1 /*- 2 * SPDX-License-Identifier: (BSD-4-Clause AND MIT-CMU) 3 * 4 * Copyright (c) 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * Copyright (c) 1994 John S. Dyson 7 * All rights reserved. 8 * Copyright (c) 1994 David Greenman 9 * All rights reserved. 10 * 11 * 12 * This code is derived from software contributed to Berkeley by 13 * The Mach Operating System project at Carnegie-Mellon University. 14 * 15 * Redistribution and use in source and binary forms, with or without 16 * modification, are permitted provided that the following conditions 17 * are met: 18 * 1. Redistributions of source code must retain the above copyright 19 * notice, this list of conditions and the following disclaimer. 20 * 2. Redistributions in binary form must reproduce the above copyright 21 * notice, this list of conditions and the following disclaimer in the 22 * documentation and/or other materials provided with the distribution. 23 * 3. All advertising materials mentioning features or use of this software 24 * must display the following acknowledgement: 25 * This product includes software developed by the University of 26 * California, Berkeley and its contributors. 27 * 4. Neither the name of the University nor the names of its contributors 28 * may be used to endorse or promote products derived from this software 29 * without specific prior written permission. 30 * 31 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 32 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 33 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 34 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 35 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 39 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 40 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 41 * SUCH DAMAGE. 42 * 43 * from: @(#)vm_fault.c 8.4 (Berkeley) 1/12/94 44 * 45 * 46 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 47 * All rights reserved. 48 * 49 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 50 * 51 * Permission to use, copy, modify and distribute this software and 52 * its documentation is hereby granted, provided that both the copyright 53 * notice and this permission notice appear in all copies of the 54 * software, derivative works or modified versions, and any portions 55 * thereof, and that both notices appear in supporting documentation. 56 * 57 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 58 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 59 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 60 * 61 * Carnegie Mellon requests users of this software to return to 62 * 63 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 64 * School of Computer Science 65 * Carnegie Mellon University 66 * Pittsburgh PA 15213-3890 67 * 68 * any improvements or extensions that they make and grant Carnegie the 69 * rights to redistribute these changes. 70 */ 71 72 /* 73 * Page fault handling module. 74 */ 75 76 #include <sys/cdefs.h> 77 __FBSDID("$FreeBSD$"); 78 79 #include "opt_ktrace.h" 80 #include "opt_vm.h" 81 82 #include <sys/param.h> 83 #include <sys/systm.h> 84 #include <sys/kernel.h> 85 #include <sys/lock.h> 86 #include <sys/mman.h> 87 #include <sys/mutex.h> 88 #include <sys/proc.h> 89 #include <sys/racct.h> 90 #include <sys/refcount.h> 91 #include <sys/resourcevar.h> 92 #include <sys/rwlock.h> 93 #include <sys/signalvar.h> 94 #include <sys/sysctl.h> 95 #include <sys/sysent.h> 96 #include <sys/vmmeter.h> 97 #include <sys/vnode.h> 98 #ifdef KTRACE 99 #include <sys/ktrace.h> 100 #endif 101 102 #include <vm/vm.h> 103 #include <vm/vm_param.h> 104 #include <vm/pmap.h> 105 #include <vm/vm_map.h> 106 #include <vm/vm_object.h> 107 #include <vm/vm_page.h> 108 #include <vm/vm_pageout.h> 109 #include <vm/vm_kern.h> 110 #include <vm/vm_pager.h> 111 #include <vm/vm_extern.h> 112 #include <vm/vm_reserv.h> 113 114 #define PFBAK 4 115 #define PFFOR 4 116 117 #define VM_FAULT_READ_DEFAULT (1 + VM_FAULT_READ_AHEAD_INIT) 118 #define VM_FAULT_READ_MAX (1 + VM_FAULT_READ_AHEAD_MAX) 119 120 #define VM_FAULT_DONTNEED_MIN 1048576 121 122 struct faultstate { 123 vm_page_t m; 124 vm_object_t object; 125 vm_pindex_t pindex; 126 vm_page_t first_m; 127 vm_object_t first_object; 128 vm_pindex_t first_pindex; 129 vm_map_t map; 130 vm_map_entry_t entry; 131 int map_generation; 132 bool lookup_still_valid; 133 struct vnode *vp; 134 }; 135 136 static void vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, 137 int ahead); 138 static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra, 139 int backward, int forward, bool obj_locked); 140 141 static int vm_pfault_oom_attempts = 3; 142 SYSCTL_INT(_vm, OID_AUTO, pfault_oom_attempts, CTLFLAG_RWTUN, 143 &vm_pfault_oom_attempts, 0, 144 "Number of page allocation attempts in page fault handler before it " 145 "triggers OOM handling"); 146 147 static int vm_pfault_oom_wait = 10; 148 SYSCTL_INT(_vm, OID_AUTO, pfault_oom_wait, CTLFLAG_RWTUN, 149 &vm_pfault_oom_wait, 0, 150 "Number of seconds to wait for free pages before retrying " 151 "the page fault handler"); 152 153 static inline void 154 fault_page_release(vm_page_t *mp) 155 { 156 vm_page_t m; 157 158 m = *mp; 159 if (m != NULL) { 160 /* 161 * We are likely to loop around again and attempt to busy 162 * this page. Deactivating it leaves it available for 163 * pageout while optimizing fault restarts. 164 */ 165 vm_page_lock(m); 166 vm_page_deactivate(m); 167 vm_page_unlock(m); 168 vm_page_xunbusy(m); 169 *mp = NULL; 170 } 171 } 172 173 static inline void 174 fault_page_free(vm_page_t *mp) 175 { 176 vm_page_t m; 177 178 m = *mp; 179 if (m != NULL) { 180 VM_OBJECT_ASSERT_WLOCKED(m->object); 181 if (!vm_page_wired(m)) 182 vm_page_free(m); 183 else 184 vm_page_xunbusy(m); 185 *mp = NULL; 186 } 187 } 188 189 static inline void 190 unlock_map(struct faultstate *fs) 191 { 192 193 if (fs->lookup_still_valid) { 194 vm_map_lookup_done(fs->map, fs->entry); 195 fs->lookup_still_valid = false; 196 } 197 } 198 199 static void 200 unlock_vp(struct faultstate *fs) 201 { 202 203 if (fs->vp != NULL) { 204 vput(fs->vp); 205 fs->vp = NULL; 206 } 207 } 208 209 static void 210 fault_deallocate(struct faultstate *fs) 211 { 212 213 fault_page_release(&fs->m); 214 vm_object_pip_wakeup(fs->object); 215 if (fs->object != fs->first_object) { 216 VM_OBJECT_WLOCK(fs->first_object); 217 fault_page_free(&fs->first_m); 218 VM_OBJECT_WUNLOCK(fs->first_object); 219 vm_object_pip_wakeup(fs->first_object); 220 } 221 vm_object_deallocate(fs->first_object); 222 unlock_map(fs); 223 unlock_vp(fs); 224 } 225 226 static void 227 unlock_and_deallocate(struct faultstate *fs) 228 { 229 230 VM_OBJECT_WUNLOCK(fs->object); 231 fault_deallocate(fs); 232 } 233 234 static void 235 vm_fault_dirty(vm_map_entry_t entry, vm_page_t m, vm_prot_t prot, 236 vm_prot_t fault_type, int fault_flags) 237 { 238 bool need_dirty; 239 240 if (((prot & VM_PROT_WRITE) == 0 && 241 (fault_flags & VM_FAULT_DIRTY) == 0) || 242 (m->oflags & VPO_UNMANAGED) != 0) 243 return; 244 245 VM_PAGE_OBJECT_BUSY_ASSERT(m); 246 247 need_dirty = ((fault_type & VM_PROT_WRITE) != 0 && 248 (fault_flags & VM_FAULT_WIRE) == 0) || 249 (fault_flags & VM_FAULT_DIRTY) != 0; 250 251 vm_object_set_writeable_dirty(m->object); 252 253 /* 254 * If the fault is a write, we know that this page is being 255 * written NOW so dirty it explicitly to save on 256 * pmap_is_modified() calls later. 257 * 258 * Also, since the page is now dirty, we can possibly tell 259 * the pager to release any swap backing the page. 260 */ 261 if (need_dirty && vm_page_set_dirty(m) == 0) { 262 /* 263 * If this is a NOSYNC mmap we do not want to set PGA_NOSYNC 264 * if the page is already dirty to prevent data written with 265 * the expectation of being synced from not being synced. 266 * Likewise if this entry does not request NOSYNC then make 267 * sure the page isn't marked NOSYNC. Applications sharing 268 * data should use the same flags to avoid ping ponging. 269 */ 270 if ((entry->eflags & MAP_ENTRY_NOSYNC) != 0) 271 vm_page_aflag_set(m, PGA_NOSYNC); 272 else 273 vm_page_aflag_clear(m, PGA_NOSYNC); 274 } 275 276 } 277 278 /* 279 * Unlocks fs.first_object and fs.map on success. 280 */ 281 static int 282 vm_fault_soft_fast(struct faultstate *fs, vm_offset_t vaddr, vm_prot_t prot, 283 int fault_type, int fault_flags, boolean_t wired, vm_page_t *m_hold) 284 { 285 vm_page_t m, m_map; 286 #if (defined(__aarch64__) || defined(__amd64__) || (defined(__arm__) && \ 287 __ARM_ARCH >= 6) || defined(__i386__) || defined(__riscv)) && \ 288 VM_NRESERVLEVEL > 0 289 vm_page_t m_super; 290 int flags; 291 #endif 292 int psind, rv; 293 294 MPASS(fs->vp == NULL); 295 vm_object_busy(fs->first_object); 296 m = vm_page_lookup(fs->first_object, fs->first_pindex); 297 /* A busy page can be mapped for read|execute access. */ 298 if (m == NULL || ((prot & VM_PROT_WRITE) != 0 && 299 vm_page_busied(m)) || !vm_page_all_valid(m)) { 300 rv = KERN_FAILURE; 301 goto out; 302 } 303 m_map = m; 304 psind = 0; 305 #if (defined(__aarch64__) || defined(__amd64__) || (defined(__arm__) && \ 306 __ARM_ARCH >= 6) || defined(__i386__) || defined(__riscv)) && \ 307 VM_NRESERVLEVEL > 0 308 if ((m->flags & PG_FICTITIOUS) == 0 && 309 (m_super = vm_reserv_to_superpage(m)) != NULL && 310 rounddown2(vaddr, pagesizes[m_super->psind]) >= fs->entry->start && 311 roundup2(vaddr + 1, pagesizes[m_super->psind]) <= fs->entry->end && 312 (vaddr & (pagesizes[m_super->psind] - 1)) == (VM_PAGE_TO_PHYS(m) & 313 (pagesizes[m_super->psind] - 1)) && !wired && 314 pmap_ps_enabled(fs->map->pmap)) { 315 flags = PS_ALL_VALID; 316 if ((prot & VM_PROT_WRITE) != 0) { 317 /* 318 * Create a superpage mapping allowing write access 319 * only if none of the constituent pages are busy and 320 * all of them are already dirty (except possibly for 321 * the page that was faulted on). 322 */ 323 flags |= PS_NONE_BUSY; 324 if ((fs->first_object->flags & OBJ_UNMANAGED) == 0) 325 flags |= PS_ALL_DIRTY; 326 } 327 if (vm_page_ps_test(m_super, flags, m)) { 328 m_map = m_super; 329 psind = m_super->psind; 330 vaddr = rounddown2(vaddr, pagesizes[psind]); 331 /* Preset the modified bit for dirty superpages. */ 332 if ((flags & PS_ALL_DIRTY) != 0) 333 fault_type |= VM_PROT_WRITE; 334 } 335 } 336 #endif 337 rv = pmap_enter(fs->map->pmap, vaddr, m_map, prot, fault_type | 338 PMAP_ENTER_NOSLEEP | (wired ? PMAP_ENTER_WIRED : 0), psind); 339 if (rv != KERN_SUCCESS) 340 goto out; 341 if (m_hold != NULL) { 342 *m_hold = m; 343 vm_page_wire(m); 344 } 345 vm_fault_dirty(fs->entry, m, prot, fault_type, fault_flags); 346 if (psind == 0 && !wired) 347 vm_fault_prefault(fs, vaddr, PFBAK, PFFOR, true); 348 VM_OBJECT_RUNLOCK(fs->first_object); 349 vm_map_lookup_done(fs->map, fs->entry); 350 curthread->td_ru.ru_minflt++; 351 352 out: 353 vm_object_unbusy(fs->first_object); 354 return (rv); 355 } 356 357 static void 358 vm_fault_restore_map_lock(struct faultstate *fs) 359 { 360 361 VM_OBJECT_ASSERT_WLOCKED(fs->first_object); 362 MPASS(REFCOUNT_COUNT(fs->first_object->paging_in_progress) > 0); 363 364 if (!vm_map_trylock_read(fs->map)) { 365 VM_OBJECT_WUNLOCK(fs->first_object); 366 vm_map_lock_read(fs->map); 367 VM_OBJECT_WLOCK(fs->first_object); 368 } 369 fs->lookup_still_valid = true; 370 } 371 372 static void 373 vm_fault_populate_check_page(vm_page_t m) 374 { 375 376 /* 377 * Check each page to ensure that the pager is obeying the 378 * interface: the page must be installed in the object, fully 379 * valid, and exclusively busied. 380 */ 381 MPASS(m != NULL); 382 MPASS(vm_page_all_valid(m)); 383 MPASS(vm_page_xbusied(m)); 384 } 385 386 static void 387 vm_fault_populate_cleanup(vm_object_t object, vm_pindex_t first, 388 vm_pindex_t last) 389 { 390 vm_page_t m; 391 vm_pindex_t pidx; 392 393 VM_OBJECT_ASSERT_WLOCKED(object); 394 MPASS(first <= last); 395 for (pidx = first, m = vm_page_lookup(object, pidx); 396 pidx <= last; pidx++, m = vm_page_next(m)) { 397 vm_fault_populate_check_page(m); 398 vm_page_lock(m); 399 vm_page_deactivate(m); 400 vm_page_unlock(m); 401 vm_page_xunbusy(m); 402 } 403 } 404 405 static int 406 vm_fault_populate(struct faultstate *fs, vm_prot_t prot, int fault_type, 407 int fault_flags, boolean_t wired, vm_page_t *m_hold) 408 { 409 struct mtx *m_mtx; 410 vm_offset_t vaddr; 411 vm_page_t m; 412 vm_pindex_t map_first, map_last, pager_first, pager_last, pidx; 413 int i, npages, psind, rv; 414 415 MPASS(fs->object == fs->first_object); 416 VM_OBJECT_ASSERT_WLOCKED(fs->first_object); 417 MPASS(REFCOUNT_COUNT(fs->first_object->paging_in_progress) > 0); 418 MPASS(fs->first_object->backing_object == NULL); 419 MPASS(fs->lookup_still_valid); 420 421 pager_first = OFF_TO_IDX(fs->entry->offset); 422 pager_last = pager_first + atop(fs->entry->end - fs->entry->start) - 1; 423 unlock_map(fs); 424 unlock_vp(fs); 425 426 /* 427 * Call the pager (driver) populate() method. 428 * 429 * There is no guarantee that the method will be called again 430 * if the current fault is for read, and a future fault is 431 * for write. Report the entry's maximum allowed protection 432 * to the driver. 433 */ 434 rv = vm_pager_populate(fs->first_object, fs->first_pindex, 435 fault_type, fs->entry->max_protection, &pager_first, &pager_last); 436 437 VM_OBJECT_ASSERT_WLOCKED(fs->first_object); 438 if (rv == VM_PAGER_BAD) { 439 /* 440 * VM_PAGER_BAD is the backdoor for a pager to request 441 * normal fault handling. 442 */ 443 vm_fault_restore_map_lock(fs); 444 if (fs->map->timestamp != fs->map_generation) 445 return (KERN_RESOURCE_SHORTAGE); /* RetryFault */ 446 return (KERN_NOT_RECEIVER); 447 } 448 if (rv != VM_PAGER_OK) 449 return (KERN_FAILURE); /* AKA SIGSEGV */ 450 451 /* Ensure that the driver is obeying the interface. */ 452 MPASS(pager_first <= pager_last); 453 MPASS(fs->first_pindex <= pager_last); 454 MPASS(fs->first_pindex >= pager_first); 455 MPASS(pager_last < fs->first_object->size); 456 457 vm_fault_restore_map_lock(fs); 458 if (fs->map->timestamp != fs->map_generation) { 459 vm_fault_populate_cleanup(fs->first_object, pager_first, 460 pager_last); 461 return (KERN_RESOURCE_SHORTAGE); /* RetryFault */ 462 } 463 464 /* 465 * The map is unchanged after our last unlock. Process the fault. 466 * 467 * The range [pager_first, pager_last] that is given to the 468 * pager is only a hint. The pager may populate any range 469 * within the object that includes the requested page index. 470 * In case the pager expanded the range, clip it to fit into 471 * the map entry. 472 */ 473 map_first = OFF_TO_IDX(fs->entry->offset); 474 if (map_first > pager_first) { 475 vm_fault_populate_cleanup(fs->first_object, pager_first, 476 map_first - 1); 477 pager_first = map_first; 478 } 479 map_last = map_first + atop(fs->entry->end - fs->entry->start) - 1; 480 if (map_last < pager_last) { 481 vm_fault_populate_cleanup(fs->first_object, map_last + 1, 482 pager_last); 483 pager_last = map_last; 484 } 485 for (pidx = pager_first, m = vm_page_lookup(fs->first_object, pidx); 486 pidx <= pager_last; 487 pidx += npages, m = vm_page_next(&m[npages - 1])) { 488 vaddr = fs->entry->start + IDX_TO_OFF(pidx) - fs->entry->offset; 489 #if defined(__aarch64__) || defined(__amd64__) || (defined(__arm__) && \ 490 __ARM_ARCH >= 6) || defined(__i386__) || defined(__riscv) 491 psind = m->psind; 492 if (psind > 0 && ((vaddr & (pagesizes[psind] - 1)) != 0 || 493 pidx + OFF_TO_IDX(pagesizes[psind]) - 1 > pager_last || 494 !pmap_ps_enabled(fs->map->pmap) || wired)) 495 psind = 0; 496 #else 497 psind = 0; 498 #endif 499 npages = atop(pagesizes[psind]); 500 for (i = 0; i < npages; i++) { 501 vm_fault_populate_check_page(&m[i]); 502 vm_fault_dirty(fs->entry, &m[i], prot, fault_type, 503 fault_flags); 504 } 505 VM_OBJECT_WUNLOCK(fs->first_object); 506 rv = pmap_enter(fs->map->pmap, vaddr, m, prot, fault_type | 507 (wired ? PMAP_ENTER_WIRED : 0), psind); 508 #if defined(__amd64__) 509 if (psind > 0 && rv == KERN_FAILURE) { 510 for (i = 0; i < npages; i++) { 511 rv = pmap_enter(fs->map->pmap, vaddr + ptoa(i), 512 &m[i], prot, fault_type | 513 (wired ? PMAP_ENTER_WIRED : 0), 0); 514 MPASS(rv == KERN_SUCCESS); 515 } 516 } 517 #else 518 MPASS(rv == KERN_SUCCESS); 519 #endif 520 VM_OBJECT_WLOCK(fs->first_object); 521 m_mtx = NULL; 522 for (i = 0; i < npages; i++) { 523 if ((fault_flags & VM_FAULT_WIRE) != 0) { 524 vm_page_wire(&m[i]); 525 } else { 526 vm_page_change_lock(&m[i], &m_mtx); 527 vm_page_activate(&m[i]); 528 } 529 if (m_hold != NULL && m[i].pindex == fs->first_pindex) { 530 *m_hold = &m[i]; 531 vm_page_wire(&m[i]); 532 } 533 vm_page_xunbusy(&m[i]); 534 } 535 if (m_mtx != NULL) 536 mtx_unlock(m_mtx); 537 } 538 curthread->td_ru.ru_majflt++; 539 return (KERN_SUCCESS); 540 } 541 542 static int prot_fault_translation; 543 SYSCTL_INT(_machdep, OID_AUTO, prot_fault_translation, CTLFLAG_RWTUN, 544 &prot_fault_translation, 0, 545 "Control signal to deliver on protection fault"); 546 547 /* compat definition to keep common code for signal translation */ 548 #define UCODE_PAGEFLT 12 549 #ifdef T_PAGEFLT 550 _Static_assert(UCODE_PAGEFLT == T_PAGEFLT, "T_PAGEFLT"); 551 #endif 552 553 /* 554 * vm_fault_trap: 555 * 556 * Handle a page fault occurring at the given address, 557 * requiring the given permissions, in the map specified. 558 * If successful, the page is inserted into the 559 * associated physical map. 560 * 561 * NOTE: the given address should be truncated to the 562 * proper page address. 563 * 564 * KERN_SUCCESS is returned if the page fault is handled; otherwise, 565 * a standard error specifying why the fault is fatal is returned. 566 * 567 * The map in question must be referenced, and remains so. 568 * Caller may hold no locks. 569 */ 570 int 571 vm_fault_trap(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, 572 int fault_flags, int *signo, int *ucode) 573 { 574 int result; 575 576 MPASS(signo == NULL || ucode != NULL); 577 #ifdef KTRACE 578 if (map != kernel_map && KTRPOINT(curthread, KTR_FAULT)) 579 ktrfault(vaddr, fault_type); 580 #endif 581 result = vm_fault(map, trunc_page(vaddr), fault_type, fault_flags, 582 NULL); 583 KASSERT(result == KERN_SUCCESS || result == KERN_FAILURE || 584 result == KERN_INVALID_ADDRESS || 585 result == KERN_RESOURCE_SHORTAGE || 586 result == KERN_PROTECTION_FAILURE || 587 result == KERN_OUT_OF_BOUNDS, 588 ("Unexpected Mach error %d from vm_fault()", result)); 589 #ifdef KTRACE 590 if (map != kernel_map && KTRPOINT(curthread, KTR_FAULTEND)) 591 ktrfaultend(result); 592 #endif 593 if (result != KERN_SUCCESS && signo != NULL) { 594 switch (result) { 595 case KERN_FAILURE: 596 case KERN_INVALID_ADDRESS: 597 *signo = SIGSEGV; 598 *ucode = SEGV_MAPERR; 599 break; 600 case KERN_RESOURCE_SHORTAGE: 601 *signo = SIGBUS; 602 *ucode = BUS_OOMERR; 603 break; 604 case KERN_OUT_OF_BOUNDS: 605 *signo = SIGBUS; 606 *ucode = BUS_OBJERR; 607 break; 608 case KERN_PROTECTION_FAILURE: 609 if (prot_fault_translation == 0) { 610 /* 611 * Autodetect. This check also covers 612 * the images without the ABI-tag ELF 613 * note. 614 */ 615 if (SV_CURPROC_ABI() == SV_ABI_FREEBSD && 616 curproc->p_osrel >= P_OSREL_SIGSEGV) { 617 *signo = SIGSEGV; 618 *ucode = SEGV_ACCERR; 619 } else { 620 *signo = SIGBUS; 621 *ucode = UCODE_PAGEFLT; 622 } 623 } else if (prot_fault_translation == 1) { 624 /* Always compat mode. */ 625 *signo = SIGBUS; 626 *ucode = UCODE_PAGEFLT; 627 } else { 628 /* Always SIGSEGV mode. */ 629 *signo = SIGSEGV; 630 *ucode = SEGV_ACCERR; 631 } 632 break; 633 default: 634 KASSERT(0, ("Unexpected Mach error %d from vm_fault()", 635 result)); 636 break; 637 } 638 } 639 return (result); 640 } 641 642 static int 643 vm_fault_lock_vnode(struct faultstate *fs) 644 { 645 struct vnode *vp; 646 int error, locked; 647 648 if (fs->object->type != OBJT_VNODE) 649 return (KERN_SUCCESS); 650 vp = fs->object->handle; 651 if (vp == fs->vp) { 652 ASSERT_VOP_LOCKED(vp, "saved vnode is not locked"); 653 return (KERN_SUCCESS); 654 } 655 656 /* 657 * Perform an unlock in case the desired vnode changed while 658 * the map was unlocked during a retry. 659 */ 660 unlock_vp(fs); 661 662 locked = VOP_ISLOCKED(vp); 663 if (locked != LK_EXCLUSIVE) 664 locked = LK_SHARED; 665 666 /* 667 * We must not sleep acquiring the vnode lock while we have 668 * the page exclusive busied or the object's 669 * paging-in-progress count incremented. Otherwise, we could 670 * deadlock. 671 */ 672 error = vget(vp, locked | LK_CANRECURSE | LK_NOWAIT, curthread); 673 if (error == 0) { 674 fs->vp = vp; 675 return (KERN_SUCCESS); 676 } 677 678 vhold(vp); 679 unlock_and_deallocate(fs); 680 error = vget(vp, locked | LK_RETRY | LK_CANRECURSE, curthread); 681 vdrop(vp); 682 fs->vp = vp; 683 KASSERT(error == 0, ("vm_fault: vget failed %d", error)); 684 return (KERN_RESOURCE_SHORTAGE); 685 } 686 687 int 688 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, 689 int fault_flags, vm_page_t *m_hold) 690 { 691 struct faultstate fs; 692 struct domainset *dset; 693 vm_object_t next_object, retry_object; 694 vm_offset_t e_end, e_start; 695 vm_pindex_t retry_pindex; 696 vm_prot_t prot, retry_prot; 697 int ahead, alloc_req, behind, cluster_offset, era, faultcount; 698 int nera, oom, result, rv; 699 u_char behavior; 700 boolean_t wired; /* Passed by reference. */ 701 bool dead, hardfault, is_first_object_locked; 702 703 VM_CNT_INC(v_vm_faults); 704 705 if ((curthread->td_pflags & TDP_NOFAULTING) != 0) 706 return (KERN_PROTECTION_FAILURE); 707 708 fs.vp = NULL; 709 faultcount = 0; 710 nera = -1; 711 hardfault = false; 712 713 RetryFault: 714 oom = 0; 715 RetryFault_oom: 716 717 /* 718 * Find the backing store object and offset into it to begin the 719 * search. 720 */ 721 fs.map = map; 722 result = vm_map_lookup(&fs.map, vaddr, fault_type | 723 VM_PROT_FAULT_LOOKUP, &fs.entry, &fs.first_object, 724 &fs.first_pindex, &prot, &wired); 725 if (result != KERN_SUCCESS) { 726 unlock_vp(&fs); 727 return (result); 728 } 729 730 fs.map_generation = fs.map->timestamp; 731 732 if (fs.entry->eflags & MAP_ENTRY_NOFAULT) { 733 panic("%s: fault on nofault entry, addr: %#lx", 734 __func__, (u_long)vaddr); 735 } 736 737 if (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION && 738 fs.entry->wiring_thread != curthread) { 739 vm_map_unlock_read(fs.map); 740 vm_map_lock(fs.map); 741 if (vm_map_lookup_entry(fs.map, vaddr, &fs.entry) && 742 (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION)) { 743 unlock_vp(&fs); 744 fs.entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 745 vm_map_unlock_and_wait(fs.map, 0); 746 } else 747 vm_map_unlock(fs.map); 748 goto RetryFault; 749 } 750 751 MPASS((fs.entry->eflags & MAP_ENTRY_GUARD) == 0); 752 753 if (wired) 754 fault_type = prot | (fault_type & VM_PROT_COPY); 755 else 756 KASSERT((fault_flags & VM_FAULT_WIRE) == 0, 757 ("!wired && VM_FAULT_WIRE")); 758 759 /* 760 * Try to avoid lock contention on the top-level object through 761 * special-case handling of some types of page faults, specifically, 762 * those that are mapping an existing page from the top-level object. 763 * Under this condition, a read lock on the object suffices, allowing 764 * multiple page faults of a similar type to run in parallel. 765 */ 766 if (fs.vp == NULL /* avoid locked vnode leak */ && 767 (fault_flags & (VM_FAULT_WIRE | VM_FAULT_DIRTY)) == 0) { 768 VM_OBJECT_RLOCK(fs.first_object); 769 rv = vm_fault_soft_fast(&fs, vaddr, prot, fault_type, 770 fault_flags, wired, m_hold); 771 if (rv == KERN_SUCCESS) 772 return (rv); 773 if (!VM_OBJECT_TRYUPGRADE(fs.first_object)) { 774 VM_OBJECT_RUNLOCK(fs.first_object); 775 VM_OBJECT_WLOCK(fs.first_object); 776 } 777 } else { 778 VM_OBJECT_WLOCK(fs.first_object); 779 } 780 781 /* 782 * Make a reference to this object to prevent its disposal while we 783 * are messing with it. Once we have the reference, the map is free 784 * to be diddled. Since objects reference their shadows (and copies), 785 * they will stay around as well. 786 * 787 * Bump the paging-in-progress count to prevent size changes (e.g. 788 * truncation operations) during I/O. 789 */ 790 vm_object_reference_locked(fs.first_object); 791 vm_object_pip_add(fs.first_object, 1); 792 793 fs.lookup_still_valid = true; 794 795 fs.m = fs.first_m = NULL; 796 797 /* 798 * Search for the page at object/offset. 799 */ 800 fs.object = fs.first_object; 801 fs.pindex = fs.first_pindex; 802 while (TRUE) { 803 KASSERT(fs.m == NULL, 804 ("page still set %p at loop start", fs.m)); 805 /* 806 * If the object is marked for imminent termination, 807 * we retry here, since the collapse pass has raced 808 * with us. Otherwise, if we see terminally dead 809 * object, return fail. 810 */ 811 if ((fs.object->flags & OBJ_DEAD) != 0) { 812 dead = fs.object->type == OBJT_DEAD; 813 unlock_and_deallocate(&fs); 814 if (dead) 815 return (KERN_PROTECTION_FAILURE); 816 pause("vmf_de", 1); 817 goto RetryFault; 818 } 819 820 /* 821 * See if page is resident 822 */ 823 fs.m = vm_page_lookup(fs.object, fs.pindex); 824 if (fs.m != NULL) { 825 /* 826 * Wait/Retry if the page is busy. We have to do this 827 * if the page is either exclusive or shared busy 828 * because the vm_pager may be using read busy for 829 * pageouts (and even pageins if it is the vnode 830 * pager), and we could end up trying to pagein and 831 * pageout the same page simultaneously. 832 * 833 * We can theoretically allow the busy case on a read 834 * fault if the page is marked valid, but since such 835 * pages are typically already pmap'd, putting that 836 * special case in might be more effort then it is 837 * worth. We cannot under any circumstances mess 838 * around with a shared busied page except, perhaps, 839 * to pmap it. 840 */ 841 if (vm_page_tryxbusy(fs.m) == 0) { 842 /* 843 * Reference the page before unlocking and 844 * sleeping so that the page daemon is less 845 * likely to reclaim it. 846 */ 847 vm_page_aflag_set(fs.m, PGA_REFERENCED); 848 if (fs.object != fs.first_object) { 849 fault_page_release(&fs.first_m); 850 vm_object_pip_wakeup(fs.first_object); 851 } 852 unlock_map(&fs); 853 vm_object_pip_wakeup(fs.object); 854 if (fs.m == vm_page_lookup(fs.object, 855 fs.pindex)) { 856 vm_page_sleep_if_busy(fs.m, "vmpfw"); 857 } 858 VM_OBJECT_WUNLOCK(fs.object); 859 VM_CNT_INC(v_intrans); 860 vm_object_deallocate(fs.first_object); 861 goto RetryFault; 862 } 863 864 /* 865 * The page is marked busy for other processes and the 866 * pagedaemon. If it still isn't completely valid 867 * (readable), jump to readrest, else break-out ( we 868 * found the page ). 869 */ 870 if (!vm_page_all_valid(fs.m)) 871 goto readrest; 872 break; /* break to PAGE HAS BEEN FOUND */ 873 } 874 KASSERT(fs.m == NULL, ("fs.m should be NULL, not %p", fs.m)); 875 876 /* 877 * Page is not resident. If the pager might contain the page 878 * or this is the beginning of the search, allocate a new 879 * page. (Default objects are zero-fill, so there is no real 880 * pager for them.) 881 */ 882 if (fs.object->type != OBJT_DEFAULT || 883 fs.object == fs.first_object) { 884 if ((fs.object->flags & OBJ_SIZEVNLOCK) != 0) { 885 rv = vm_fault_lock_vnode(&fs); 886 MPASS(rv == KERN_SUCCESS || 887 rv == KERN_RESOURCE_SHORTAGE); 888 if (rv == KERN_RESOURCE_SHORTAGE) 889 goto RetryFault; 890 } 891 if (fs.pindex >= fs.object->size) { 892 unlock_and_deallocate(&fs); 893 return (KERN_OUT_OF_BOUNDS); 894 } 895 896 if (fs.object == fs.first_object && 897 (fs.first_object->flags & OBJ_POPULATE) != 0 && 898 fs.first_object->shadow_count == 0) { 899 rv = vm_fault_populate(&fs, prot, fault_type, 900 fault_flags, wired, m_hold); 901 switch (rv) { 902 case KERN_SUCCESS: 903 case KERN_FAILURE: 904 unlock_and_deallocate(&fs); 905 return (rv); 906 case KERN_RESOURCE_SHORTAGE: 907 unlock_and_deallocate(&fs); 908 goto RetryFault; 909 case KERN_NOT_RECEIVER: 910 /* 911 * Pager's populate() method 912 * returned VM_PAGER_BAD. 913 */ 914 break; 915 default: 916 panic("inconsistent return codes"); 917 } 918 } 919 920 /* 921 * Allocate a new page for this object/offset pair. 922 * 923 * Unlocked read of the p_flag is harmless. At 924 * worst, the P_KILLED might be not observed 925 * there, and allocation can fail, causing 926 * restart and new reading of the p_flag. 927 */ 928 dset = fs.object->domain.dr_policy; 929 if (dset == NULL) 930 dset = curthread->td_domain.dr_policy; 931 if (!vm_page_count_severe_set(&dset->ds_mask) || 932 P_KILLED(curproc)) { 933 #if VM_NRESERVLEVEL > 0 934 vm_object_color(fs.object, atop(vaddr) - 935 fs.pindex); 936 #endif 937 alloc_req = P_KILLED(curproc) ? 938 VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL; 939 if (fs.object->type != OBJT_VNODE && 940 fs.object->backing_object == NULL) 941 alloc_req |= VM_ALLOC_ZERO; 942 fs.m = vm_page_alloc(fs.object, fs.pindex, 943 alloc_req); 944 } 945 if (fs.m == NULL) { 946 unlock_and_deallocate(&fs); 947 if (vm_pfault_oom_attempts < 0 || 948 oom < vm_pfault_oom_attempts) { 949 oom++; 950 vm_waitpfault(dset, 951 vm_pfault_oom_wait * hz); 952 goto RetryFault_oom; 953 } 954 if (bootverbose) 955 printf( 956 "proc %d (%s) failed to alloc page on fault, starting OOM\n", 957 curproc->p_pid, curproc->p_comm); 958 vm_pageout_oom(VM_OOM_MEM_PF); 959 goto RetryFault; 960 } 961 } 962 963 readrest: 964 /* 965 * At this point, we have either allocated a new page or found 966 * an existing page that is only partially valid. 967 * 968 * We hold a reference on the current object and the page is 969 * exclusive busied. 970 */ 971 972 /* 973 * If the pager for the current object might have the page, 974 * then determine the number of additional pages to read and 975 * potentially reprioritize previously read pages for earlier 976 * reclamation. These operations should only be performed 977 * once per page fault. Even if the current pager doesn't 978 * have the page, the number of additional pages to read will 979 * apply to subsequent objects in the shadow chain. 980 */ 981 if (fs.object->type != OBJT_DEFAULT && nera == -1 && 982 !P_KILLED(curproc)) { 983 KASSERT(fs.lookup_still_valid, ("map unlocked")); 984 era = fs.entry->read_ahead; 985 behavior = vm_map_entry_behavior(fs.entry); 986 if (behavior == MAP_ENTRY_BEHAV_RANDOM) { 987 nera = 0; 988 } else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) { 989 nera = VM_FAULT_READ_AHEAD_MAX; 990 if (vaddr == fs.entry->next_read) 991 vm_fault_dontneed(&fs, vaddr, nera); 992 } else if (vaddr == fs.entry->next_read) { 993 /* 994 * This is a sequential fault. Arithmetically 995 * increase the requested number of pages in 996 * the read-ahead window. The requested 997 * number of pages is "# of sequential faults 998 * x (read ahead min + 1) + read ahead min" 999 */ 1000 nera = VM_FAULT_READ_AHEAD_MIN; 1001 if (era > 0) { 1002 nera += era + 1; 1003 if (nera > VM_FAULT_READ_AHEAD_MAX) 1004 nera = VM_FAULT_READ_AHEAD_MAX; 1005 } 1006 if (era == VM_FAULT_READ_AHEAD_MAX) 1007 vm_fault_dontneed(&fs, vaddr, nera); 1008 } else { 1009 /* 1010 * This is a non-sequential fault. 1011 */ 1012 nera = 0; 1013 } 1014 if (era != nera) { 1015 /* 1016 * A read lock on the map suffices to update 1017 * the read ahead count safely. 1018 */ 1019 fs.entry->read_ahead = nera; 1020 } 1021 1022 /* 1023 * Prepare for unlocking the map. Save the map 1024 * entry's start and end addresses, which are used to 1025 * optimize the size of the pager operation below. 1026 * Even if the map entry's addresses change after 1027 * unlocking the map, using the saved addresses is 1028 * safe. 1029 */ 1030 e_start = fs.entry->start; 1031 e_end = fs.entry->end; 1032 } 1033 1034 /* 1035 * Call the pager to retrieve the page if there is a chance 1036 * that the pager has it, and potentially retrieve additional 1037 * pages at the same time. 1038 */ 1039 if (fs.object->type != OBJT_DEFAULT) { 1040 /* 1041 * Release the map lock before locking the vnode or 1042 * sleeping in the pager. (If the current object has 1043 * a shadow, then an earlier iteration of this loop 1044 * may have already unlocked the map.) 1045 */ 1046 unlock_map(&fs); 1047 1048 rv = vm_fault_lock_vnode(&fs); 1049 MPASS(rv == KERN_SUCCESS || 1050 rv == KERN_RESOURCE_SHORTAGE); 1051 if (rv == KERN_RESOURCE_SHORTAGE) 1052 goto RetryFault; 1053 KASSERT(fs.vp == NULL || !fs.map->system_map, 1054 ("vm_fault: vnode-backed object mapped by system map")); 1055 1056 /* 1057 * Page in the requested page and hint the pager, 1058 * that it may bring up surrounding pages. 1059 */ 1060 if (nera == -1 || behavior == MAP_ENTRY_BEHAV_RANDOM || 1061 P_KILLED(curproc)) { 1062 behind = 0; 1063 ahead = 0; 1064 } else { 1065 /* Is this a sequential fault? */ 1066 if (nera > 0) { 1067 behind = 0; 1068 ahead = nera; 1069 } else { 1070 /* 1071 * Request a cluster of pages that is 1072 * aligned to a VM_FAULT_READ_DEFAULT 1073 * page offset boundary within the 1074 * object. Alignment to a page offset 1075 * boundary is more likely to coincide 1076 * with the underlying file system 1077 * block than alignment to a virtual 1078 * address boundary. 1079 */ 1080 cluster_offset = fs.pindex % 1081 VM_FAULT_READ_DEFAULT; 1082 behind = ulmin(cluster_offset, 1083 atop(vaddr - e_start)); 1084 ahead = VM_FAULT_READ_DEFAULT - 1 - 1085 cluster_offset; 1086 } 1087 ahead = ulmin(ahead, atop(e_end - vaddr) - 1); 1088 } 1089 rv = vm_pager_get_pages(fs.object, &fs.m, 1, 1090 &behind, &ahead); 1091 if (rv == VM_PAGER_OK) { 1092 faultcount = behind + 1 + ahead; 1093 hardfault = true; 1094 break; /* break to PAGE HAS BEEN FOUND */ 1095 } 1096 if (rv == VM_PAGER_ERROR) 1097 printf("vm_fault: pager read error, pid %d (%s)\n", 1098 curproc->p_pid, curproc->p_comm); 1099 1100 /* 1101 * If an I/O error occurred or the requested page was 1102 * outside the range of the pager, clean up and return 1103 * an error. 1104 */ 1105 if (rv == VM_PAGER_ERROR || rv == VM_PAGER_BAD) { 1106 fault_page_free(&fs.m); 1107 unlock_and_deallocate(&fs); 1108 return (KERN_OUT_OF_BOUNDS); 1109 } 1110 1111 } 1112 1113 /* 1114 * The requested page does not exist at this object/ 1115 * offset. Remove the invalid page from the object, 1116 * waking up anyone waiting for it, and continue on to 1117 * the next object. However, if this is the top-level 1118 * object, we must leave the busy page in place to 1119 * prevent another process from rushing past us, and 1120 * inserting the page in that object at the same time 1121 * that we are. 1122 */ 1123 if (fs.object == fs.first_object) { 1124 fs.first_m = fs.m; 1125 fs.m = NULL; 1126 } else 1127 fault_page_free(&fs.m); 1128 1129 /* 1130 * Move on to the next object. Lock the next object before 1131 * unlocking the current one. 1132 */ 1133 next_object = fs.object->backing_object; 1134 if (next_object == NULL) { 1135 /* 1136 * If there's no object left, fill the page in the top 1137 * object with zeros. 1138 */ 1139 if (fs.object != fs.first_object) { 1140 vm_object_pip_wakeup(fs.object); 1141 VM_OBJECT_WUNLOCK(fs.object); 1142 1143 fs.object = fs.first_object; 1144 fs.pindex = fs.first_pindex; 1145 VM_OBJECT_WLOCK(fs.object); 1146 } 1147 MPASS(fs.first_m != NULL); 1148 MPASS(fs.m == NULL); 1149 fs.m = fs.first_m; 1150 fs.first_m = NULL; 1151 1152 /* 1153 * Zero the page if necessary and mark it valid. 1154 */ 1155 if ((fs.m->flags & PG_ZERO) == 0) { 1156 pmap_zero_page(fs.m); 1157 } else { 1158 VM_CNT_INC(v_ozfod); 1159 } 1160 VM_CNT_INC(v_zfod); 1161 vm_page_valid(fs.m); 1162 /* Don't try to prefault neighboring pages. */ 1163 faultcount = 1; 1164 break; /* break to PAGE HAS BEEN FOUND */ 1165 } else { 1166 MPASS(fs.first_m != NULL); 1167 KASSERT(fs.object != next_object, 1168 ("object loop %p", next_object)); 1169 VM_OBJECT_WLOCK(next_object); 1170 vm_object_pip_add(next_object, 1); 1171 if (fs.object != fs.first_object) 1172 vm_object_pip_wakeup(fs.object); 1173 fs.pindex += 1174 OFF_TO_IDX(fs.object->backing_object_offset); 1175 VM_OBJECT_WUNLOCK(fs.object); 1176 fs.object = next_object; 1177 } 1178 } 1179 1180 vm_page_assert_xbusied(fs.m); 1181 1182 /* 1183 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock 1184 * is held.] 1185 */ 1186 1187 /* 1188 * If the page is being written, but isn't already owned by the 1189 * top-level object, we have to copy it into a new page owned by the 1190 * top-level object. 1191 */ 1192 if (fs.object != fs.first_object) { 1193 /* 1194 * We only really need to copy if we want to write it. 1195 */ 1196 if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) { 1197 /* 1198 * This allows pages to be virtually copied from a 1199 * backing_object into the first_object, where the 1200 * backing object has no other refs to it, and cannot 1201 * gain any more refs. Instead of a bcopy, we just 1202 * move the page from the backing object to the 1203 * first object. Note that we must mark the page 1204 * dirty in the first object so that it will go out 1205 * to swap when needed. 1206 */ 1207 is_first_object_locked = false; 1208 if ( 1209 /* 1210 * Only one shadow object 1211 */ 1212 (fs.object->shadow_count == 1) && 1213 /* 1214 * No COW refs, except us 1215 */ 1216 (fs.object->ref_count == 1) && 1217 /* 1218 * No one else can look this object up 1219 */ 1220 (fs.object->handle == NULL) && 1221 /* 1222 * No other ways to look the object up 1223 */ 1224 ((fs.object->flags & OBJ_ANON) != 0) && 1225 (is_first_object_locked = VM_OBJECT_TRYWLOCK(fs.first_object)) && 1226 /* 1227 * We don't chase down the shadow chain 1228 */ 1229 fs.object == fs.first_object->backing_object) { 1230 1231 (void)vm_page_remove(fs.m); 1232 vm_page_replace_checked(fs.m, fs.first_object, 1233 fs.first_pindex, fs.first_m); 1234 vm_page_free(fs.first_m); 1235 vm_page_dirty(fs.m); 1236 #if VM_NRESERVLEVEL > 0 1237 /* 1238 * Rename the reservation. 1239 */ 1240 vm_reserv_rename(fs.m, fs.first_object, 1241 fs.object, OFF_TO_IDX( 1242 fs.first_object->backing_object_offset)); 1243 #endif 1244 VM_OBJECT_WUNLOCK(fs.object); 1245 fs.first_m = fs.m; 1246 fs.m = NULL; 1247 VM_CNT_INC(v_cow_optim); 1248 } else { 1249 VM_OBJECT_WUNLOCK(fs.object); 1250 /* 1251 * Oh, well, lets copy it. 1252 */ 1253 pmap_copy_page(fs.m, fs.first_m); 1254 vm_page_valid(fs.first_m); 1255 if (wired && (fault_flags & 1256 VM_FAULT_WIRE) == 0) { 1257 vm_page_wire(fs.first_m); 1258 vm_page_unwire(fs.m, PQ_INACTIVE); 1259 } 1260 /* 1261 * We no longer need the old page or object. 1262 */ 1263 fault_page_release(&fs.m); 1264 } 1265 /* 1266 * fs.object != fs.first_object due to above 1267 * conditional 1268 */ 1269 vm_object_pip_wakeup(fs.object); 1270 1271 /* 1272 * We only try to prefault read-only mappings to the 1273 * neighboring pages when this copy-on-write fault is 1274 * a hard fault. In other cases, trying to prefault 1275 * is typically wasted effort. 1276 */ 1277 if (faultcount == 0) 1278 faultcount = 1; 1279 1280 /* 1281 * Only use the new page below... 1282 */ 1283 fs.object = fs.first_object; 1284 fs.pindex = fs.first_pindex; 1285 fs.m = fs.first_m; 1286 if (!is_first_object_locked) 1287 VM_OBJECT_WLOCK(fs.object); 1288 VM_CNT_INC(v_cow_faults); 1289 curthread->td_cow++; 1290 } else { 1291 prot &= ~VM_PROT_WRITE; 1292 } 1293 } 1294 1295 /* 1296 * We must verify that the maps have not changed since our last 1297 * lookup. 1298 */ 1299 if (!fs.lookup_still_valid) { 1300 if (!vm_map_trylock_read(fs.map)) { 1301 unlock_and_deallocate(&fs); 1302 goto RetryFault; 1303 } 1304 fs.lookup_still_valid = true; 1305 if (fs.map->timestamp != fs.map_generation) { 1306 result = vm_map_lookup_locked(&fs.map, vaddr, fault_type, 1307 &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired); 1308 1309 /* 1310 * If we don't need the page any longer, put it on the inactive 1311 * list (the easiest thing to do here). If no one needs it, 1312 * pageout will grab it eventually. 1313 */ 1314 if (result != KERN_SUCCESS) { 1315 unlock_and_deallocate(&fs); 1316 1317 /* 1318 * If retry of map lookup would have blocked then 1319 * retry fault from start. 1320 */ 1321 if (result == KERN_FAILURE) 1322 goto RetryFault; 1323 return (result); 1324 } 1325 if ((retry_object != fs.first_object) || 1326 (retry_pindex != fs.first_pindex)) { 1327 unlock_and_deallocate(&fs); 1328 goto RetryFault; 1329 } 1330 1331 /* 1332 * Check whether the protection has changed or the object has 1333 * been copied while we left the map unlocked. Changing from 1334 * read to write permission is OK - we leave the page 1335 * write-protected, and catch the write fault. Changing from 1336 * write to read permission means that we can't mark the page 1337 * write-enabled after all. 1338 */ 1339 prot &= retry_prot; 1340 fault_type &= retry_prot; 1341 if (prot == 0) { 1342 unlock_and_deallocate(&fs); 1343 goto RetryFault; 1344 } 1345 1346 /* Reassert because wired may have changed. */ 1347 KASSERT(wired || (fault_flags & VM_FAULT_WIRE) == 0, 1348 ("!wired && VM_FAULT_WIRE")); 1349 } 1350 } 1351 1352 /* 1353 * If the page was filled by a pager, save the virtual address that 1354 * should be faulted on next under a sequential access pattern to the 1355 * map entry. A read lock on the map suffices to update this address 1356 * safely. 1357 */ 1358 if (hardfault) 1359 fs.entry->next_read = vaddr + ptoa(ahead) + PAGE_SIZE; 1360 1361 vm_page_assert_xbusied(fs.m); 1362 vm_fault_dirty(fs.entry, fs.m, prot, fault_type, fault_flags); 1363 1364 /* 1365 * Page must be completely valid or it is not fit to 1366 * map into user space. vm_pager_get_pages() ensures this. 1367 */ 1368 KASSERT(vm_page_all_valid(fs.m), 1369 ("vm_fault: page %p partially invalid", fs.m)); 1370 VM_OBJECT_WUNLOCK(fs.object); 1371 1372 /* 1373 * Put this page into the physical map. We had to do the unlock above 1374 * because pmap_enter() may sleep. We don't put the page 1375 * back on the active queue until later so that the pageout daemon 1376 * won't find it (yet). 1377 */ 1378 pmap_enter(fs.map->pmap, vaddr, fs.m, prot, 1379 fault_type | (wired ? PMAP_ENTER_WIRED : 0), 0); 1380 if (faultcount != 1 && (fault_flags & VM_FAULT_WIRE) == 0 && 1381 wired == 0) 1382 vm_fault_prefault(&fs, vaddr, 1383 faultcount > 0 ? behind : PFBAK, 1384 faultcount > 0 ? ahead : PFFOR, false); 1385 1386 /* 1387 * If the page is not wired down, then put it where the pageout daemon 1388 * can find it. 1389 */ 1390 if ((fault_flags & VM_FAULT_WIRE) != 0) { 1391 vm_page_wire(fs.m); 1392 } else { 1393 vm_page_lock(fs.m); 1394 vm_page_activate(fs.m); 1395 vm_page_unlock(fs.m); 1396 } 1397 if (m_hold != NULL) { 1398 *m_hold = fs.m; 1399 vm_page_wire(fs.m); 1400 } 1401 vm_page_xunbusy(fs.m); 1402 fs.m = NULL; 1403 1404 /* 1405 * Unlock everything, and return 1406 */ 1407 fault_deallocate(&fs); 1408 if (hardfault) { 1409 VM_CNT_INC(v_io_faults); 1410 curthread->td_ru.ru_majflt++; 1411 #ifdef RACCT 1412 if (racct_enable && fs.object->type == OBJT_VNODE) { 1413 PROC_LOCK(curproc); 1414 if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) { 1415 racct_add_force(curproc, RACCT_WRITEBPS, 1416 PAGE_SIZE + behind * PAGE_SIZE); 1417 racct_add_force(curproc, RACCT_WRITEIOPS, 1); 1418 } else { 1419 racct_add_force(curproc, RACCT_READBPS, 1420 PAGE_SIZE + ahead * PAGE_SIZE); 1421 racct_add_force(curproc, RACCT_READIOPS, 1); 1422 } 1423 PROC_UNLOCK(curproc); 1424 } 1425 #endif 1426 } else 1427 curthread->td_ru.ru_minflt++; 1428 1429 return (KERN_SUCCESS); 1430 } 1431 1432 /* 1433 * Speed up the reclamation of pages that precede the faulting pindex within 1434 * the first object of the shadow chain. Essentially, perform the equivalent 1435 * to madvise(..., MADV_DONTNEED) on a large cluster of pages that precedes 1436 * the faulting pindex by the cluster size when the pages read by vm_fault() 1437 * cross a cluster-size boundary. The cluster size is the greater of the 1438 * smallest superpage size and VM_FAULT_DONTNEED_MIN. 1439 * 1440 * When "fs->first_object" is a shadow object, the pages in the backing object 1441 * that precede the faulting pindex are deactivated by vm_fault(). So, this 1442 * function must only be concerned with pages in the first object. 1443 */ 1444 static void 1445 vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, int ahead) 1446 { 1447 vm_map_entry_t entry; 1448 vm_object_t first_object, object; 1449 vm_offset_t end, start; 1450 vm_page_t m, m_next; 1451 vm_pindex_t pend, pstart; 1452 vm_size_t size; 1453 1454 object = fs->object; 1455 VM_OBJECT_ASSERT_WLOCKED(object); 1456 first_object = fs->first_object; 1457 if (first_object != object) { 1458 if (!VM_OBJECT_TRYWLOCK(first_object)) { 1459 VM_OBJECT_WUNLOCK(object); 1460 VM_OBJECT_WLOCK(first_object); 1461 VM_OBJECT_WLOCK(object); 1462 } 1463 } 1464 /* Neither fictitious nor unmanaged pages can be reclaimed. */ 1465 if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) { 1466 size = VM_FAULT_DONTNEED_MIN; 1467 if (MAXPAGESIZES > 1 && size < pagesizes[1]) 1468 size = pagesizes[1]; 1469 end = rounddown2(vaddr, size); 1470 if (vaddr - end >= size - PAGE_SIZE - ptoa(ahead) && 1471 (entry = fs->entry)->start < end) { 1472 if (end - entry->start < size) 1473 start = entry->start; 1474 else 1475 start = end - size; 1476 pmap_advise(fs->map->pmap, start, end, MADV_DONTNEED); 1477 pstart = OFF_TO_IDX(entry->offset) + atop(start - 1478 entry->start); 1479 m_next = vm_page_find_least(first_object, pstart); 1480 pend = OFF_TO_IDX(entry->offset) + atop(end - 1481 entry->start); 1482 while ((m = m_next) != NULL && m->pindex < pend) { 1483 m_next = TAILQ_NEXT(m, listq); 1484 if (!vm_page_all_valid(m) || 1485 vm_page_busied(m)) 1486 continue; 1487 1488 /* 1489 * Don't clear PGA_REFERENCED, since it would 1490 * likely represent a reference by a different 1491 * process. 1492 * 1493 * Typically, at this point, prefetched pages 1494 * are still in the inactive queue. Only 1495 * pages that triggered page faults are in the 1496 * active queue. 1497 */ 1498 vm_page_lock(m); 1499 if (!vm_page_inactive(m)) 1500 vm_page_deactivate(m); 1501 vm_page_unlock(m); 1502 } 1503 } 1504 } 1505 if (first_object != object) 1506 VM_OBJECT_WUNLOCK(first_object); 1507 } 1508 1509 /* 1510 * vm_fault_prefault provides a quick way of clustering 1511 * pagefaults into a processes address space. It is a "cousin" 1512 * of vm_map_pmap_enter, except it runs at page fault time instead 1513 * of mmap time. 1514 */ 1515 static void 1516 vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra, 1517 int backward, int forward, bool obj_locked) 1518 { 1519 pmap_t pmap; 1520 vm_map_entry_t entry; 1521 vm_object_t backing_object, lobject; 1522 vm_offset_t addr, starta; 1523 vm_pindex_t pindex; 1524 vm_page_t m; 1525 int i; 1526 1527 pmap = fs->map->pmap; 1528 if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) 1529 return; 1530 1531 entry = fs->entry; 1532 1533 if (addra < backward * PAGE_SIZE) { 1534 starta = entry->start; 1535 } else { 1536 starta = addra - backward * PAGE_SIZE; 1537 if (starta < entry->start) 1538 starta = entry->start; 1539 } 1540 1541 /* 1542 * Generate the sequence of virtual addresses that are candidates for 1543 * prefaulting in an outward spiral from the faulting virtual address, 1544 * "addra". Specifically, the sequence is "addra - PAGE_SIZE", "addra 1545 * + PAGE_SIZE", "addra - 2 * PAGE_SIZE", "addra + 2 * PAGE_SIZE", ... 1546 * If the candidate address doesn't have a backing physical page, then 1547 * the loop immediately terminates. 1548 */ 1549 for (i = 0; i < 2 * imax(backward, forward); i++) { 1550 addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE : 1551 PAGE_SIZE); 1552 if (addr > addra + forward * PAGE_SIZE) 1553 addr = 0; 1554 1555 if (addr < starta || addr >= entry->end) 1556 continue; 1557 1558 if (!pmap_is_prefaultable(pmap, addr)) 1559 continue; 1560 1561 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT; 1562 lobject = entry->object.vm_object; 1563 if (!obj_locked) 1564 VM_OBJECT_RLOCK(lobject); 1565 while ((m = vm_page_lookup(lobject, pindex)) == NULL && 1566 lobject->type == OBJT_DEFAULT && 1567 (backing_object = lobject->backing_object) != NULL) { 1568 KASSERT((lobject->backing_object_offset & PAGE_MASK) == 1569 0, ("vm_fault_prefault: unaligned object offset")); 1570 pindex += lobject->backing_object_offset >> PAGE_SHIFT; 1571 VM_OBJECT_RLOCK(backing_object); 1572 if (!obj_locked || lobject != entry->object.vm_object) 1573 VM_OBJECT_RUNLOCK(lobject); 1574 lobject = backing_object; 1575 } 1576 if (m == NULL) { 1577 if (!obj_locked || lobject != entry->object.vm_object) 1578 VM_OBJECT_RUNLOCK(lobject); 1579 break; 1580 } 1581 if (vm_page_all_valid(m) && 1582 (m->flags & PG_FICTITIOUS) == 0) 1583 pmap_enter_quick(pmap, addr, m, entry->protection); 1584 if (!obj_locked || lobject != entry->object.vm_object) 1585 VM_OBJECT_RUNLOCK(lobject); 1586 } 1587 } 1588 1589 /* 1590 * Hold each of the physical pages that are mapped by the specified range of 1591 * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid 1592 * and allow the specified types of access, "prot". If all of the implied 1593 * pages are successfully held, then the number of held pages is returned 1594 * together with pointers to those pages in the array "ma". However, if any 1595 * of the pages cannot be held, -1 is returned. 1596 */ 1597 int 1598 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len, 1599 vm_prot_t prot, vm_page_t *ma, int max_count) 1600 { 1601 vm_offset_t end, va; 1602 vm_page_t *mp; 1603 int count; 1604 boolean_t pmap_failed; 1605 1606 if (len == 0) 1607 return (0); 1608 end = round_page(addr + len); 1609 addr = trunc_page(addr); 1610 1611 /* 1612 * Check for illegal addresses. 1613 */ 1614 if (addr < vm_map_min(map) || addr > end || end > vm_map_max(map)) 1615 return (-1); 1616 1617 if (atop(end - addr) > max_count) 1618 panic("vm_fault_quick_hold_pages: count > max_count"); 1619 count = atop(end - addr); 1620 1621 /* 1622 * Most likely, the physical pages are resident in the pmap, so it is 1623 * faster to try pmap_extract_and_hold() first. 1624 */ 1625 pmap_failed = FALSE; 1626 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) { 1627 *mp = pmap_extract_and_hold(map->pmap, va, prot); 1628 if (*mp == NULL) 1629 pmap_failed = TRUE; 1630 else if ((prot & VM_PROT_WRITE) != 0 && 1631 (*mp)->dirty != VM_PAGE_BITS_ALL) { 1632 /* 1633 * Explicitly dirty the physical page. Otherwise, the 1634 * caller's changes may go unnoticed because they are 1635 * performed through an unmanaged mapping or by a DMA 1636 * operation. 1637 * 1638 * The object lock is not held here. 1639 * See vm_page_clear_dirty_mask(). 1640 */ 1641 vm_page_dirty(*mp); 1642 } 1643 } 1644 if (pmap_failed) { 1645 /* 1646 * One or more pages could not be held by the pmap. Either no 1647 * page was mapped at the specified virtual address or that 1648 * mapping had insufficient permissions. Attempt to fault in 1649 * and hold these pages. 1650 * 1651 * If vm_fault_disable_pagefaults() was called, 1652 * i.e., TDP_NOFAULTING is set, we must not sleep nor 1653 * acquire MD VM locks, which means we must not call 1654 * vm_fault(). Some (out of tree) callers mark 1655 * too wide a code area with vm_fault_disable_pagefaults() 1656 * already, use the VM_PROT_QUICK_NOFAULT flag to request 1657 * the proper behaviour explicitly. 1658 */ 1659 if ((prot & VM_PROT_QUICK_NOFAULT) != 0 && 1660 (curthread->td_pflags & TDP_NOFAULTING) != 0) 1661 goto error; 1662 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) 1663 if (*mp == NULL && vm_fault(map, va, prot, 1664 VM_FAULT_NORMAL, mp) != KERN_SUCCESS) 1665 goto error; 1666 } 1667 return (count); 1668 error: 1669 for (mp = ma; mp < ma + count; mp++) 1670 if (*mp != NULL) 1671 vm_page_unwire(*mp, PQ_INACTIVE); 1672 return (-1); 1673 } 1674 1675 /* 1676 * Routine: 1677 * vm_fault_copy_entry 1678 * Function: 1679 * Create new shadow object backing dst_entry with private copy of 1680 * all underlying pages. When src_entry is equal to dst_entry, 1681 * function implements COW for wired-down map entry. Otherwise, 1682 * it forks wired entry into dst_map. 1683 * 1684 * In/out conditions: 1685 * The source and destination maps must be locked for write. 1686 * The source map entry must be wired down (or be a sharing map 1687 * entry corresponding to a main map entry that is wired down). 1688 */ 1689 void 1690 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map, 1691 vm_map_entry_t dst_entry, vm_map_entry_t src_entry, 1692 vm_ooffset_t *fork_charge) 1693 { 1694 vm_object_t backing_object, dst_object, object, src_object; 1695 vm_pindex_t dst_pindex, pindex, src_pindex; 1696 vm_prot_t access, prot; 1697 vm_offset_t vaddr; 1698 vm_page_t dst_m; 1699 vm_page_t src_m; 1700 boolean_t upgrade; 1701 1702 #ifdef lint 1703 src_map++; 1704 #endif /* lint */ 1705 1706 upgrade = src_entry == dst_entry; 1707 access = prot = dst_entry->protection; 1708 1709 src_object = src_entry->object.vm_object; 1710 src_pindex = OFF_TO_IDX(src_entry->offset); 1711 1712 if (upgrade && (dst_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) { 1713 dst_object = src_object; 1714 vm_object_reference(dst_object); 1715 } else { 1716 /* 1717 * Create the top-level object for the destination entry. 1718 * Doesn't actually shadow anything - we copy the pages 1719 * directly. 1720 */ 1721 dst_object = vm_object_allocate_anon(atop(dst_entry->end - 1722 dst_entry->start), NULL, NULL, 0); 1723 #if VM_NRESERVLEVEL > 0 1724 dst_object->flags |= OBJ_COLORED; 1725 dst_object->pg_color = atop(dst_entry->start); 1726 #endif 1727 dst_object->domain = src_object->domain; 1728 dst_object->charge = dst_entry->end - dst_entry->start; 1729 } 1730 1731 VM_OBJECT_WLOCK(dst_object); 1732 KASSERT(upgrade || dst_entry->object.vm_object == NULL, 1733 ("vm_fault_copy_entry: vm_object not NULL")); 1734 if (src_object != dst_object) { 1735 dst_entry->object.vm_object = dst_object; 1736 dst_entry->offset = 0; 1737 dst_entry->eflags &= ~MAP_ENTRY_VN_EXEC; 1738 } 1739 if (fork_charge != NULL) { 1740 KASSERT(dst_entry->cred == NULL, 1741 ("vm_fault_copy_entry: leaked swp charge")); 1742 dst_object->cred = curthread->td_ucred; 1743 crhold(dst_object->cred); 1744 *fork_charge += dst_object->charge; 1745 } else if ((dst_object->type == OBJT_DEFAULT || 1746 dst_object->type == OBJT_SWAP) && 1747 dst_object->cred == NULL) { 1748 KASSERT(dst_entry->cred != NULL, ("no cred for entry %p", 1749 dst_entry)); 1750 dst_object->cred = dst_entry->cred; 1751 dst_entry->cred = NULL; 1752 } 1753 1754 /* 1755 * If not an upgrade, then enter the mappings in the pmap as 1756 * read and/or execute accesses. Otherwise, enter them as 1757 * write accesses. 1758 * 1759 * A writeable large page mapping is only created if all of 1760 * the constituent small page mappings are modified. Marking 1761 * PTEs as modified on inception allows promotion to happen 1762 * without taking potentially large number of soft faults. 1763 */ 1764 if (!upgrade) 1765 access &= ~VM_PROT_WRITE; 1766 1767 /* 1768 * Loop through all of the virtual pages within the entry's 1769 * range, copying each page from the source object to the 1770 * destination object. Since the source is wired, those pages 1771 * must exist. In contrast, the destination is pageable. 1772 * Since the destination object doesn't share any backing storage 1773 * with the source object, all of its pages must be dirtied, 1774 * regardless of whether they can be written. 1775 */ 1776 for (vaddr = dst_entry->start, dst_pindex = 0; 1777 vaddr < dst_entry->end; 1778 vaddr += PAGE_SIZE, dst_pindex++) { 1779 again: 1780 /* 1781 * Find the page in the source object, and copy it in. 1782 * Because the source is wired down, the page will be 1783 * in memory. 1784 */ 1785 if (src_object != dst_object) 1786 VM_OBJECT_RLOCK(src_object); 1787 object = src_object; 1788 pindex = src_pindex + dst_pindex; 1789 while ((src_m = vm_page_lookup(object, pindex)) == NULL && 1790 (backing_object = object->backing_object) != NULL) { 1791 /* 1792 * Unless the source mapping is read-only or 1793 * it is presently being upgraded from 1794 * read-only, the first object in the shadow 1795 * chain should provide all of the pages. In 1796 * other words, this loop body should never be 1797 * executed when the source mapping is already 1798 * read/write. 1799 */ 1800 KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 || 1801 upgrade, 1802 ("vm_fault_copy_entry: main object missing page")); 1803 1804 VM_OBJECT_RLOCK(backing_object); 1805 pindex += OFF_TO_IDX(object->backing_object_offset); 1806 if (object != dst_object) 1807 VM_OBJECT_RUNLOCK(object); 1808 object = backing_object; 1809 } 1810 KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing")); 1811 1812 if (object != dst_object) { 1813 /* 1814 * Allocate a page in the destination object. 1815 */ 1816 dst_m = vm_page_alloc(dst_object, (src_object == 1817 dst_object ? src_pindex : 0) + dst_pindex, 1818 VM_ALLOC_NORMAL); 1819 if (dst_m == NULL) { 1820 VM_OBJECT_WUNLOCK(dst_object); 1821 VM_OBJECT_RUNLOCK(object); 1822 vm_wait(dst_object); 1823 VM_OBJECT_WLOCK(dst_object); 1824 goto again; 1825 } 1826 pmap_copy_page(src_m, dst_m); 1827 VM_OBJECT_RUNLOCK(object); 1828 dst_m->dirty = dst_m->valid = src_m->valid; 1829 } else { 1830 dst_m = src_m; 1831 if (vm_page_busy_acquire(dst_m, VM_ALLOC_WAITFAIL) == 0) 1832 goto again; 1833 if (dst_m->pindex >= dst_object->size) { 1834 /* 1835 * We are upgrading. Index can occur 1836 * out of bounds if the object type is 1837 * vnode and the file was truncated. 1838 */ 1839 vm_page_xunbusy(dst_m); 1840 break; 1841 } 1842 } 1843 VM_OBJECT_WUNLOCK(dst_object); 1844 1845 /* 1846 * Enter it in the pmap. If a wired, copy-on-write 1847 * mapping is being replaced by a write-enabled 1848 * mapping, then wire that new mapping. 1849 * 1850 * The page can be invalid if the user called 1851 * msync(MS_INVALIDATE) or truncated the backing vnode 1852 * or shared memory object. In this case, do not 1853 * insert it into pmap, but still do the copy so that 1854 * all copies of the wired map entry have similar 1855 * backing pages. 1856 */ 1857 if (vm_page_all_valid(dst_m)) { 1858 pmap_enter(dst_map->pmap, vaddr, dst_m, prot, 1859 access | (upgrade ? PMAP_ENTER_WIRED : 0), 0); 1860 } 1861 1862 /* 1863 * Mark it no longer busy, and put it on the active list. 1864 */ 1865 VM_OBJECT_WLOCK(dst_object); 1866 1867 if (upgrade) { 1868 if (src_m != dst_m) { 1869 vm_page_unwire(src_m, PQ_INACTIVE); 1870 vm_page_wire(dst_m); 1871 } else { 1872 KASSERT(vm_page_wired(dst_m), 1873 ("dst_m %p is not wired", dst_m)); 1874 } 1875 } else { 1876 vm_page_lock(dst_m); 1877 vm_page_activate(dst_m); 1878 vm_page_unlock(dst_m); 1879 } 1880 vm_page_xunbusy(dst_m); 1881 } 1882 VM_OBJECT_WUNLOCK(dst_object); 1883 if (upgrade) { 1884 dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY); 1885 vm_object_deallocate(src_object); 1886 } 1887 } 1888 1889 /* 1890 * Block entry into the machine-independent layer's page fault handler by 1891 * the calling thread. Subsequent calls to vm_fault() by that thread will 1892 * return KERN_PROTECTION_FAILURE. Enable machine-dependent handling of 1893 * spurious page faults. 1894 */ 1895 int 1896 vm_fault_disable_pagefaults(void) 1897 { 1898 1899 return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR)); 1900 } 1901 1902 void 1903 vm_fault_enable_pagefaults(int save) 1904 { 1905 1906 curthread_pflags_restore(save); 1907 } 1908