xref: /freebsd/sys/vm/vm_fault.c (revision f02f7422801bb39f5eaab8fc383fa7b70c467ff9)
1 /*-
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  *
10  * This code is derived from software contributed to Berkeley by
11  * The Mach Operating System project at Carnegie-Mellon University.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. All advertising materials mentioning features or use of this software
22  *    must display the following acknowledgement:
23  *	This product includes software developed by the University of
24  *	California, Berkeley and its contributors.
25  * 4. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *	from: @(#)vm_fault.c	8.4 (Berkeley) 1/12/94
42  *
43  *
44  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45  * All rights reserved.
46  *
47  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48  *
49  * Permission to use, copy, modify and distribute this software and
50  * its documentation is hereby granted, provided that both the copyright
51  * notice and this permission notice appear in all copies of the
52  * software, derivative works or modified versions, and any portions
53  * thereof, and that both notices appear in supporting documentation.
54  *
55  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58  *
59  * Carnegie Mellon requests users of this software to return to
60  *
61  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62  *  School of Computer Science
63  *  Carnegie Mellon University
64  *  Pittsburgh PA 15213-3890
65  *
66  * any improvements or extensions that they make and grant Carnegie the
67  * rights to redistribute these changes.
68  */
69 
70 /*
71  *	Page fault handling module.
72  */
73 
74 #include <sys/cdefs.h>
75 __FBSDID("$FreeBSD$");
76 
77 #include "opt_ktrace.h"
78 #include "opt_vm.h"
79 
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/kernel.h>
83 #include <sys/lock.h>
84 #include <sys/proc.h>
85 #include <sys/resourcevar.h>
86 #include <sys/rwlock.h>
87 #include <sys/sysctl.h>
88 #include <sys/vmmeter.h>
89 #include <sys/vnode.h>
90 #ifdef KTRACE
91 #include <sys/ktrace.h>
92 #endif
93 
94 #include <vm/vm.h>
95 #include <vm/vm_param.h>
96 #include <vm/pmap.h>
97 #include <vm/vm_map.h>
98 #include <vm/vm_object.h>
99 #include <vm/vm_page.h>
100 #include <vm/vm_pageout.h>
101 #include <vm/vm_kern.h>
102 #include <vm/vm_pager.h>
103 #include <vm/vm_extern.h>
104 
105 #define PFBAK 4
106 #define PFFOR 4
107 
108 static int vm_fault_additional_pages(vm_page_t, int, int, vm_page_t *, int *);
109 
110 #define	VM_FAULT_READ_BEHIND	8
111 #define	VM_FAULT_READ_MAX	(1 + VM_FAULT_READ_AHEAD_MAX)
112 #define	VM_FAULT_NINCR		(VM_FAULT_READ_MAX / VM_FAULT_READ_BEHIND)
113 #define	VM_FAULT_SUM		(VM_FAULT_NINCR * (VM_FAULT_NINCR + 1) / 2)
114 #define	VM_FAULT_CACHE_BEHIND	(VM_FAULT_READ_BEHIND * VM_FAULT_SUM)
115 
116 struct faultstate {
117 	vm_page_t m;
118 	vm_object_t object;
119 	vm_pindex_t pindex;
120 	vm_page_t first_m;
121 	vm_object_t	first_object;
122 	vm_pindex_t first_pindex;
123 	vm_map_t map;
124 	vm_map_entry_t entry;
125 	int lookup_still_valid;
126 	struct vnode *vp;
127 };
128 
129 static void vm_fault_cache_behind(const struct faultstate *fs, int distance);
130 static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
131 	    int faultcount, int reqpage);
132 
133 static inline void
134 release_page(struct faultstate *fs)
135 {
136 
137 	vm_page_xunbusy(fs->m);
138 	vm_page_lock(fs->m);
139 	vm_page_deactivate(fs->m);
140 	vm_page_unlock(fs->m);
141 	fs->m = NULL;
142 }
143 
144 static inline void
145 unlock_map(struct faultstate *fs)
146 {
147 
148 	if (fs->lookup_still_valid) {
149 		vm_map_lookup_done(fs->map, fs->entry);
150 		fs->lookup_still_valid = FALSE;
151 	}
152 }
153 
154 static void
155 unlock_and_deallocate(struct faultstate *fs)
156 {
157 
158 	vm_object_pip_wakeup(fs->object);
159 	VM_OBJECT_WUNLOCK(fs->object);
160 	if (fs->object != fs->first_object) {
161 		VM_OBJECT_WLOCK(fs->first_object);
162 		vm_page_lock(fs->first_m);
163 		vm_page_free(fs->first_m);
164 		vm_page_unlock(fs->first_m);
165 		vm_object_pip_wakeup(fs->first_object);
166 		VM_OBJECT_WUNLOCK(fs->first_object);
167 		fs->first_m = NULL;
168 	}
169 	vm_object_deallocate(fs->first_object);
170 	unlock_map(fs);
171 	if (fs->vp != NULL) {
172 		vput(fs->vp);
173 		fs->vp = NULL;
174 	}
175 }
176 
177 /*
178  * TRYPAGER - used by vm_fault to calculate whether the pager for the
179  *	      current object *might* contain the page.
180  *
181  *	      default objects are zero-fill, there is no real pager.
182  */
183 #define TRYPAGER	(fs.object->type != OBJT_DEFAULT && \
184 			((fault_flags & VM_FAULT_CHANGE_WIRING) == 0 || wired))
185 
186 /*
187  *	vm_fault:
188  *
189  *	Handle a page fault occurring at the given address,
190  *	requiring the given permissions, in the map specified.
191  *	If successful, the page is inserted into the
192  *	associated physical map.
193  *
194  *	NOTE: the given address should be truncated to the
195  *	proper page address.
196  *
197  *	KERN_SUCCESS is returned if the page fault is handled; otherwise,
198  *	a standard error specifying why the fault is fatal is returned.
199  *
200  *	The map in question must be referenced, and remains so.
201  *	Caller may hold no locks.
202  */
203 int
204 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
205     int fault_flags)
206 {
207 	struct thread *td;
208 	int result;
209 
210 	td = curthread;
211 	if ((td->td_pflags & TDP_NOFAULTING) != 0)
212 		return (KERN_PROTECTION_FAILURE);
213 #ifdef KTRACE
214 	if (map != kernel_map && KTRPOINT(td, KTR_FAULT))
215 		ktrfault(vaddr, fault_type);
216 #endif
217 	result = vm_fault_hold(map, trunc_page(vaddr), fault_type, fault_flags,
218 	    NULL);
219 #ifdef KTRACE
220 	if (map != kernel_map && KTRPOINT(td, KTR_FAULTEND))
221 		ktrfaultend(result);
222 #endif
223 	return (result);
224 }
225 
226 int
227 vm_fault_hold(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
228     int fault_flags, vm_page_t *m_hold)
229 {
230 	vm_prot_t prot;
231 	long ahead, behind;
232 	int alloc_req, era, faultcount, nera, reqpage, result;
233 	boolean_t growstack, is_first_object_locked, wired;
234 	int map_generation;
235 	vm_object_t next_object;
236 	vm_page_t marray[VM_FAULT_READ_MAX];
237 	int hardfault;
238 	struct faultstate fs;
239 	struct vnode *vp;
240 	vm_page_t m;
241 	int locked, error;
242 
243 	hardfault = 0;
244 	growstack = TRUE;
245 	PCPU_INC(cnt.v_vm_faults);
246 	fs.vp = NULL;
247 	faultcount = reqpage = 0;
248 
249 RetryFault:;
250 
251 	/*
252 	 * Find the backing store object and offset into it to begin the
253 	 * search.
254 	 */
255 	fs.map = map;
256 	result = vm_map_lookup(&fs.map, vaddr, fault_type, &fs.entry,
257 	    &fs.first_object, &fs.first_pindex, &prot, &wired);
258 	if (result != KERN_SUCCESS) {
259 		if (growstack && result == KERN_INVALID_ADDRESS &&
260 		    map != kernel_map) {
261 			result = vm_map_growstack(curproc, vaddr);
262 			if (result != KERN_SUCCESS)
263 				return (KERN_FAILURE);
264 			growstack = FALSE;
265 			goto RetryFault;
266 		}
267 		return (result);
268 	}
269 
270 	map_generation = fs.map->timestamp;
271 
272 	if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
273 		if ((curthread->td_pflags & TDP_DEVMEMIO) != 0) {
274 			vm_map_unlock_read(fs.map);
275 			return (KERN_FAILURE);
276 		}
277 		panic("vm_fault: fault on nofault entry, addr: %lx",
278 		    (u_long)vaddr);
279 	}
280 
281 	if (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION &&
282 	    fs.entry->wiring_thread != curthread) {
283 		vm_map_unlock_read(fs.map);
284 		vm_map_lock(fs.map);
285 		if (vm_map_lookup_entry(fs.map, vaddr, &fs.entry) &&
286 		    (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION)) {
287 			fs.entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
288 			vm_map_unlock_and_wait(fs.map, 0);
289 		} else
290 			vm_map_unlock(fs.map);
291 		goto RetryFault;
292 	}
293 
294 	if (wired)
295 		fault_type = prot | (fault_type & VM_PROT_COPY);
296 
297 	if (fs.vp == NULL /* avoid locked vnode leak */ &&
298 	    (fault_flags & (VM_FAULT_CHANGE_WIRING | VM_FAULT_DIRTY)) == 0 &&
299 	    /* avoid calling vm_object_set_writeable_dirty() */
300 	    ((prot & VM_PROT_WRITE) == 0 ||
301 	    fs.first_object->type != OBJT_VNODE ||
302 	    (fs.first_object->flags & OBJ_MIGHTBEDIRTY) != 0)) {
303 		VM_OBJECT_RLOCK(fs.first_object);
304 		if ((prot & VM_PROT_WRITE) != 0 &&
305 		    fs.first_object->type == OBJT_VNODE &&
306 		    (fs.first_object->flags & OBJ_MIGHTBEDIRTY) == 0)
307 			goto fast_failed;
308 		m = vm_page_lookup(fs.first_object, fs.first_pindex);
309 		/* A busy page can be mapped for read|execute access. */
310 		if (m == NULL || ((prot & VM_PROT_WRITE) != 0 &&
311 		    vm_page_busied(m)) || m->valid != VM_PAGE_BITS_ALL)
312 			goto fast_failed;
313 		result = pmap_enter(fs.map->pmap, vaddr, m, prot,
314 		   fault_type | PMAP_ENTER_NOSLEEP | (wired ? PMAP_ENTER_WIRED :
315 		   0), 0);
316 		if (result != KERN_SUCCESS)
317 			goto fast_failed;
318 		if (m_hold != NULL) {
319 			*m_hold = m;
320 			vm_page_lock(m);
321 			vm_page_hold(m);
322 			vm_page_unlock(m);
323 		}
324 		if ((fault_type & VM_PROT_WRITE) != 0 &&
325 		    (m->oflags & VPO_UNMANAGED) == 0) {
326 			vm_page_dirty(m);
327 			vm_pager_page_unswapped(m);
328 		}
329 		VM_OBJECT_RUNLOCK(fs.first_object);
330 		if (!wired)
331 			vm_fault_prefault(&fs, vaddr, 0, 0);
332 		vm_map_lookup_done(fs.map, fs.entry);
333 		curthread->td_ru.ru_minflt++;
334 		return (KERN_SUCCESS);
335 fast_failed:
336 		if (!VM_OBJECT_TRYUPGRADE(fs.first_object)) {
337 			VM_OBJECT_RUNLOCK(fs.first_object);
338 			VM_OBJECT_WLOCK(fs.first_object);
339 		}
340 	} else {
341 		VM_OBJECT_WLOCK(fs.first_object);
342 	}
343 
344 	/*
345 	 * Make a reference to this object to prevent its disposal while we
346 	 * are messing with it.  Once we have the reference, the map is free
347 	 * to be diddled.  Since objects reference their shadows (and copies),
348 	 * they will stay around as well.
349 	 *
350 	 * Bump the paging-in-progress count to prevent size changes (e.g.
351 	 * truncation operations) during I/O.  This must be done after
352 	 * obtaining the vnode lock in order to avoid possible deadlocks.
353 	 */
354 	vm_object_reference_locked(fs.first_object);
355 	vm_object_pip_add(fs.first_object, 1);
356 
357 	fs.lookup_still_valid = TRUE;
358 
359 	fs.first_m = NULL;
360 
361 	/*
362 	 * Search for the page at object/offset.
363 	 */
364 	fs.object = fs.first_object;
365 	fs.pindex = fs.first_pindex;
366 	while (TRUE) {
367 		/*
368 		 * If the object is dead, we stop here
369 		 */
370 		if (fs.object->flags & OBJ_DEAD) {
371 			unlock_and_deallocate(&fs);
372 			return (KERN_PROTECTION_FAILURE);
373 		}
374 
375 		/*
376 		 * See if page is resident
377 		 */
378 		fs.m = vm_page_lookup(fs.object, fs.pindex);
379 		if (fs.m != NULL) {
380 			/*
381 			 * Wait/Retry if the page is busy.  We have to do this
382 			 * if the page is either exclusive or shared busy
383 			 * because the vm_pager may be using read busy for
384 			 * pageouts (and even pageins if it is the vnode
385 			 * pager), and we could end up trying to pagein and
386 			 * pageout the same page simultaneously.
387 			 *
388 			 * We can theoretically allow the busy case on a read
389 			 * fault if the page is marked valid, but since such
390 			 * pages are typically already pmap'd, putting that
391 			 * special case in might be more effort then it is
392 			 * worth.  We cannot under any circumstances mess
393 			 * around with a shared busied page except, perhaps,
394 			 * to pmap it.
395 			 */
396 			if (vm_page_busied(fs.m)) {
397 				/*
398 				 * Reference the page before unlocking and
399 				 * sleeping so that the page daemon is less
400 				 * likely to reclaim it.
401 				 */
402 				vm_page_aflag_set(fs.m, PGA_REFERENCED);
403 				if (fs.object != fs.first_object) {
404 					if (!VM_OBJECT_TRYWLOCK(
405 					    fs.first_object)) {
406 						VM_OBJECT_WUNLOCK(fs.object);
407 						VM_OBJECT_WLOCK(fs.first_object);
408 						VM_OBJECT_WLOCK(fs.object);
409 					}
410 					vm_page_lock(fs.first_m);
411 					vm_page_free(fs.first_m);
412 					vm_page_unlock(fs.first_m);
413 					vm_object_pip_wakeup(fs.first_object);
414 					VM_OBJECT_WUNLOCK(fs.first_object);
415 					fs.first_m = NULL;
416 				}
417 				unlock_map(&fs);
418 				if (fs.m == vm_page_lookup(fs.object,
419 				    fs.pindex)) {
420 					vm_page_sleep_if_busy(fs.m, "vmpfw");
421 				}
422 				vm_object_pip_wakeup(fs.object);
423 				VM_OBJECT_WUNLOCK(fs.object);
424 				PCPU_INC(cnt.v_intrans);
425 				vm_object_deallocate(fs.first_object);
426 				goto RetryFault;
427 			}
428 			vm_page_lock(fs.m);
429 			vm_page_remque(fs.m);
430 			vm_page_unlock(fs.m);
431 
432 			/*
433 			 * Mark page busy for other processes, and the
434 			 * pagedaemon.  If it still isn't completely valid
435 			 * (readable), jump to readrest, else break-out ( we
436 			 * found the page ).
437 			 */
438 			vm_page_xbusy(fs.m);
439 			if (fs.m->valid != VM_PAGE_BITS_ALL)
440 				goto readrest;
441 			break;
442 		}
443 
444 		/*
445 		 * Page is not resident, If this is the search termination
446 		 * or the pager might contain the page, allocate a new page.
447 		 */
448 		if (TRYPAGER || fs.object == fs.first_object) {
449 			if (fs.pindex >= fs.object->size) {
450 				unlock_and_deallocate(&fs);
451 				return (KERN_PROTECTION_FAILURE);
452 			}
453 
454 			/*
455 			 * Allocate a new page for this object/offset pair.
456 			 *
457 			 * Unlocked read of the p_flag is harmless. At
458 			 * worst, the P_KILLED might be not observed
459 			 * there, and allocation can fail, causing
460 			 * restart and new reading of the p_flag.
461 			 */
462 			fs.m = NULL;
463 			if (!vm_page_count_severe() || P_KILLED(curproc)) {
464 #if VM_NRESERVLEVEL > 0
465 				if ((fs.object->flags & OBJ_COLORED) == 0) {
466 					fs.object->flags |= OBJ_COLORED;
467 					fs.object->pg_color = atop(vaddr) -
468 					    fs.pindex;
469 				}
470 #endif
471 				alloc_req = P_KILLED(curproc) ?
472 				    VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL;
473 				if (fs.object->type != OBJT_VNODE &&
474 				    fs.object->backing_object == NULL)
475 					alloc_req |= VM_ALLOC_ZERO;
476 				fs.m = vm_page_alloc(fs.object, fs.pindex,
477 				    alloc_req);
478 			}
479 			if (fs.m == NULL) {
480 				unlock_and_deallocate(&fs);
481 				VM_WAITPFAULT;
482 				goto RetryFault;
483 			} else if (fs.m->valid == VM_PAGE_BITS_ALL)
484 				break;
485 		}
486 
487 readrest:
488 		/*
489 		 * We have found a valid page or we have allocated a new page.
490 		 * The page thus may not be valid or may not be entirely
491 		 * valid.
492 		 *
493 		 * Attempt to fault-in the page if there is a chance that the
494 		 * pager has it, and potentially fault in additional pages
495 		 * at the same time.
496 		 */
497 		if (TRYPAGER) {
498 			int rv;
499 			u_char behavior = vm_map_entry_behavior(fs.entry);
500 
501 			if (behavior == MAP_ENTRY_BEHAV_RANDOM ||
502 			    P_KILLED(curproc)) {
503 				behind = 0;
504 				ahead = 0;
505 			} else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) {
506 				behind = 0;
507 				ahead = atop(fs.entry->end - vaddr) - 1;
508 				if (ahead > VM_FAULT_READ_AHEAD_MAX)
509 					ahead = VM_FAULT_READ_AHEAD_MAX;
510 				if (fs.pindex == fs.entry->next_read)
511 					vm_fault_cache_behind(&fs,
512 					    VM_FAULT_READ_MAX);
513 			} else {
514 				/*
515 				 * If this is a sequential page fault, then
516 				 * arithmetically increase the number of pages
517 				 * in the read-ahead window.  Otherwise, reset
518 				 * the read-ahead window to its smallest size.
519 				 */
520 				behind = atop(vaddr - fs.entry->start);
521 				if (behind > VM_FAULT_READ_BEHIND)
522 					behind = VM_FAULT_READ_BEHIND;
523 				ahead = atop(fs.entry->end - vaddr) - 1;
524 				era = fs.entry->read_ahead;
525 				if (fs.pindex == fs.entry->next_read) {
526 					nera = era + behind;
527 					if (nera > VM_FAULT_READ_AHEAD_MAX)
528 						nera = VM_FAULT_READ_AHEAD_MAX;
529 					behind = 0;
530 					if (ahead > nera)
531 						ahead = nera;
532 					if (era == VM_FAULT_READ_AHEAD_MAX)
533 						vm_fault_cache_behind(&fs,
534 						    VM_FAULT_CACHE_BEHIND);
535 				} else if (ahead > VM_FAULT_READ_AHEAD_MIN)
536 					ahead = VM_FAULT_READ_AHEAD_MIN;
537 				if (era != ahead)
538 					fs.entry->read_ahead = ahead;
539 			}
540 
541 			/*
542 			 * Call the pager to retrieve the data, if any, after
543 			 * releasing the lock on the map.  We hold a ref on
544 			 * fs.object and the pages are exclusive busied.
545 			 */
546 			unlock_map(&fs);
547 
548 			if (fs.object->type == OBJT_VNODE) {
549 				vp = fs.object->handle;
550 				if (vp == fs.vp)
551 					goto vnode_locked;
552 				else if (fs.vp != NULL) {
553 					vput(fs.vp);
554 					fs.vp = NULL;
555 				}
556 				locked = VOP_ISLOCKED(vp);
557 
558 				if (locked != LK_EXCLUSIVE)
559 					locked = LK_SHARED;
560 				/* Do not sleep for vnode lock while fs.m is busy */
561 				error = vget(vp, locked | LK_CANRECURSE |
562 				    LK_NOWAIT, curthread);
563 				if (error != 0) {
564 					vhold(vp);
565 					release_page(&fs);
566 					unlock_and_deallocate(&fs);
567 					error = vget(vp, locked | LK_RETRY |
568 					    LK_CANRECURSE, curthread);
569 					vdrop(vp);
570 					fs.vp = vp;
571 					KASSERT(error == 0,
572 					    ("vm_fault: vget failed"));
573 					goto RetryFault;
574 				}
575 				fs.vp = vp;
576 			}
577 vnode_locked:
578 			KASSERT(fs.vp == NULL || !fs.map->system_map,
579 			    ("vm_fault: vnode-backed object mapped by system map"));
580 
581 			/*
582 			 * now we find out if any other pages should be paged
583 			 * in at this time this routine checks to see if the
584 			 * pages surrounding this fault reside in the same
585 			 * object as the page for this fault.  If they do,
586 			 * then they are faulted in also into the object.  The
587 			 * array "marray" returned contains an array of
588 			 * vm_page_t structs where one of them is the
589 			 * vm_page_t passed to the routine.  The reqpage
590 			 * return value is the index into the marray for the
591 			 * vm_page_t passed to the routine.
592 			 *
593 			 * fs.m plus the additional pages are exclusive busied.
594 			 */
595 			faultcount = vm_fault_additional_pages(
596 			    fs.m, behind, ahead, marray, &reqpage);
597 
598 			rv = faultcount ?
599 			    vm_pager_get_pages(fs.object, marray, faultcount,
600 				reqpage) : VM_PAGER_FAIL;
601 
602 			if (rv == VM_PAGER_OK) {
603 				/*
604 				 * Found the page. Leave it busy while we play
605 				 * with it.
606 				 */
607 
608 				/*
609 				 * Relookup in case pager changed page. Pager
610 				 * is responsible for disposition of old page
611 				 * if moved.
612 				 */
613 				fs.m = vm_page_lookup(fs.object, fs.pindex);
614 				if (!fs.m) {
615 					unlock_and_deallocate(&fs);
616 					goto RetryFault;
617 				}
618 
619 				hardfault++;
620 				break; /* break to PAGE HAS BEEN FOUND */
621 			}
622 			/*
623 			 * Remove the bogus page (which does not exist at this
624 			 * object/offset); before doing so, we must get back
625 			 * our object lock to preserve our invariant.
626 			 *
627 			 * Also wake up any other process that may want to bring
628 			 * in this page.
629 			 *
630 			 * If this is the top-level object, we must leave the
631 			 * busy page to prevent another process from rushing
632 			 * past us, and inserting the page in that object at
633 			 * the same time that we are.
634 			 */
635 			if (rv == VM_PAGER_ERROR)
636 				printf("vm_fault: pager read error, pid %d (%s)\n",
637 				    curproc->p_pid, curproc->p_comm);
638 			/*
639 			 * Data outside the range of the pager or an I/O error
640 			 */
641 			/*
642 			 * XXX - the check for kernel_map is a kludge to work
643 			 * around having the machine panic on a kernel space
644 			 * fault w/ I/O error.
645 			 */
646 			if (((fs.map != kernel_map) && (rv == VM_PAGER_ERROR)) ||
647 				(rv == VM_PAGER_BAD)) {
648 				vm_page_lock(fs.m);
649 				vm_page_free(fs.m);
650 				vm_page_unlock(fs.m);
651 				fs.m = NULL;
652 				unlock_and_deallocate(&fs);
653 				return ((rv == VM_PAGER_ERROR) ? KERN_FAILURE : KERN_PROTECTION_FAILURE);
654 			}
655 			if (fs.object != fs.first_object) {
656 				vm_page_lock(fs.m);
657 				vm_page_free(fs.m);
658 				vm_page_unlock(fs.m);
659 				fs.m = NULL;
660 				/*
661 				 * XXX - we cannot just fall out at this
662 				 * point, m has been freed and is invalid!
663 				 */
664 			}
665 		}
666 
667 		/*
668 		 * We get here if the object has default pager (or unwiring)
669 		 * or the pager doesn't have the page.
670 		 */
671 		if (fs.object == fs.first_object)
672 			fs.first_m = fs.m;
673 
674 		/*
675 		 * Move on to the next object.  Lock the next object before
676 		 * unlocking the current one.
677 		 */
678 		fs.pindex += OFF_TO_IDX(fs.object->backing_object_offset);
679 		next_object = fs.object->backing_object;
680 		if (next_object == NULL) {
681 			/*
682 			 * If there's no object left, fill the page in the top
683 			 * object with zeros.
684 			 */
685 			if (fs.object != fs.first_object) {
686 				vm_object_pip_wakeup(fs.object);
687 				VM_OBJECT_WUNLOCK(fs.object);
688 
689 				fs.object = fs.first_object;
690 				fs.pindex = fs.first_pindex;
691 				fs.m = fs.first_m;
692 				VM_OBJECT_WLOCK(fs.object);
693 			}
694 			fs.first_m = NULL;
695 
696 			/*
697 			 * Zero the page if necessary and mark it valid.
698 			 */
699 			if ((fs.m->flags & PG_ZERO) == 0) {
700 				pmap_zero_page(fs.m);
701 			} else {
702 				PCPU_INC(cnt.v_ozfod);
703 			}
704 			PCPU_INC(cnt.v_zfod);
705 			fs.m->valid = VM_PAGE_BITS_ALL;
706 			/* Don't try to prefault neighboring pages. */
707 			faultcount = 1;
708 			break;	/* break to PAGE HAS BEEN FOUND */
709 		} else {
710 			KASSERT(fs.object != next_object,
711 			    ("object loop %p", next_object));
712 			VM_OBJECT_WLOCK(next_object);
713 			vm_object_pip_add(next_object, 1);
714 			if (fs.object != fs.first_object)
715 				vm_object_pip_wakeup(fs.object);
716 			VM_OBJECT_WUNLOCK(fs.object);
717 			fs.object = next_object;
718 		}
719 	}
720 
721 	vm_page_assert_xbusied(fs.m);
722 
723 	/*
724 	 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
725 	 * is held.]
726 	 */
727 
728 	/*
729 	 * If the page is being written, but isn't already owned by the
730 	 * top-level object, we have to copy it into a new page owned by the
731 	 * top-level object.
732 	 */
733 	if (fs.object != fs.first_object) {
734 		/*
735 		 * We only really need to copy if we want to write it.
736 		 */
737 		if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
738 			/*
739 			 * This allows pages to be virtually copied from a
740 			 * backing_object into the first_object, where the
741 			 * backing object has no other refs to it, and cannot
742 			 * gain any more refs.  Instead of a bcopy, we just
743 			 * move the page from the backing object to the
744 			 * first object.  Note that we must mark the page
745 			 * dirty in the first object so that it will go out
746 			 * to swap when needed.
747 			 */
748 			is_first_object_locked = FALSE;
749 			if (
750 				/*
751 				 * Only one shadow object
752 				 */
753 				(fs.object->shadow_count == 1) &&
754 				/*
755 				 * No COW refs, except us
756 				 */
757 				(fs.object->ref_count == 1) &&
758 				/*
759 				 * No one else can look this object up
760 				 */
761 				(fs.object->handle == NULL) &&
762 				/*
763 				 * No other ways to look the object up
764 				 */
765 				((fs.object->type == OBJT_DEFAULT) ||
766 				 (fs.object->type == OBJT_SWAP)) &&
767 			    (is_first_object_locked = VM_OBJECT_TRYWLOCK(fs.first_object)) &&
768 				/*
769 				 * We don't chase down the shadow chain
770 				 */
771 			    fs.object == fs.first_object->backing_object) {
772 				/*
773 				 * get rid of the unnecessary page
774 				 */
775 				vm_page_lock(fs.first_m);
776 				vm_page_free(fs.first_m);
777 				vm_page_unlock(fs.first_m);
778 				/*
779 				 * grab the page and put it into the
780 				 * process'es object.  The page is
781 				 * automatically made dirty.
782 				 */
783 				if (vm_page_rename(fs.m, fs.first_object,
784 				    fs.first_pindex)) {
785 					unlock_and_deallocate(&fs);
786 					goto RetryFault;
787 				}
788 				vm_page_xbusy(fs.m);
789 				fs.first_m = fs.m;
790 				fs.m = NULL;
791 				PCPU_INC(cnt.v_cow_optim);
792 			} else {
793 				/*
794 				 * Oh, well, lets copy it.
795 				 */
796 				pmap_copy_page(fs.m, fs.first_m);
797 				fs.first_m->valid = VM_PAGE_BITS_ALL;
798 				if (wired && (fault_flags &
799 				    VM_FAULT_CHANGE_WIRING) == 0) {
800 					vm_page_lock(fs.first_m);
801 					vm_page_wire(fs.first_m);
802 					vm_page_unlock(fs.first_m);
803 
804 					vm_page_lock(fs.m);
805 					vm_page_unwire(fs.m, PQ_INACTIVE);
806 					vm_page_unlock(fs.m);
807 				}
808 				/*
809 				 * We no longer need the old page or object.
810 				 */
811 				release_page(&fs);
812 			}
813 			/*
814 			 * fs.object != fs.first_object due to above
815 			 * conditional
816 			 */
817 			vm_object_pip_wakeup(fs.object);
818 			VM_OBJECT_WUNLOCK(fs.object);
819 			/*
820 			 * Only use the new page below...
821 			 */
822 			fs.object = fs.first_object;
823 			fs.pindex = fs.first_pindex;
824 			fs.m = fs.first_m;
825 			if (!is_first_object_locked)
826 				VM_OBJECT_WLOCK(fs.object);
827 			PCPU_INC(cnt.v_cow_faults);
828 			curthread->td_cow++;
829 		} else {
830 			prot &= ~VM_PROT_WRITE;
831 		}
832 	}
833 
834 	/*
835 	 * We must verify that the maps have not changed since our last
836 	 * lookup.
837 	 */
838 	if (!fs.lookup_still_valid) {
839 		vm_object_t retry_object;
840 		vm_pindex_t retry_pindex;
841 		vm_prot_t retry_prot;
842 
843 		if (!vm_map_trylock_read(fs.map)) {
844 			release_page(&fs);
845 			unlock_and_deallocate(&fs);
846 			goto RetryFault;
847 		}
848 		fs.lookup_still_valid = TRUE;
849 		if (fs.map->timestamp != map_generation) {
850 			result = vm_map_lookup_locked(&fs.map, vaddr, fault_type,
851 			    &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
852 
853 			/*
854 			 * If we don't need the page any longer, put it on the inactive
855 			 * list (the easiest thing to do here).  If no one needs it,
856 			 * pageout will grab it eventually.
857 			 */
858 			if (result != KERN_SUCCESS) {
859 				release_page(&fs);
860 				unlock_and_deallocate(&fs);
861 
862 				/*
863 				 * If retry of map lookup would have blocked then
864 				 * retry fault from start.
865 				 */
866 				if (result == KERN_FAILURE)
867 					goto RetryFault;
868 				return (result);
869 			}
870 			if ((retry_object != fs.first_object) ||
871 			    (retry_pindex != fs.first_pindex)) {
872 				release_page(&fs);
873 				unlock_and_deallocate(&fs);
874 				goto RetryFault;
875 			}
876 
877 			/*
878 			 * Check whether the protection has changed or the object has
879 			 * been copied while we left the map unlocked. Changing from
880 			 * read to write permission is OK - we leave the page
881 			 * write-protected, and catch the write fault. Changing from
882 			 * write to read permission means that we can't mark the page
883 			 * write-enabled after all.
884 			 */
885 			prot &= retry_prot;
886 		}
887 	}
888 	/*
889 	 * If the page was filled by a pager, update the map entry's
890 	 * last read offset.  Since the pager does not return the
891 	 * actual set of pages that it read, this update is based on
892 	 * the requested set.  Typically, the requested and actual
893 	 * sets are the same.
894 	 *
895 	 * XXX The following assignment modifies the map
896 	 * without holding a write lock on it.
897 	 */
898 	if (hardfault)
899 		fs.entry->next_read = fs.pindex + faultcount - reqpage;
900 
901 	if (((prot & VM_PROT_WRITE) != 0 ||
902 	    (fault_flags & VM_FAULT_DIRTY) != 0) &&
903 	    (fs.m->oflags & VPO_UNMANAGED) == 0) {
904 		vm_object_set_writeable_dirty(fs.object);
905 
906 		/*
907 		 * If this is a NOSYNC mmap we do not want to set VPO_NOSYNC
908 		 * if the page is already dirty to prevent data written with
909 		 * the expectation of being synced from not being synced.
910 		 * Likewise if this entry does not request NOSYNC then make
911 		 * sure the page isn't marked NOSYNC.  Applications sharing
912 		 * data should use the same flags to avoid ping ponging.
913 		 */
914 		if (fs.entry->eflags & MAP_ENTRY_NOSYNC) {
915 			if (fs.m->dirty == 0)
916 				fs.m->oflags |= VPO_NOSYNC;
917 		} else {
918 			fs.m->oflags &= ~VPO_NOSYNC;
919 		}
920 
921 		/*
922 		 * If the fault is a write, we know that this page is being
923 		 * written NOW so dirty it explicitly to save on
924 		 * pmap_is_modified() calls later.
925 		 *
926 		 * Also tell the backing pager, if any, that it should remove
927 		 * any swap backing since the page is now dirty.
928 		 */
929 		if (((fault_type & VM_PROT_WRITE) != 0 &&
930 		    (fault_flags & VM_FAULT_CHANGE_WIRING) == 0) ||
931 		    (fault_flags & VM_FAULT_DIRTY) != 0) {
932 			vm_page_dirty(fs.m);
933 			vm_pager_page_unswapped(fs.m);
934 		}
935 	}
936 
937 	vm_page_assert_xbusied(fs.m);
938 
939 	/*
940 	 * Page must be completely valid or it is not fit to
941 	 * map into user space.  vm_pager_get_pages() ensures this.
942 	 */
943 	KASSERT(fs.m->valid == VM_PAGE_BITS_ALL,
944 	    ("vm_fault: page %p partially invalid", fs.m));
945 	VM_OBJECT_WUNLOCK(fs.object);
946 
947 	/*
948 	 * Put this page into the physical map.  We had to do the unlock above
949 	 * because pmap_enter() may sleep.  We don't put the page
950 	 * back on the active queue until later so that the pageout daemon
951 	 * won't find it (yet).
952 	 */
953 	pmap_enter(fs.map->pmap, vaddr, fs.m, prot,
954 	    fault_type | (wired ? PMAP_ENTER_WIRED : 0), 0);
955 	if (faultcount != 1 && (fault_flags & VM_FAULT_CHANGE_WIRING) == 0 &&
956 	    wired == 0)
957 		vm_fault_prefault(&fs, vaddr, faultcount, reqpage);
958 	VM_OBJECT_WLOCK(fs.object);
959 	vm_page_lock(fs.m);
960 
961 	/*
962 	 * If the page is not wired down, then put it where the pageout daemon
963 	 * can find it.
964 	 */
965 	if (fault_flags & VM_FAULT_CHANGE_WIRING) {
966 		if (wired)
967 			vm_page_wire(fs.m);
968 		else
969 			vm_page_unwire(fs.m, PQ_ACTIVE);
970 	} else
971 		vm_page_activate(fs.m);
972 	if (m_hold != NULL) {
973 		*m_hold = fs.m;
974 		vm_page_hold(fs.m);
975 	}
976 	vm_page_unlock(fs.m);
977 	vm_page_xunbusy(fs.m);
978 
979 	/*
980 	 * Unlock everything, and return
981 	 */
982 	unlock_and_deallocate(&fs);
983 	if (hardfault) {
984 		PCPU_INC(cnt.v_io_faults);
985 		curthread->td_ru.ru_majflt++;
986 	} else
987 		curthread->td_ru.ru_minflt++;
988 
989 	return (KERN_SUCCESS);
990 }
991 
992 /*
993  * Speed up the reclamation of up to "distance" pages that precede the
994  * faulting pindex within the first object of the shadow chain.
995  */
996 static void
997 vm_fault_cache_behind(const struct faultstate *fs, int distance)
998 {
999 	vm_object_t first_object, object;
1000 	vm_page_t m, m_prev;
1001 	vm_pindex_t pindex;
1002 
1003 	object = fs->object;
1004 	VM_OBJECT_ASSERT_WLOCKED(object);
1005 	first_object = fs->first_object;
1006 	if (first_object != object) {
1007 		if (!VM_OBJECT_TRYWLOCK(first_object)) {
1008 			VM_OBJECT_WUNLOCK(object);
1009 			VM_OBJECT_WLOCK(first_object);
1010 			VM_OBJECT_WLOCK(object);
1011 		}
1012 	}
1013 	/* Neither fictitious nor unmanaged pages can be cached. */
1014 	if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) {
1015 		if (fs->first_pindex < distance)
1016 			pindex = 0;
1017 		else
1018 			pindex = fs->first_pindex - distance;
1019 		if (pindex < OFF_TO_IDX(fs->entry->offset))
1020 			pindex = OFF_TO_IDX(fs->entry->offset);
1021 		m = first_object != object ? fs->first_m : fs->m;
1022 		vm_page_assert_xbusied(m);
1023 		m_prev = vm_page_prev(m);
1024 		while ((m = m_prev) != NULL && m->pindex >= pindex &&
1025 		    m->valid == VM_PAGE_BITS_ALL) {
1026 			m_prev = vm_page_prev(m);
1027 			if (vm_page_busied(m))
1028 				continue;
1029 			vm_page_lock(m);
1030 			if (m->hold_count == 0 && m->wire_count == 0) {
1031 				pmap_remove_all(m);
1032 				vm_page_aflag_clear(m, PGA_REFERENCED);
1033 				if (m->dirty != 0)
1034 					vm_page_deactivate(m);
1035 				else
1036 					vm_page_cache(m);
1037 			}
1038 			vm_page_unlock(m);
1039 		}
1040 	}
1041 	if (first_object != object)
1042 		VM_OBJECT_WUNLOCK(first_object);
1043 }
1044 
1045 /*
1046  * vm_fault_prefault provides a quick way of clustering
1047  * pagefaults into a processes address space.  It is a "cousin"
1048  * of vm_map_pmap_enter, except it runs at page fault time instead
1049  * of mmap time.
1050  */
1051 static void
1052 vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
1053     int faultcount, int reqpage)
1054 {
1055 	pmap_t pmap;
1056 	vm_map_entry_t entry;
1057 	vm_object_t backing_object, lobject;
1058 	vm_offset_t addr, starta;
1059 	vm_pindex_t pindex;
1060 	vm_page_t m;
1061 	int backward, forward, i;
1062 
1063 	pmap = fs->map->pmap;
1064 	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
1065 		return;
1066 
1067 	if (faultcount > 0) {
1068 		backward = reqpage;
1069 		forward = faultcount - reqpage - 1;
1070 	} else {
1071 		backward = PFBAK;
1072 		forward = PFFOR;
1073 	}
1074 	entry = fs->entry;
1075 
1076 	starta = addra - backward * PAGE_SIZE;
1077 	if (starta < entry->start) {
1078 		starta = entry->start;
1079 	} else if (starta > addra) {
1080 		starta = 0;
1081 	}
1082 
1083 	/*
1084 	 * Generate the sequence of virtual addresses that are candidates for
1085 	 * prefaulting in an outward spiral from the faulting virtual address,
1086 	 * "addra".  Specifically, the sequence is "addra - PAGE_SIZE", "addra
1087 	 * + PAGE_SIZE", "addra - 2 * PAGE_SIZE", "addra + 2 * PAGE_SIZE", ...
1088 	 * If the candidate address doesn't have a backing physical page, then
1089 	 * the loop immediately terminates.
1090 	 */
1091 	for (i = 0; i < 2 * imax(backward, forward); i++) {
1092 		addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE :
1093 		    PAGE_SIZE);
1094 		if (addr > addra + forward * PAGE_SIZE)
1095 			addr = 0;
1096 
1097 		if (addr < starta || addr >= entry->end)
1098 			continue;
1099 
1100 		if (!pmap_is_prefaultable(pmap, addr))
1101 			continue;
1102 
1103 		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
1104 		lobject = entry->object.vm_object;
1105 		VM_OBJECT_RLOCK(lobject);
1106 		while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
1107 		    lobject->type == OBJT_DEFAULT &&
1108 		    (backing_object = lobject->backing_object) != NULL) {
1109 			KASSERT((lobject->backing_object_offset & PAGE_MASK) ==
1110 			    0, ("vm_fault_prefault: unaligned object offset"));
1111 			pindex += lobject->backing_object_offset >> PAGE_SHIFT;
1112 			VM_OBJECT_RLOCK(backing_object);
1113 			VM_OBJECT_RUNLOCK(lobject);
1114 			lobject = backing_object;
1115 		}
1116 		if (m == NULL) {
1117 			VM_OBJECT_RUNLOCK(lobject);
1118 			break;
1119 		}
1120 		if (m->valid == VM_PAGE_BITS_ALL &&
1121 		    (m->flags & PG_FICTITIOUS) == 0)
1122 			pmap_enter_quick(pmap, addr, m, entry->protection);
1123 		VM_OBJECT_RUNLOCK(lobject);
1124 	}
1125 }
1126 
1127 /*
1128  * Hold each of the physical pages that are mapped by the specified range of
1129  * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid
1130  * and allow the specified types of access, "prot".  If all of the implied
1131  * pages are successfully held, then the number of held pages is returned
1132  * together with pointers to those pages in the array "ma".  However, if any
1133  * of the pages cannot be held, -1 is returned.
1134  */
1135 int
1136 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
1137     vm_prot_t prot, vm_page_t *ma, int max_count)
1138 {
1139 	vm_offset_t end, va;
1140 	vm_page_t *mp;
1141 	int count;
1142 	boolean_t pmap_failed;
1143 
1144 	if (len == 0)
1145 		return (0);
1146 	end = round_page(addr + len);
1147 	addr = trunc_page(addr);
1148 
1149 	/*
1150 	 * Check for illegal addresses.
1151 	 */
1152 	if (addr < vm_map_min(map) || addr > end || end > vm_map_max(map))
1153 		return (-1);
1154 
1155 	if (atop(end - addr) > max_count)
1156 		panic("vm_fault_quick_hold_pages: count > max_count");
1157 	count = atop(end - addr);
1158 
1159 	/*
1160 	 * Most likely, the physical pages are resident in the pmap, so it is
1161 	 * faster to try pmap_extract_and_hold() first.
1162 	 */
1163 	pmap_failed = FALSE;
1164 	for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) {
1165 		*mp = pmap_extract_and_hold(map->pmap, va, prot);
1166 		if (*mp == NULL)
1167 			pmap_failed = TRUE;
1168 		else if ((prot & VM_PROT_WRITE) != 0 &&
1169 		    (*mp)->dirty != VM_PAGE_BITS_ALL) {
1170 			/*
1171 			 * Explicitly dirty the physical page.  Otherwise, the
1172 			 * caller's changes may go unnoticed because they are
1173 			 * performed through an unmanaged mapping or by a DMA
1174 			 * operation.
1175 			 *
1176 			 * The object lock is not held here.
1177 			 * See vm_page_clear_dirty_mask().
1178 			 */
1179 			vm_page_dirty(*mp);
1180 		}
1181 	}
1182 	if (pmap_failed) {
1183 		/*
1184 		 * One or more pages could not be held by the pmap.  Either no
1185 		 * page was mapped at the specified virtual address or that
1186 		 * mapping had insufficient permissions.  Attempt to fault in
1187 		 * and hold these pages.
1188 		 */
1189 		for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE)
1190 			if (*mp == NULL && vm_fault_hold(map, va, prot,
1191 			    VM_FAULT_NORMAL, mp) != KERN_SUCCESS)
1192 				goto error;
1193 	}
1194 	return (count);
1195 error:
1196 	for (mp = ma; mp < ma + count; mp++)
1197 		if (*mp != NULL) {
1198 			vm_page_lock(*mp);
1199 			vm_page_unhold(*mp);
1200 			vm_page_unlock(*mp);
1201 		}
1202 	return (-1);
1203 }
1204 
1205 /*
1206  *	Routine:
1207  *		vm_fault_copy_entry
1208  *	Function:
1209  *		Create new shadow object backing dst_entry with private copy of
1210  *		all underlying pages. When src_entry is equal to dst_entry,
1211  *		function implements COW for wired-down map entry. Otherwise,
1212  *		it forks wired entry into dst_map.
1213  *
1214  *	In/out conditions:
1215  *		The source and destination maps must be locked for write.
1216  *		The source map entry must be wired down (or be a sharing map
1217  *		entry corresponding to a main map entry that is wired down).
1218  */
1219 void
1220 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1221     vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
1222     vm_ooffset_t *fork_charge)
1223 {
1224 	vm_object_t backing_object, dst_object, object, src_object;
1225 	vm_pindex_t dst_pindex, pindex, src_pindex;
1226 	vm_prot_t access, prot;
1227 	vm_offset_t vaddr;
1228 	vm_page_t dst_m;
1229 	vm_page_t src_m;
1230 	boolean_t upgrade;
1231 
1232 #ifdef	lint
1233 	src_map++;
1234 #endif	/* lint */
1235 
1236 	upgrade = src_entry == dst_entry;
1237 	access = prot = dst_entry->protection;
1238 
1239 	src_object = src_entry->object.vm_object;
1240 	src_pindex = OFF_TO_IDX(src_entry->offset);
1241 
1242 	if (upgrade && (dst_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
1243 		dst_object = src_object;
1244 		vm_object_reference(dst_object);
1245 	} else {
1246 		/*
1247 		 * Create the top-level object for the destination entry. (Doesn't
1248 		 * actually shadow anything - we copy the pages directly.)
1249 		 */
1250 		dst_object = vm_object_allocate(OBJT_DEFAULT,
1251 		    OFF_TO_IDX(dst_entry->end - dst_entry->start));
1252 #if VM_NRESERVLEVEL > 0
1253 		dst_object->flags |= OBJ_COLORED;
1254 		dst_object->pg_color = atop(dst_entry->start);
1255 #endif
1256 	}
1257 
1258 	VM_OBJECT_WLOCK(dst_object);
1259 	KASSERT(upgrade || dst_entry->object.vm_object == NULL,
1260 	    ("vm_fault_copy_entry: vm_object not NULL"));
1261 	if (src_object != dst_object) {
1262 		dst_entry->object.vm_object = dst_object;
1263 		dst_entry->offset = 0;
1264 		dst_object->charge = dst_entry->end - dst_entry->start;
1265 	}
1266 	if (fork_charge != NULL) {
1267 		KASSERT(dst_entry->cred == NULL,
1268 		    ("vm_fault_copy_entry: leaked swp charge"));
1269 		dst_object->cred = curthread->td_ucred;
1270 		crhold(dst_object->cred);
1271 		*fork_charge += dst_object->charge;
1272 	} else if (dst_object->cred == NULL) {
1273 		KASSERT(dst_entry->cred != NULL, ("no cred for entry %p",
1274 		    dst_entry));
1275 		dst_object->cred = dst_entry->cred;
1276 		dst_entry->cred = NULL;
1277 	}
1278 
1279 	/*
1280 	 * If not an upgrade, then enter the mappings in the pmap as
1281 	 * read and/or execute accesses.  Otherwise, enter them as
1282 	 * write accesses.
1283 	 *
1284 	 * A writeable large page mapping is only created if all of
1285 	 * the constituent small page mappings are modified. Marking
1286 	 * PTEs as modified on inception allows promotion to happen
1287 	 * without taking potentially large number of soft faults.
1288 	 */
1289 	if (!upgrade)
1290 		access &= ~VM_PROT_WRITE;
1291 
1292 	/*
1293 	 * Loop through all of the virtual pages within the entry's
1294 	 * range, copying each page from the source object to the
1295 	 * destination object.  Since the source is wired, those pages
1296 	 * must exist.  In contrast, the destination is pageable.
1297 	 * Since the destination object does share any backing storage
1298 	 * with the source object, all of its pages must be dirtied,
1299 	 * regardless of whether they can be written.
1300 	 */
1301 	for (vaddr = dst_entry->start, dst_pindex = 0;
1302 	    vaddr < dst_entry->end;
1303 	    vaddr += PAGE_SIZE, dst_pindex++) {
1304 again:
1305 		/*
1306 		 * Find the page in the source object, and copy it in.
1307 		 * Because the source is wired down, the page will be
1308 		 * in memory.
1309 		 */
1310 		if (src_object != dst_object)
1311 			VM_OBJECT_RLOCK(src_object);
1312 		object = src_object;
1313 		pindex = src_pindex + dst_pindex;
1314 		while ((src_m = vm_page_lookup(object, pindex)) == NULL &&
1315 		    (backing_object = object->backing_object) != NULL) {
1316 			/*
1317 			 * Unless the source mapping is read-only or
1318 			 * it is presently being upgraded from
1319 			 * read-only, the first object in the shadow
1320 			 * chain should provide all of the pages.  In
1321 			 * other words, this loop body should never be
1322 			 * executed when the source mapping is already
1323 			 * read/write.
1324 			 */
1325 			KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 ||
1326 			    upgrade,
1327 			    ("vm_fault_copy_entry: main object missing page"));
1328 
1329 			VM_OBJECT_RLOCK(backing_object);
1330 			pindex += OFF_TO_IDX(object->backing_object_offset);
1331 			if (object != dst_object)
1332 				VM_OBJECT_RUNLOCK(object);
1333 			object = backing_object;
1334 		}
1335 		KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing"));
1336 
1337 		if (object != dst_object) {
1338 			/*
1339 			 * Allocate a page in the destination object.
1340 			 */
1341 			dst_m = vm_page_alloc(dst_object, (src_object ==
1342 			    dst_object ? src_pindex : 0) + dst_pindex,
1343 			    VM_ALLOC_NORMAL);
1344 			if (dst_m == NULL) {
1345 				VM_OBJECT_WUNLOCK(dst_object);
1346 				VM_OBJECT_RUNLOCK(object);
1347 				VM_WAIT;
1348 				VM_OBJECT_WLOCK(dst_object);
1349 				goto again;
1350 			}
1351 			pmap_copy_page(src_m, dst_m);
1352 			VM_OBJECT_RUNLOCK(object);
1353 			dst_m->valid = VM_PAGE_BITS_ALL;
1354 			dst_m->dirty = VM_PAGE_BITS_ALL;
1355 		} else {
1356 			dst_m = src_m;
1357 			if (vm_page_sleep_if_busy(dst_m, "fltupg"))
1358 				goto again;
1359 			vm_page_xbusy(dst_m);
1360 			KASSERT(dst_m->valid == VM_PAGE_BITS_ALL,
1361 			    ("invalid dst page %p", dst_m));
1362 		}
1363 		VM_OBJECT_WUNLOCK(dst_object);
1364 
1365 		/*
1366 		 * Enter it in the pmap. If a wired, copy-on-write
1367 		 * mapping is being replaced by a write-enabled
1368 		 * mapping, then wire that new mapping.
1369 		 */
1370 		pmap_enter(dst_map->pmap, vaddr, dst_m, prot,
1371 		    access | (upgrade ? PMAP_ENTER_WIRED : 0), 0);
1372 
1373 		/*
1374 		 * Mark it no longer busy, and put it on the active list.
1375 		 */
1376 		VM_OBJECT_WLOCK(dst_object);
1377 
1378 		if (upgrade) {
1379 			if (src_m != dst_m) {
1380 				vm_page_lock(src_m);
1381 				vm_page_unwire(src_m, PQ_INACTIVE);
1382 				vm_page_unlock(src_m);
1383 				vm_page_lock(dst_m);
1384 				vm_page_wire(dst_m);
1385 				vm_page_unlock(dst_m);
1386 			} else {
1387 				KASSERT(dst_m->wire_count > 0,
1388 				    ("dst_m %p is not wired", dst_m));
1389 			}
1390 		} else {
1391 			vm_page_lock(dst_m);
1392 			vm_page_activate(dst_m);
1393 			vm_page_unlock(dst_m);
1394 		}
1395 		vm_page_xunbusy(dst_m);
1396 	}
1397 	VM_OBJECT_WUNLOCK(dst_object);
1398 	if (upgrade) {
1399 		dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY);
1400 		vm_object_deallocate(src_object);
1401 	}
1402 }
1403 
1404 
1405 /*
1406  * This routine checks around the requested page for other pages that
1407  * might be able to be faulted in.  This routine brackets the viable
1408  * pages for the pages to be paged in.
1409  *
1410  * Inputs:
1411  *	m, rbehind, rahead
1412  *
1413  * Outputs:
1414  *  marray (array of vm_page_t), reqpage (index of requested page)
1415  *
1416  * Return value:
1417  *  number of pages in marray
1418  */
1419 static int
1420 vm_fault_additional_pages(m, rbehind, rahead, marray, reqpage)
1421 	vm_page_t m;
1422 	int rbehind;
1423 	int rahead;
1424 	vm_page_t *marray;
1425 	int *reqpage;
1426 {
1427 	int i,j;
1428 	vm_object_t object;
1429 	vm_pindex_t pindex, startpindex, endpindex, tpindex;
1430 	vm_page_t rtm;
1431 	int cbehind, cahead;
1432 
1433 	VM_OBJECT_ASSERT_WLOCKED(m->object);
1434 
1435 	object = m->object;
1436 	pindex = m->pindex;
1437 	cbehind = cahead = 0;
1438 
1439 	/*
1440 	 * if the requested page is not available, then give up now
1441 	 */
1442 	if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
1443 		return 0;
1444 	}
1445 
1446 	if ((cbehind == 0) && (cahead == 0)) {
1447 		*reqpage = 0;
1448 		marray[0] = m;
1449 		return 1;
1450 	}
1451 
1452 	if (rahead > cahead) {
1453 		rahead = cahead;
1454 	}
1455 
1456 	if (rbehind > cbehind) {
1457 		rbehind = cbehind;
1458 	}
1459 
1460 	/*
1461 	 * scan backward for the read behind pages -- in memory
1462 	 */
1463 	if (pindex > 0) {
1464 		if (rbehind > pindex) {
1465 			rbehind = pindex;
1466 			startpindex = 0;
1467 		} else {
1468 			startpindex = pindex - rbehind;
1469 		}
1470 
1471 		if ((rtm = TAILQ_PREV(m, pglist, listq)) != NULL &&
1472 		    rtm->pindex >= startpindex)
1473 			startpindex = rtm->pindex + 1;
1474 
1475 		/* tpindex is unsigned; beware of numeric underflow. */
1476 		for (i = 0, tpindex = pindex - 1; tpindex >= startpindex &&
1477 		    tpindex < pindex; i++, tpindex--) {
1478 
1479 			rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
1480 			    VM_ALLOC_IFNOTCACHED);
1481 			if (rtm == NULL) {
1482 				/*
1483 				 * Shift the allocated pages to the
1484 				 * beginning of the array.
1485 				 */
1486 				for (j = 0; j < i; j++) {
1487 					marray[j] = marray[j + tpindex + 1 -
1488 					    startpindex];
1489 				}
1490 				break;
1491 			}
1492 
1493 			marray[tpindex - startpindex] = rtm;
1494 		}
1495 	} else {
1496 		startpindex = 0;
1497 		i = 0;
1498 	}
1499 
1500 	marray[i] = m;
1501 	/* page offset of the required page */
1502 	*reqpage = i;
1503 
1504 	tpindex = pindex + 1;
1505 	i++;
1506 
1507 	/*
1508 	 * scan forward for the read ahead pages
1509 	 */
1510 	endpindex = tpindex + rahead;
1511 	if ((rtm = TAILQ_NEXT(m, listq)) != NULL && rtm->pindex < endpindex)
1512 		endpindex = rtm->pindex;
1513 	if (endpindex > object->size)
1514 		endpindex = object->size;
1515 
1516 	for (; tpindex < endpindex; i++, tpindex++) {
1517 
1518 		rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
1519 		    VM_ALLOC_IFNOTCACHED);
1520 		if (rtm == NULL) {
1521 			break;
1522 		}
1523 
1524 		marray[i] = rtm;
1525 	}
1526 
1527 	/* return number of pages */
1528 	return i;
1529 }
1530 
1531 /*
1532  * Block entry into the machine-independent layer's page fault handler by
1533  * the calling thread.  Subsequent calls to vm_fault() by that thread will
1534  * return KERN_PROTECTION_FAILURE.  Enable machine-dependent handling of
1535  * spurious page faults.
1536  */
1537 int
1538 vm_fault_disable_pagefaults(void)
1539 {
1540 
1541 	return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR));
1542 }
1543 
1544 void
1545 vm_fault_enable_pagefaults(int save)
1546 {
1547 
1548 	curthread_pflags_restore(save);
1549 }
1550