vm_fault_next(&fs))
1479 			continue;
1480 		if ((fs.fault_flags & VM_FAULT_NOFILL) != 0) {
1481 			if (fs.first_object == fs.object)
1482 				fault_page_free(&fs.first_m);
1483 			unlock_and_deallocate(&fs);
1484 			return (KERN_OUT_OF_BOUNDS);
1485 		}
1486 		VM_OBJECT_WUNLOCK(fs.object);
1487 		vm_fault_zerofill(&fs);
1488 		/* Don't try to prefault neighboring pages. */
1489 		faultcount = 1;
1490 		break;	/* break to PAGE HAS BEEN FOUND. */
1491 	}
1492 
1493 	/*
1494 	 * PAGE HAS BEEN FOUND.  A valid page has been found and exclusively
1495 	 * busied.  The object lock must no longer be held.
1496 	 */
1497 	vm_page_assert_xbusied(fs.m);
1498 	VM_OBJECT_ASSERT_UNLOCKED(fs.object);
1499 
1500 	/*
1501 	 * If the page is being written, but isn't already owned by the
1502 	 * top-level object, we have to copy it into a new page owned by the
1503 	 * top-level object.
1504 	 */
1505 	if (fs.object != fs.first_object) {
1506 		/*
1507 		 * We only really need to copy if we want to write it.
1508 		 */
1509 		if ((fs.fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
1510 			vm_fault_cow(&fs);
1511 			/*
1512 			 * We only try to prefault read-only mappings to the
1513 			 * neighboring pages when this copy-on-write fault is
1514 			 * a hard fault.  In other cases, trying to prefault
1515 			 * is typically wasted effort.
1516 			 */
1517 			if (faultcount == 0)
1518 				faultcount = 1;
1519 
1520 		} else {
1521 			fs.prot &= ~VM_PROT_WRITE;
1522 		}
1523 	}
1524 
1525 	/*
1526 	 * We must verify that the maps have not changed since our last
1527 	 * lookup.
1528 	 */
1529 	if (!fs.lookup_still_valid) {
1530 		result = vm_fault_relookup(&fs);
1531 		if (result != KERN_SUCCESS) {
1532 			fault_deallocate(&fs);
1533 			if (result == KERN_RESTART)
1534 				goto RetryFault;
1535 			return (result);
1536 		}
1537 	}
1538 	VM_OBJECT_ASSERT_UNLOCKED(fs.object);
1539 
1540 	/*
1541 	 * If the page was filled by a pager, save the virtual address that
1542 	 * should be faulted on next under a sequential access pattern to the
1543 	 * map entry.  A read lock on the map suffices to update this address
1544 	 * safely.
1545 	 */
1546 	if (hardfault)
1547 		fs.entry->next_read = vaddr + ptoa(ahead) + PAGE_SIZE;
1548 
1549 	/*
1550 	 * Page must be completely valid or it is not fit to
1551 	 * map into user space.  vm_pager_get_pages() ensures this.
1552 	 */
1553 	vm_page_assert_xbusied(fs.m);
1554 	KASSERT(vm_page_all_valid(fs.m),
1555 	    ("vm_fault: page %p partially invalid", fs.m));
1556 
1557 	vm_fault_dirty(&fs, fs.m);
1558 
1559 	/*
1560 	 * Put this page into the physical map.  We had to do the unlock above
1561 	 * because pmap_enter() may sleep.  We don't put the page
1562 	 * back on the active queue until later so that the pageout daemon
1563 	 * won't find it (yet).
1564 	 */
1565 	pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot,
1566 	    fs.fault_type | (fs.wired ? PMAP_ENTER_WIRED : 0), 0);
1567 	if (faultcount != 1 && (fs.fault_flags & VM_FAULT_WIRE) == 0 &&
1568 	    fs.wired == 0)
1569 		vm_fault_prefault(&fs, vaddr,
1570 		    faultcount > 0 ? behind : PFBAK,
1571 		    faultcount > 0 ? ahead : PFFOR, false);
1572 
1573 	/*
1574 	 * If the page is not wired down, then put it where the pageout daemon
1575 	 * can find it.
1576 	 */
1577 	if ((fs.fault_flags & VM_FAULT_WIRE) != 0)
1578 		vm_page_wire(fs.m);
1579 	else
1580 		vm_page_activate(fs.m);
1581 	if (fs.m_hold != NULL) {
1582 		(*fs.m_hold) = fs.m;
1583 		vm_page_wire(fs.m);
1584 	}
1585 	vm_page_xunbusy(fs.m);
1586 	fs.m = NULL;
1587 
1588 	/*
1589 	 * Unlock everything, and return
1590 	 */
1591 	fault_deallocate(&fs);
1592 	if (hardfault) {
1593 		VM_CNT_INC(v_io_faults);
1594 		curthread->td_ru.ru_majflt++;
1595 #ifdef RACCT
1596 		if (racct_enable && fs.object->type == OBJT_VNODE) {
1597 			PROC_LOCK(curproc);
1598 			if ((fs.fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
1599 				racct_add_force(curproc, RACCT_WRITEBPS,
1600 				    PAGE_SIZE + behind * PAGE_SIZE);
1601 				racct_add_force(curproc, RACCT_WRITEIOPS, 1);
1602 			} else {
1603 				racct_add_force(curproc, RACCT_READBPS,
1604 				    PAGE_SIZE + ahead * PAGE_SIZE);
1605 				racct_add_force(curproc, RACCT_READIOPS, 1);
1606 			}
1607 			PROC_UNLOCK(curproc);
1608 		}
1609 #endif
1610 	} else
1611 		curthread->td_ru.ru_minflt++;
1612 
1613 	return (KERN_SUCCESS);
1614 }
1615 
1616 /*
1617  * Speed up the reclamation of pages that precede the faulting pindex within
1618  * the first object of the shadow chain.  Essentially, perform the equivalent
1619  * to madvise(..., MADV_DONTNEED) on a large cluster of pages that precedes
1620  * the faulting pindex by the cluster size when the pages read by vm_fault()
1621  * cross a cluster-size boundary.  The cluster size is the greater of the
1622  * smallest superpage size and VM_FAULT_DONTNEED_MIN.
1623  *
1624  * When "fs->first_object" is a shadow object, the pages in the backing object
1625  * that precede the faulting pindex are deactivated by vm_fault().  So, this
1626  * function must only be concerned with pages in the first object.
1627  */
1628 static void
1629 vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, int ahead)
1630 {
1631 	vm_map_entry_t entry;
1632 	vm_object_t first_object, object;
1633 	vm_offset_t end, start;
1634 	vm_page_t m, m_next;
1635 	vm_pindex_t pend, pstart;
1636 	vm_size_t size;
1637 
1638 	object = fs->object;
1639 	VM_OBJECT_ASSERT_UNLOCKED(object);
1640 	first_object = fs->first_object;
1641 	/* Neither fictitious nor unmanaged pages can be reclaimed. */
1642 	if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) {
1643 		VM_OBJECT_RLOCK(first_object);
1644 		size = VM_FAULT_DONTNEED_MIN;
1645 		if (MAXPAGESIZES > 1 && size < pagesizes[1])
1646 			size = pagesizes[1];
1647 		end = rounddown2(vaddr, size);
1648 		if (vaddr - end >= size - PAGE_SIZE - ptoa(ahead) &&
1649 		    (entry = fs->entry)->start < end) {
1650 			if (end - entry->start < size)
1651 				start = entry->start;
1652 			else
1653 				start = end - size;
1654 			pmap_advise(fs->map->pmap, start, end, MADV_DONTNEED);
1655 			pstart = OFF_TO_IDX(entry->offset) + atop(start -
1656 			    entry->start);
1657 			m_next = vm_page_find_least(first_object, pstart);
1658 			pend = OFF_TO_IDX(entry->offset) + atop(end -
1659 			    entry->start);
1660 			while ((m = m_next) != NULL && m->pindex < pend) {
1661 				m_next = TAILQ_NEXT(m, listq);
1662 				if (!vm_page_all_valid(m) ||
1663 				    vm_page_busied(m))
1664 					continue;
1665 
1666 				/*
1667 				 * Don't clear PGA_REFERENCED, since it would
1668 				 * likely represent a reference by a different
1669 				 * process.
1670 				 *
1671 				 * Typically, at this point, prefetched pages
1672 				 * are still in the inactive queue.  Only
1673 				 * pages that triggered page faults are in the
1674 				 * active queue.  The test for whether the page
1675 				 * is in the inactive queue is racy; in the
1676 				 * worst case we will requeue the page
1677 				 * unnecessarily.
1678 				 */
1679 				if (!vm_page_inactive(m))
1680 					vm_page_deactivate(m);
1681 			}
1682 		}
1683 		VM_OBJECT_RUNLOCK(first_object);
1684 	}
1685 }
1686 
1687 /*
1688  * vm_fault_prefault provides a quick way of clustering
1689  * pagefaults into a processes address space.  It is a "cousin"
1690  * of vm_map_pmap_enter, except it runs at page fault time instead
1691  * of mmap time.
1692  */
1693 static void
1694 vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
1695     int backward, int forward, bool obj_locked)
1696 {
1697 	pmap_t pmap;
1698 	vm_map_entry_t entry;
1699 	vm_object_t backing_object, lobject;
1700 	vm_offset_t addr, starta;
1701 	vm_pindex_t pindex;
1702 	vm_page_t m;
1703 	int i;
1704 
1705 	pmap = fs->map->pmap;
1706 	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
1707 		return;
1708 
1709 	entry = fs->entry;
1710 
1711 	if (addra < backward * PAGE_SIZE) {
1712 		starta = entry->start;
1713 	} else {
1714 		starta = addra - backward * PAGE_SIZE;
1715 		if (starta < entry->start)
1716 			starta = entry->start;
1717 	}
1718 
1719 	/*
1720 	 * Generate the sequence of virtual addresses that are candidates for
1721 	 * prefaulting in an outward spiral from the faulting virtual address,
1722 	 * "addra".  Specifically, the sequence is "addra - PAGE_SIZE", "addra
1723 	 * + PAGE_SIZE", "addra - 2 * PAGE_SIZE", "addra + 2 * PAGE_SIZE", ...
1724 	 * If the candidate address doesn't have a backing physical page, then
1725 	 * the loop immediately terminates.
1726 	 */
1727 	for (i = 0; i < 2 * imax(backward, forward); i++) {
1728 		addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE :
1729 		    PAGE_SIZE);
1730 		if (addr > addra + forward * PAGE_SIZE)
1731 			addr = 0;
1732 
1733 		if (addr < starta || addr >= entry->end)
1734 			continue;
1735 
1736 		if (!pmap_is_prefaultable(pmap, addr))
1737 			continue;
1738 
1739 		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
1740 		lobject = entry->object.vm_object;
1741 		if (!obj_locked)
1742 			VM_OBJECT_RLOCK(lobject);
1743 		while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
1744 		    lobject->type == OBJT_DEFAULT &&
1745 		    (backing_object = lobject->backing_object) != NULL) {
1746 			KASSERT((lobject->backing_object_offset & PAGE_MASK) ==
1747 			    0, ("vm_fault_prefault: unaligned object offset"));
1748 			pindex += lobject->backing_object_offset >> PAGE_SHIFT;
1749 			VM_OBJECT_RLOCK(backing_object);
1750 			if (!obj_locked || lobject != entry->object.vm_object)
1751 				VM_OBJECT_RUNLOCK(lobject);
1752 			lobject = backing_object;
1753 		}
1754 		if (m == NULL) {
1755 			if (!obj_locked || lobject != entry->object.vm_object)
1756 				VM_OBJECT_RUNLOCK(lobject);
1757 			break;
1758 		}
1759 		if (vm_page_all_valid(m) &&
1760 		    (m->flags & PG_FICTITIOUS) == 0)
1761 			pmap_enter_quick(pmap, addr, m, entry->protection);
1762 		if (!obj_locked || lobject != entry->object.vm_object)
1763 			VM_OBJECT_RUNLOCK(lobject);
1764 	}
1765 }
1766 
1767 /*
1768  * Hold each of the physical pages that are mapped by the specified range of
1769  * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid
1770  * and allow the specified types of access, "prot".  If all of the implied
1771  * pages are successfully held, then the number of held pages is returned
1772  * together with pointers to those pages in the array "ma".  However, if any
1773  * of the pages cannot be held, -1 is returned.
1774  */
1775 int
1776 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
1777     vm_prot_t prot, vm_page_t *ma, int max_count)
1778 {
1779 	vm_offset_t end, va;
1780 	vm_page_t *mp;
1781 	int count;
1782 	boolean_t pmap_failed;
1783 
1784 	if (len == 0)
1785 		return (0);
1786 	end = round_page(addr + len);
1787 	addr = trunc_page(addr);
1788 
1789 	if (!vm_map_range_valid(map, addr, end))
1790 		return (-1);
1791 
1792 	if (atop(end - addr) > max_count)
1793 		panic("vm_fault_quick_hold_pages: count > max_count");
1794 	count = atop(end - addr);
1795 
1796 	/*
1797 	 * Most likely, the physical pages are resident in the pmap, so it is
1798 	 * faster to try pmap_extract_and_hold() first.
1799 	 */
1800 	pmap_failed = FALSE;
1801 	for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) {
1802 		*mp = pmap_extract_and_hold(map->pmap, va, prot);
1803 		if (*mp == NULL)
1804 			pmap_failed = TRUE;
1805 		else if ((prot & VM_PROT_WRITE) != 0 &&
1806 		    (*mp)->dirty != VM_PAGE_BITS_ALL) {
1807 			/*
1808 			 * Explicitly dirty the physical page.  Otherwise, the
1809 			 * caller's changes may go unnoticed because they are
1810 			 * performed through an unmanaged mapping or by a DMA
1811 			 * operation.
1812 			 *
1813 			 * The object lock is not held here.
1814 			 * See vm_page_clear_dirty_mask().
1815 			 */
1816 			vm_page_dirty(*mp);
1817 		}
1818 	}
1819 	if (pmap_failed) {
1820 		/*
1821 		 * One or more pages could not be held by the pmap.  Either no
1822 		 * page was mapped at the specified virtual address or that
1823 		 * mapping had insufficient permissions.  Attempt to fault in
1824 		 * and hold these pages.
1825 		 *
1826 		 * If vm_fault_disable_pagefaults() was called,
1827 		 * i.e., TDP_NOFAULTING is set, we must not sleep nor
1828 		 * acquire MD VM locks, which means we must not call
1829 		 * vm_fault().  Some (out of tree) callers mark
1830 		 * too wide a code area with vm_fault_disable_pagefaults()
1831 		 * already, use the VM_PROT_QUICK_NOFAULT flag to request
1832 		 * the proper behaviour explicitly.
1833 		 */
1834 		if ((prot & VM_PROT_QUICK_NOFAULT) != 0 &&
1835 		    (curthread->td_pflags & TDP_NOFAULTING) != 0)
1836 			goto error;
1837 		for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE)
1838 			if (*mp == NULL && vm_fault(map, va, prot,
1839 			    VM_FAULT_NORMAL, mp) != KERN_SUCCESS)
1840 				goto error;
1841 	}
1842 	return (count);
1843 error:
1844 	for (mp = ma; mp < ma + count; mp++)
1845 		if (*mp != NULL)
1846 			vm_page_unwire(*mp, PQ_INACTIVE);
1847 	return (-1);
1848 }
1849 
1850 /*
1851  *	Routine:
1852  *		vm_fault_copy_entry
1853  *	Function:
1854  *		Create new shadow object backing dst_entry with private copy of
1855  *		all underlying pages. When src_entry is equal to dst_entry,
1856  *		function implements COW for wired-down map entry. Otherwise,
1857  *		it forks wired entry into dst_map.
1858  *
1859  *	In/out conditions:
1860  *		The source and destination maps must be locked for write.
1861  *		The source map entry must be wired down (or be a sharing map
1862  *		entry corresponding to a main map entry that is wired down).
1863  */
1864 void
1865 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1866     vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
1867     vm_ooffset_t *fork_charge)
1868 {
1869 	vm_object_t backing_object, dst_object, object, src_object;
1870 	vm_pindex_t dst_pindex, pindex, src_pindex;
1871 	vm_prot_t access, prot;
1872 	vm_offset_t vaddr;
1873 	vm_page_t dst_m;
1874 	vm_page_t src_m;
1875 	boolean_t upgrade;
1876 
1877 #ifdef	lint
1878 	src_map++;
1879 #endif	/* lint */
1880 
1881 	upgrade = src_entry == dst_entry;
1882 	access = prot = dst_entry->protection;
1883 
1884 	src_object = src_entry->object.vm_object;
1885 	src_pindex = OFF_TO_IDX(src_entry->offset);
1886 
1887 	if (upgrade && (dst_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
1888 		dst_object = src_object;
1889 		vm_object_reference(dst_object);
1890 	} else {
1891 		/*
1892 		 * Create the top-level object for the destination entry.
1893 		 * Doesn't actually shadow anything - we copy the pages
1894 		 * directly.
1895 		 */
1896 		dst_object = vm_object_allocate_anon(atop(dst_entry->end -
1897 		    dst_entry->start), NULL, NULL, 0);
1898 #if VM_NRESERVLEVEL > 0
1899 		dst_object->flags |= OBJ_COLORED;
1900 		dst_object->pg_color = atop(dst_entry->start);
1901 #endif
1902 		dst_object->domain = src_object->domain;
1903 		dst_object->charge = dst_entry->end - dst_entry->start;
1904 	}
1905 
1906 	VM_OBJECT_WLOCK(dst_object);
1907 	KASSERT(upgrade || dst_entry->object.vm_object == NULL,
1908 	    ("vm_fault_copy_entry: vm_object not NULL"));
1909 	if (src_object != dst_object) {
1910 		dst_entry->object.vm_object = dst_object;
1911 		dst_entry->offset = 0;
1912 		dst_entry->eflags &= ~MAP_ENTRY_VN_EXEC;
1913 	}
1914 	if (fork_charge != NULL) {
1915 		KASSERT(dst_entry->cred == NULL,
1916 		    ("vm_fault_copy_entry: leaked swp charge"));
1917 		dst_object->cred = curthread->td_ucred;
1918 		crhold(dst_object->cred);
1919 		*fork_charge += dst_object->charge;
1920 	} else if ((dst_object->type == OBJT_DEFAULT ||
1921 	    dst_object->type == OBJT_SWAP) &&
1922 	    dst_object->cred == NULL) {
1923 		KASSERT(dst_entry->cred != NULL, ("no cred for entry %p",
1924 		    dst_entry));
1925 		dst_object->cred = dst_entry->cred;
1926 		dst_entry->cred = NULL;
1927 	}
1928 
1929 	/*
1930 	 * If not an upgrade, then enter the mappings in the pmap as
1931 	 * read and/or execute accesses.  Otherwise, enter them as
1932 	 * write accesses.
1933 	 *
1934 	 * A writeable large page mapping is only created if all of
1935 	 * the constituent small page mappings are modified. Marking
1936 	 * PTEs as modified on inception allows promotion to happen
1937 	 * without taking potentially large number of soft faults.
1938 	 */
1939 	if (!upgrade)
1940 		access &= ~VM_PROT_WRITE;
1941 
1942 	/*
1943 	 * Loop through all of the virtual pages within the entry's
1944 	 * range, copying each page from the source object to the
1945 	 * destination object.  Since the source is wired, those pages
1946 	 * must exist.  In contrast, the destination is pageable.
1947 	 * Since the destination object doesn't share any backing storage
1948 	 * with the source object, all of its pages must be dirtied,
1949 	 * regardless of whether they can be written.
1950 	 */
1951 	for (vaddr = dst_entry->start, dst_pindex = 0;
1952 	    vaddr < dst_entry->end;
1953 	    vaddr += PAGE_SIZE, dst_pindex++) {
1954 again:
1955 		/*
1956 		 * Find the page in the source object, and copy it in.
1957 		 * Because the source is wired down, the page will be
1958 		 * in memory.
1959 		 */
1960 		if (src_object != dst_object)
1961 			VM_OBJECT_RLOCK(src_object);
1962 		object = src_object;
1963 		pindex = src_pindex + dst_pindex;
1964 		while ((src_m = vm_page_lookup(object, pindex)) == NULL &&
1965 		    (backing_object = object->backing_object) != NULL) {
1966 			/*
1967 			 * Unless the source mapping is read-only or
1968 			 * it is presently being upgraded from
1969 			 * read-only, the first object in the shadow
1970 			 * chain should provide all of the pages.  In
1971 			 * other words, this loop body should never be
1972 			 * executed when the source mapping is already
1973 			 * read/write.
1974 			 */
1975 			KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 ||
1976 			    upgrade,
1977 			    ("vm_fault_copy_entry: main object missing page"));
1978 
1979 			VM_OBJECT_RLOCK(backing_object);
1980 			pindex += OFF_TO_IDX(object->backing_object_offset);
1981 			if (object != dst_object)
1982 				VM_OBJECT_RUNLOCK(object);
1983 			object = backing_object;
1984 		}
1985 		KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing"));
1986 
1987 		if (object != dst_object) {
1988 			/*
1989 			 * Allocate a page in the destination object.
1990 			 */
1991 			dst_m = vm_page_alloc(dst_object, (src_object ==
1992 			    dst_object ? src_pindex : 0) + dst_pindex,
1993 			    VM_ALLOC_NORMAL);
1994 			if (dst_m == NULL) {
1995 				VM_OBJECT_WUNLOCK(dst_object);
1996 				VM_OBJECT_RUNLOCK(object);
1997 				vm_wait(dst_object);
1998 				VM_OBJECT_WLOCK(dst_object);
1999 				goto again;
2000 			}
2001 			pmap_copy_page(src_m, dst_m);
2002 			VM_OBJECT_RUNLOCK(object);
2003 			dst_m->dirty = dst_m->valid = src_m->valid;
2004 		} else {
2005 			dst_m = src_m;
2006 			if (vm_page_busy_acquire(dst_m, VM_ALLOC_WAITFAIL) == 0)
2007 				goto again;
2008 			if (dst_m->pindex >= dst_object->size) {
2009 				/*
2010 				 * We are upgrading.  Index can occur
2011 				 * out of bounds if the object type is
2012 				 * vnode and the file was truncated.
2013 				 */
2014 				vm_page_xunbusy(dst_m);
2015 				break;
2016 			}
2017 		}
2018 		VM_OBJECT_WUNLOCK(dst_object);
2019 
2020 		/*
2021 		 * Enter it in the pmap. If a wired, copy-on-write
2022 		 * mapping is being replaced by a write-enabled
2023 		 * mapping, then wire that new mapping.
2024 		 *
2025 		 * The page can be invalid if the user called
2026 		 * msync(MS_INVALIDATE) or truncated the backing vnode
2027 		 * or shared memory object.  In this case, do not
2028 		 * insert it into pmap, but still do the copy so that
2029 		 * all copies of the wired map entry have similar
2030 		 * backing pages.
2031 		 */
2032 		if (vm_page_all_valid(dst_m)) {
2033 			pmap_enter(dst_map->pmap, vaddr, dst_m, prot,
2034 			    access | (upgrade ? PMAP_ENTER_WIRED : 0), 0);
2035 		}
2036 
2037 		/*
2038 		 * Mark it no longer busy, and put it on the active list.
2039 		 */
2040 		VM_OBJECT_WLOCK(dst_object);
2041 
2042 		if (upgrade) {
2043 			if (src_m != dst_m) {
2044 				vm_page_unwire(src_m, PQ_INACTIVE);
2045 				vm_page_wire(dst_m);
2046 			} else {
2047 				KASSERT(vm_page_wired(dst_m),
2048 				    ("dst_m %p is not wired", dst_m));
2049 			}
2050 		} else {
2051 			vm_page_activate(dst_m);
2052 		}
2053 		vm_page_xunbusy(dst_m);
2054 	}
2055 	VM_OBJECT_WUNLOCK(dst_object);
2056 	if (upgrade) {
2057 		dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY);
2058 		vm_object_deallocate(src_object);
2059 	}
2060 }
2061 
2062 /*
2063  * Block entry into the machine-independent layer's page fault handler by
2064  * the calling thread.  Subsequent calls to vm_fault() by that thread will
2065  * return KERN_PROTECTION_FAILURE.  Enable machine-dependent handling of
2066  * spurious page faults.
2067  */
2068 int
2069 vm_fault_disable_pagefaults(void)
2070 {
2071 
2072 	return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR));
2073 }
2074 
2075 void
2076 vm_fault_enable_pagefaults(int save)
2077 {
2078 
2079 	curthread_pflags_restore(save);
2080 }
2081