1 /*- 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * Copyright (c) 1994 John S. Dyson 5 * All rights reserved. 6 * Copyright (c) 1994 David Greenman 7 * All rights reserved. 8 * 9 * 10 * This code is derived from software contributed to Berkeley by 11 * The Mach Operating System project at Carnegie-Mellon University. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 3. All advertising materials mentioning features or use of this software 22 * must display the following acknowledgement: 23 * This product includes software developed by the University of 24 * California, Berkeley and its contributors. 25 * 4. Neither the name of the University nor the names of its contributors 26 * may be used to endorse or promote products derived from this software 27 * without specific prior written permission. 28 * 29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 39 * SUCH DAMAGE. 40 * 41 * from: @(#)vm_fault.c 8.4 (Berkeley) 1/12/94 42 * 43 * 44 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 45 * All rights reserved. 46 * 47 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 48 * 49 * Permission to use, copy, modify and distribute this software and 50 * its documentation is hereby granted, provided that both the copyright 51 * notice and this permission notice appear in all copies of the 52 * software, derivative works or modified versions, and any portions 53 * thereof, and that both notices appear in supporting documentation. 54 * 55 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 56 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 57 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 58 * 59 * Carnegie Mellon requests users of this software to return to 60 * 61 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 62 * School of Computer Science 63 * Carnegie Mellon University 64 * Pittsburgh PA 15213-3890 65 * 66 * any improvements or extensions that they make and grant Carnegie the 67 * rights to redistribute these changes. 68 */ 69 70 /* 71 * Page fault handling module. 72 */ 73 74 #include <sys/cdefs.h> 75 __FBSDID("$FreeBSD$"); 76 77 #include "opt_ktrace.h" 78 #include "opt_vm.h" 79 80 #include <sys/param.h> 81 #include <sys/systm.h> 82 #include <sys/kernel.h> 83 #include <sys/lock.h> 84 #include <sys/proc.h> 85 #include <sys/resourcevar.h> 86 #include <sys/rwlock.h> 87 #include <sys/sysctl.h> 88 #include <sys/vmmeter.h> 89 #include <sys/vnode.h> 90 #ifdef KTRACE 91 #include <sys/ktrace.h> 92 #endif 93 94 #include <vm/vm.h> 95 #include <vm/vm_param.h> 96 #include <vm/pmap.h> 97 #include <vm/vm_map.h> 98 #include <vm/vm_object.h> 99 #include <vm/vm_page.h> 100 #include <vm/vm_pageout.h> 101 #include <vm/vm_kern.h> 102 #include <vm/vm_pager.h> 103 #include <vm/vm_extern.h> 104 #include <vm/vm_reserv.h> 105 106 #define PFBAK 4 107 #define PFFOR 4 108 109 static int vm_fault_additional_pages(vm_page_t, int, int, vm_page_t *, int *); 110 111 #define VM_FAULT_READ_BEHIND 8 112 #define VM_FAULT_READ_DEFAULT (1 + VM_FAULT_READ_AHEAD_INIT) 113 #define VM_FAULT_READ_MAX (1 + VM_FAULT_READ_AHEAD_MAX) 114 #define VM_FAULT_NINCR (VM_FAULT_READ_MAX / VM_FAULT_READ_BEHIND) 115 #define VM_FAULT_SUM (VM_FAULT_NINCR * (VM_FAULT_NINCR + 1) / 2) 116 #define VM_FAULT_CACHE_BEHIND (VM_FAULT_READ_BEHIND * VM_FAULT_SUM) 117 118 struct faultstate { 119 vm_page_t m; 120 vm_object_t object; 121 vm_pindex_t pindex; 122 vm_page_t first_m; 123 vm_object_t first_object; 124 vm_pindex_t first_pindex; 125 vm_map_t map; 126 vm_map_entry_t entry; 127 int lookup_still_valid; 128 struct vnode *vp; 129 }; 130 131 static void vm_fault_cache_behind(const struct faultstate *fs, int distance); 132 static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra, 133 int faultcount, int reqpage); 134 135 static inline void 136 release_page(struct faultstate *fs) 137 { 138 139 vm_page_xunbusy(fs->m); 140 vm_page_lock(fs->m); 141 vm_page_deactivate(fs->m); 142 vm_page_unlock(fs->m); 143 fs->m = NULL; 144 } 145 146 static inline void 147 unlock_map(struct faultstate *fs) 148 { 149 150 if (fs->lookup_still_valid) { 151 vm_map_lookup_done(fs->map, fs->entry); 152 fs->lookup_still_valid = FALSE; 153 } 154 } 155 156 static void 157 unlock_and_deallocate(struct faultstate *fs) 158 { 159 160 vm_object_pip_wakeup(fs->object); 161 VM_OBJECT_WUNLOCK(fs->object); 162 if (fs->object != fs->first_object) { 163 VM_OBJECT_WLOCK(fs->first_object); 164 vm_page_lock(fs->first_m); 165 vm_page_free(fs->first_m); 166 vm_page_unlock(fs->first_m); 167 vm_object_pip_wakeup(fs->first_object); 168 VM_OBJECT_WUNLOCK(fs->first_object); 169 fs->first_m = NULL; 170 } 171 vm_object_deallocate(fs->first_object); 172 unlock_map(fs); 173 if (fs->vp != NULL) { 174 vput(fs->vp); 175 fs->vp = NULL; 176 } 177 } 178 179 static void 180 vm_fault_dirty(vm_map_entry_t entry, vm_page_t m, vm_prot_t prot, 181 vm_prot_t fault_type, int fault_flags, boolean_t set_wd) 182 { 183 boolean_t need_dirty; 184 185 if (((prot & VM_PROT_WRITE) == 0 && 186 (fault_flags & VM_FAULT_DIRTY) == 0) || 187 (m->oflags & VPO_UNMANAGED) != 0) 188 return; 189 190 VM_OBJECT_ASSERT_LOCKED(m->object); 191 192 need_dirty = ((fault_type & VM_PROT_WRITE) != 0 && 193 (fault_flags & VM_FAULT_CHANGE_WIRING) == 0) || 194 (fault_flags & VM_FAULT_DIRTY) != 0; 195 196 if (set_wd) 197 vm_object_set_writeable_dirty(m->object); 198 else 199 /* 200 * If two callers of vm_fault_dirty() with set_wd == 201 * FALSE, one for the map entry with MAP_ENTRY_NOSYNC 202 * flag set, other with flag clear, race, it is 203 * possible for the no-NOSYNC thread to see m->dirty 204 * != 0 and not clear VPO_NOSYNC. Take vm_page lock 205 * around manipulation of VPO_NOSYNC and 206 * vm_page_dirty() call, to avoid the race and keep 207 * m->oflags consistent. 208 */ 209 vm_page_lock(m); 210 211 /* 212 * If this is a NOSYNC mmap we do not want to set VPO_NOSYNC 213 * if the page is already dirty to prevent data written with 214 * the expectation of being synced from not being synced. 215 * Likewise if this entry does not request NOSYNC then make 216 * sure the page isn't marked NOSYNC. Applications sharing 217 * data should use the same flags to avoid ping ponging. 218 */ 219 if ((entry->eflags & MAP_ENTRY_NOSYNC) != 0) { 220 if (m->dirty == 0) { 221 m->oflags |= VPO_NOSYNC; 222 } 223 } else { 224 m->oflags &= ~VPO_NOSYNC; 225 } 226 227 /* 228 * If the fault is a write, we know that this page is being 229 * written NOW so dirty it explicitly to save on 230 * pmap_is_modified() calls later. 231 * 232 * Also tell the backing pager, if any, that it should remove 233 * any swap backing since the page is now dirty. 234 */ 235 if (need_dirty) 236 vm_page_dirty(m); 237 if (!set_wd) 238 vm_page_unlock(m); 239 if (need_dirty) 240 vm_pager_page_unswapped(m); 241 } 242 243 /* 244 * TRYPAGER - used by vm_fault to calculate whether the pager for the 245 * current object *might* contain the page. 246 * 247 * default objects are zero-fill, there is no real pager. 248 */ 249 #define TRYPAGER (fs.object->type != OBJT_DEFAULT && \ 250 ((fault_flags & VM_FAULT_CHANGE_WIRING) == 0 || wired)) 251 252 /* 253 * vm_fault: 254 * 255 * Handle a page fault occurring at the given address, 256 * requiring the given permissions, in the map specified. 257 * If successful, the page is inserted into the 258 * associated physical map. 259 * 260 * NOTE: the given address should be truncated to the 261 * proper page address. 262 * 263 * KERN_SUCCESS is returned if the page fault is handled; otherwise, 264 * a standard error specifying why the fault is fatal is returned. 265 * 266 * The map in question must be referenced, and remains so. 267 * Caller may hold no locks. 268 */ 269 int 270 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, 271 int fault_flags) 272 { 273 struct thread *td; 274 int result; 275 276 td = curthread; 277 if ((td->td_pflags & TDP_NOFAULTING) != 0) 278 return (KERN_PROTECTION_FAILURE); 279 #ifdef KTRACE 280 if (map != kernel_map && KTRPOINT(td, KTR_FAULT)) 281 ktrfault(vaddr, fault_type); 282 #endif 283 result = vm_fault_hold(map, trunc_page(vaddr), fault_type, fault_flags, 284 NULL); 285 #ifdef KTRACE 286 if (map != kernel_map && KTRPOINT(td, KTR_FAULTEND)) 287 ktrfaultend(result); 288 #endif 289 return (result); 290 } 291 292 int 293 vm_fault_hold(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, 294 int fault_flags, vm_page_t *m_hold) 295 { 296 vm_prot_t prot; 297 int alloc_req, era, faultcount, nera, reqpage, result; 298 boolean_t growstack, is_first_object_locked, wired; 299 int map_generation; 300 vm_object_t next_object; 301 vm_page_t marray[VM_FAULT_READ_MAX]; 302 int hardfault; 303 struct faultstate fs; 304 struct vnode *vp; 305 vm_page_t m; 306 int ahead, behind, cluster_offset, error, locked; 307 308 hardfault = 0; 309 growstack = TRUE; 310 PCPU_INC(cnt.v_vm_faults); 311 fs.vp = NULL; 312 faultcount = reqpage = 0; 313 314 RetryFault:; 315 316 /* 317 * Find the backing store object and offset into it to begin the 318 * search. 319 */ 320 fs.map = map; 321 result = vm_map_lookup(&fs.map, vaddr, fault_type, &fs.entry, 322 &fs.first_object, &fs.first_pindex, &prot, &wired); 323 if (result != KERN_SUCCESS) { 324 if (growstack && result == KERN_INVALID_ADDRESS && 325 map != kernel_map) { 326 result = vm_map_growstack(curproc, vaddr); 327 if (result != KERN_SUCCESS) 328 return (KERN_FAILURE); 329 growstack = FALSE; 330 goto RetryFault; 331 } 332 return (result); 333 } 334 335 map_generation = fs.map->timestamp; 336 337 if (fs.entry->eflags & MAP_ENTRY_NOFAULT) { 338 panic("vm_fault: fault on nofault entry, addr: %lx", 339 (u_long)vaddr); 340 } 341 342 if (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION && 343 fs.entry->wiring_thread != curthread) { 344 vm_map_unlock_read(fs.map); 345 vm_map_lock(fs.map); 346 if (vm_map_lookup_entry(fs.map, vaddr, &fs.entry) && 347 (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION)) { 348 fs.entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 349 vm_map_unlock_and_wait(fs.map, 0); 350 } else 351 vm_map_unlock(fs.map); 352 goto RetryFault; 353 } 354 355 if (wired) 356 fault_type = prot | (fault_type & VM_PROT_COPY); 357 358 if (fs.vp == NULL /* avoid locked vnode leak */ && 359 (fault_flags & (VM_FAULT_CHANGE_WIRING | VM_FAULT_DIRTY)) == 0 && 360 /* avoid calling vm_object_set_writeable_dirty() */ 361 ((prot & VM_PROT_WRITE) == 0 || 362 (fs.first_object->type != OBJT_VNODE && 363 (fs.first_object->flags & OBJ_TMPFS_NODE) == 0) || 364 (fs.first_object->flags & OBJ_MIGHTBEDIRTY) != 0)) { 365 VM_OBJECT_RLOCK(fs.first_object); 366 if ((prot & VM_PROT_WRITE) != 0 && 367 (fs.first_object->type == OBJT_VNODE || 368 (fs.first_object->flags & OBJ_TMPFS_NODE) != 0) && 369 (fs.first_object->flags & OBJ_MIGHTBEDIRTY) == 0) 370 goto fast_failed; 371 m = vm_page_lookup(fs.first_object, fs.first_pindex); 372 /* A busy page can be mapped for read|execute access. */ 373 if (m == NULL || ((prot & VM_PROT_WRITE) != 0 && 374 vm_page_busied(m)) || m->valid != VM_PAGE_BITS_ALL) 375 goto fast_failed; 376 result = pmap_enter(fs.map->pmap, vaddr, m, prot, 377 fault_type | PMAP_ENTER_NOSLEEP | (wired ? PMAP_ENTER_WIRED : 378 0), 0); 379 if (result != KERN_SUCCESS) 380 goto fast_failed; 381 if (m_hold != NULL) { 382 *m_hold = m; 383 vm_page_lock(m); 384 vm_page_hold(m); 385 vm_page_unlock(m); 386 } 387 vm_fault_dirty(fs.entry, m, prot, fault_type, fault_flags, 388 FALSE); 389 VM_OBJECT_RUNLOCK(fs.first_object); 390 if (!wired) 391 vm_fault_prefault(&fs, vaddr, 0, 0); 392 vm_map_lookup_done(fs.map, fs.entry); 393 curthread->td_ru.ru_minflt++; 394 return (KERN_SUCCESS); 395 fast_failed: 396 if (!VM_OBJECT_TRYUPGRADE(fs.first_object)) { 397 VM_OBJECT_RUNLOCK(fs.first_object); 398 VM_OBJECT_WLOCK(fs.first_object); 399 } 400 } else { 401 VM_OBJECT_WLOCK(fs.first_object); 402 } 403 404 /* 405 * Make a reference to this object to prevent its disposal while we 406 * are messing with it. Once we have the reference, the map is free 407 * to be diddled. Since objects reference their shadows (and copies), 408 * they will stay around as well. 409 * 410 * Bump the paging-in-progress count to prevent size changes (e.g. 411 * truncation operations) during I/O. This must be done after 412 * obtaining the vnode lock in order to avoid possible deadlocks. 413 */ 414 vm_object_reference_locked(fs.first_object); 415 vm_object_pip_add(fs.first_object, 1); 416 417 fs.lookup_still_valid = TRUE; 418 419 fs.first_m = NULL; 420 421 /* 422 * Search for the page at object/offset. 423 */ 424 fs.object = fs.first_object; 425 fs.pindex = fs.first_pindex; 426 while (TRUE) { 427 /* 428 * If the object is dead, we stop here 429 */ 430 if (fs.object->flags & OBJ_DEAD) { 431 unlock_and_deallocate(&fs); 432 return (KERN_PROTECTION_FAILURE); 433 } 434 435 /* 436 * See if page is resident 437 */ 438 fs.m = vm_page_lookup(fs.object, fs.pindex); 439 if (fs.m != NULL) { 440 /* 441 * Wait/Retry if the page is busy. We have to do this 442 * if the page is either exclusive or shared busy 443 * because the vm_pager may be using read busy for 444 * pageouts (and even pageins if it is the vnode 445 * pager), and we could end up trying to pagein and 446 * pageout the same page simultaneously. 447 * 448 * We can theoretically allow the busy case on a read 449 * fault if the page is marked valid, but since such 450 * pages are typically already pmap'd, putting that 451 * special case in might be more effort then it is 452 * worth. We cannot under any circumstances mess 453 * around with a shared busied page except, perhaps, 454 * to pmap it. 455 */ 456 if (vm_page_busied(fs.m)) { 457 /* 458 * Reference the page before unlocking and 459 * sleeping so that the page daemon is less 460 * likely to reclaim it. 461 */ 462 vm_page_aflag_set(fs.m, PGA_REFERENCED); 463 if (fs.object != fs.first_object) { 464 if (!VM_OBJECT_TRYWLOCK( 465 fs.first_object)) { 466 VM_OBJECT_WUNLOCK(fs.object); 467 VM_OBJECT_WLOCK(fs.first_object); 468 VM_OBJECT_WLOCK(fs.object); 469 } 470 vm_page_lock(fs.first_m); 471 vm_page_free(fs.first_m); 472 vm_page_unlock(fs.first_m); 473 vm_object_pip_wakeup(fs.first_object); 474 VM_OBJECT_WUNLOCK(fs.first_object); 475 fs.first_m = NULL; 476 } 477 unlock_map(&fs); 478 if (fs.m == vm_page_lookup(fs.object, 479 fs.pindex)) { 480 vm_page_sleep_if_busy(fs.m, "vmpfw"); 481 } 482 vm_object_pip_wakeup(fs.object); 483 VM_OBJECT_WUNLOCK(fs.object); 484 PCPU_INC(cnt.v_intrans); 485 vm_object_deallocate(fs.first_object); 486 goto RetryFault; 487 } 488 vm_page_lock(fs.m); 489 vm_page_remque(fs.m); 490 vm_page_unlock(fs.m); 491 492 /* 493 * Mark page busy for other processes, and the 494 * pagedaemon. If it still isn't completely valid 495 * (readable), jump to readrest, else break-out ( we 496 * found the page ). 497 */ 498 vm_page_xbusy(fs.m); 499 if (fs.m->valid != VM_PAGE_BITS_ALL) 500 goto readrest; 501 break; 502 } 503 504 /* 505 * Page is not resident, If this is the search termination 506 * or the pager might contain the page, allocate a new page. 507 */ 508 if (TRYPAGER || fs.object == fs.first_object) { 509 if (fs.pindex >= fs.object->size) { 510 unlock_and_deallocate(&fs); 511 return (KERN_PROTECTION_FAILURE); 512 } 513 514 /* 515 * Allocate a new page for this object/offset pair. 516 * 517 * Unlocked read of the p_flag is harmless. At 518 * worst, the P_KILLED might be not observed 519 * there, and allocation can fail, causing 520 * restart and new reading of the p_flag. 521 */ 522 fs.m = NULL; 523 if (!vm_page_count_severe() || P_KILLED(curproc)) { 524 #if VM_NRESERVLEVEL > 0 525 if ((fs.object->flags & OBJ_COLORED) == 0) { 526 fs.object->flags |= OBJ_COLORED; 527 fs.object->pg_color = atop(vaddr) - 528 fs.pindex; 529 } 530 #endif 531 alloc_req = P_KILLED(curproc) ? 532 VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL; 533 if (fs.object->type != OBJT_VNODE && 534 fs.object->backing_object == NULL) 535 alloc_req |= VM_ALLOC_ZERO; 536 fs.m = vm_page_alloc(fs.object, fs.pindex, 537 alloc_req); 538 } 539 if (fs.m == NULL) { 540 unlock_and_deallocate(&fs); 541 VM_WAITPFAULT; 542 goto RetryFault; 543 } else if (fs.m->valid == VM_PAGE_BITS_ALL) 544 break; 545 } 546 547 readrest: 548 /* 549 * We have found a valid page or we have allocated a new page. 550 * The page thus may not be valid or may not be entirely 551 * valid. 552 * 553 * Attempt to fault-in the page if there is a chance that the 554 * pager has it, and potentially fault in additional pages 555 * at the same time. 556 */ 557 if (TRYPAGER) { 558 int rv; 559 u_char behavior = vm_map_entry_behavior(fs.entry); 560 561 era = fs.entry->read_ahead; 562 if (behavior == MAP_ENTRY_BEHAV_RANDOM || 563 P_KILLED(curproc)) { 564 behind = 0; 565 nera = 0; 566 ahead = 0; 567 } else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) { 568 behind = 0; 569 nera = VM_FAULT_READ_AHEAD_MAX; 570 ahead = nera; 571 if (fs.pindex == fs.entry->next_read) 572 vm_fault_cache_behind(&fs, 573 VM_FAULT_READ_MAX); 574 } else if (fs.pindex == fs.entry->next_read) { 575 /* 576 * This is a sequential fault. Arithmetically 577 * increase the requested number of pages in 578 * the read-ahead window. The requested 579 * number of pages is "# of sequential faults 580 * x (read ahead min + 1) + read ahead min" 581 */ 582 behind = 0; 583 nera = VM_FAULT_READ_AHEAD_MIN; 584 if (era > 0) { 585 nera += era + 1; 586 if (nera > VM_FAULT_READ_AHEAD_MAX) 587 nera = VM_FAULT_READ_AHEAD_MAX; 588 } 589 ahead = nera; 590 if (era == VM_FAULT_READ_AHEAD_MAX) 591 vm_fault_cache_behind(&fs, 592 VM_FAULT_CACHE_BEHIND); 593 } else { 594 /* 595 * This is a non-sequential fault. Request a 596 * cluster of pages that is aligned to a 597 * VM_FAULT_READ_DEFAULT page offset boundary 598 * within the object. Alignment to a page 599 * offset boundary is more likely to coincide 600 * with the underlying file system block than 601 * alignment to a virtual address boundary. 602 */ 603 cluster_offset = fs.pindex % 604 VM_FAULT_READ_DEFAULT; 605 behind = ulmin(cluster_offset, 606 atop(vaddr - fs.entry->start)); 607 nera = 0; 608 ahead = VM_FAULT_READ_DEFAULT - 1 - 609 cluster_offset; 610 } 611 ahead = ulmin(ahead, atop(fs.entry->end - vaddr) - 1); 612 if (era != nera) 613 fs.entry->read_ahead = nera; 614 615 /* 616 * Call the pager to retrieve the data, if any, after 617 * releasing the lock on the map. We hold a ref on 618 * fs.object and the pages are exclusive busied. 619 */ 620 unlock_map(&fs); 621 622 if (fs.object->type == OBJT_VNODE) { 623 vp = fs.object->handle; 624 if (vp == fs.vp) 625 goto vnode_locked; 626 else if (fs.vp != NULL) { 627 vput(fs.vp); 628 fs.vp = NULL; 629 } 630 locked = VOP_ISLOCKED(vp); 631 632 if (locked != LK_EXCLUSIVE) 633 locked = LK_SHARED; 634 /* Do not sleep for vnode lock while fs.m is busy */ 635 error = vget(vp, locked | LK_CANRECURSE | 636 LK_NOWAIT, curthread); 637 if (error != 0) { 638 vhold(vp); 639 release_page(&fs); 640 unlock_and_deallocate(&fs); 641 error = vget(vp, locked | LK_RETRY | 642 LK_CANRECURSE, curthread); 643 vdrop(vp); 644 fs.vp = vp; 645 KASSERT(error == 0, 646 ("vm_fault: vget failed")); 647 goto RetryFault; 648 } 649 fs.vp = vp; 650 } 651 vnode_locked: 652 KASSERT(fs.vp == NULL || !fs.map->system_map, 653 ("vm_fault: vnode-backed object mapped by system map")); 654 655 /* 656 * now we find out if any other pages should be paged 657 * in at this time this routine checks to see if the 658 * pages surrounding this fault reside in the same 659 * object as the page for this fault. If they do, 660 * then they are faulted in also into the object. The 661 * array "marray" returned contains an array of 662 * vm_page_t structs where one of them is the 663 * vm_page_t passed to the routine. The reqpage 664 * return value is the index into the marray for the 665 * vm_page_t passed to the routine. 666 * 667 * fs.m plus the additional pages are exclusive busied. 668 */ 669 faultcount = vm_fault_additional_pages( 670 fs.m, behind, ahead, marray, &reqpage); 671 672 rv = faultcount ? 673 vm_pager_get_pages(fs.object, marray, faultcount, 674 reqpage) : VM_PAGER_FAIL; 675 676 if (rv == VM_PAGER_OK) { 677 /* 678 * Found the page. Leave it busy while we play 679 * with it. 680 */ 681 682 /* 683 * Relookup in case pager changed page. Pager 684 * is responsible for disposition of old page 685 * if moved. 686 */ 687 fs.m = vm_page_lookup(fs.object, fs.pindex); 688 if (!fs.m) { 689 unlock_and_deallocate(&fs); 690 goto RetryFault; 691 } 692 693 hardfault++; 694 break; /* break to PAGE HAS BEEN FOUND */ 695 } 696 /* 697 * Remove the bogus page (which does not exist at this 698 * object/offset); before doing so, we must get back 699 * our object lock to preserve our invariant. 700 * 701 * Also wake up any other process that may want to bring 702 * in this page. 703 * 704 * If this is the top-level object, we must leave the 705 * busy page to prevent another process from rushing 706 * past us, and inserting the page in that object at 707 * the same time that we are. 708 */ 709 if (rv == VM_PAGER_ERROR) 710 printf("vm_fault: pager read error, pid %d (%s)\n", 711 curproc->p_pid, curproc->p_comm); 712 /* 713 * Data outside the range of the pager or an I/O error 714 */ 715 /* 716 * XXX - the check for kernel_map is a kludge to work 717 * around having the machine panic on a kernel space 718 * fault w/ I/O error. 719 */ 720 if (((fs.map != kernel_map) && (rv == VM_PAGER_ERROR)) || 721 (rv == VM_PAGER_BAD)) { 722 vm_page_lock(fs.m); 723 vm_page_free(fs.m); 724 vm_page_unlock(fs.m); 725 fs.m = NULL; 726 unlock_and_deallocate(&fs); 727 return ((rv == VM_PAGER_ERROR) ? KERN_FAILURE : KERN_PROTECTION_FAILURE); 728 } 729 if (fs.object != fs.first_object) { 730 vm_page_lock(fs.m); 731 vm_page_free(fs.m); 732 vm_page_unlock(fs.m); 733 fs.m = NULL; 734 /* 735 * XXX - we cannot just fall out at this 736 * point, m has been freed and is invalid! 737 */ 738 } 739 } 740 741 /* 742 * We get here if the object has default pager (or unwiring) 743 * or the pager doesn't have the page. 744 */ 745 if (fs.object == fs.first_object) 746 fs.first_m = fs.m; 747 748 /* 749 * Move on to the next object. Lock the next object before 750 * unlocking the current one. 751 */ 752 fs.pindex += OFF_TO_IDX(fs.object->backing_object_offset); 753 next_object = fs.object->backing_object; 754 if (next_object == NULL) { 755 /* 756 * If there's no object left, fill the page in the top 757 * object with zeros. 758 */ 759 if (fs.object != fs.first_object) { 760 vm_object_pip_wakeup(fs.object); 761 VM_OBJECT_WUNLOCK(fs.object); 762 763 fs.object = fs.first_object; 764 fs.pindex = fs.first_pindex; 765 fs.m = fs.first_m; 766 VM_OBJECT_WLOCK(fs.object); 767 } 768 fs.first_m = NULL; 769 770 /* 771 * Zero the page if necessary and mark it valid. 772 */ 773 if ((fs.m->flags & PG_ZERO) == 0) { 774 pmap_zero_page(fs.m); 775 } else { 776 PCPU_INC(cnt.v_ozfod); 777 } 778 PCPU_INC(cnt.v_zfod); 779 fs.m->valid = VM_PAGE_BITS_ALL; 780 /* Don't try to prefault neighboring pages. */ 781 faultcount = 1; 782 break; /* break to PAGE HAS BEEN FOUND */ 783 } else { 784 KASSERT(fs.object != next_object, 785 ("object loop %p", next_object)); 786 VM_OBJECT_WLOCK(next_object); 787 vm_object_pip_add(next_object, 1); 788 if (fs.object != fs.first_object) 789 vm_object_pip_wakeup(fs.object); 790 VM_OBJECT_WUNLOCK(fs.object); 791 fs.object = next_object; 792 } 793 } 794 795 vm_page_assert_xbusied(fs.m); 796 797 /* 798 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock 799 * is held.] 800 */ 801 802 /* 803 * If the page is being written, but isn't already owned by the 804 * top-level object, we have to copy it into a new page owned by the 805 * top-level object. 806 */ 807 if (fs.object != fs.first_object) { 808 /* 809 * We only really need to copy if we want to write it. 810 */ 811 if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) { 812 /* 813 * This allows pages to be virtually copied from a 814 * backing_object into the first_object, where the 815 * backing object has no other refs to it, and cannot 816 * gain any more refs. Instead of a bcopy, we just 817 * move the page from the backing object to the 818 * first object. Note that we must mark the page 819 * dirty in the first object so that it will go out 820 * to swap when needed. 821 */ 822 is_first_object_locked = FALSE; 823 if ( 824 /* 825 * Only one shadow object 826 */ 827 (fs.object->shadow_count == 1) && 828 /* 829 * No COW refs, except us 830 */ 831 (fs.object->ref_count == 1) && 832 /* 833 * No one else can look this object up 834 */ 835 (fs.object->handle == NULL) && 836 /* 837 * No other ways to look the object up 838 */ 839 ((fs.object->type == OBJT_DEFAULT) || 840 (fs.object->type == OBJT_SWAP)) && 841 (is_first_object_locked = VM_OBJECT_TRYWLOCK(fs.first_object)) && 842 /* 843 * We don't chase down the shadow chain 844 */ 845 fs.object == fs.first_object->backing_object) { 846 /* 847 * get rid of the unnecessary page 848 */ 849 vm_page_lock(fs.first_m); 850 vm_page_free(fs.first_m); 851 vm_page_unlock(fs.first_m); 852 /* 853 * grab the page and put it into the 854 * process'es object. The page is 855 * automatically made dirty. 856 */ 857 if (vm_page_rename(fs.m, fs.first_object, 858 fs.first_pindex)) { 859 unlock_and_deallocate(&fs); 860 goto RetryFault; 861 } 862 #if VM_NRESERVLEVEL > 0 863 /* 864 * Rename the reservation. 865 */ 866 vm_reserv_rename(fs.m, fs.first_object, 867 fs.object, OFF_TO_IDX( 868 fs.first_object->backing_object_offset)); 869 #endif 870 vm_page_xbusy(fs.m); 871 fs.first_m = fs.m; 872 fs.m = NULL; 873 PCPU_INC(cnt.v_cow_optim); 874 } else { 875 /* 876 * Oh, well, lets copy it. 877 */ 878 pmap_copy_page(fs.m, fs.first_m); 879 fs.first_m->valid = VM_PAGE_BITS_ALL; 880 if (wired && (fault_flags & 881 VM_FAULT_CHANGE_WIRING) == 0) { 882 vm_page_lock(fs.first_m); 883 vm_page_wire(fs.first_m); 884 vm_page_unlock(fs.first_m); 885 886 vm_page_lock(fs.m); 887 vm_page_unwire(fs.m, PQ_INACTIVE); 888 vm_page_unlock(fs.m); 889 } 890 /* 891 * We no longer need the old page or object. 892 */ 893 release_page(&fs); 894 } 895 /* 896 * fs.object != fs.first_object due to above 897 * conditional 898 */ 899 vm_object_pip_wakeup(fs.object); 900 VM_OBJECT_WUNLOCK(fs.object); 901 /* 902 * Only use the new page below... 903 */ 904 fs.object = fs.first_object; 905 fs.pindex = fs.first_pindex; 906 fs.m = fs.first_m; 907 if (!is_first_object_locked) 908 VM_OBJECT_WLOCK(fs.object); 909 PCPU_INC(cnt.v_cow_faults); 910 curthread->td_cow++; 911 } else { 912 prot &= ~VM_PROT_WRITE; 913 } 914 } 915 916 /* 917 * We must verify that the maps have not changed since our last 918 * lookup. 919 */ 920 if (!fs.lookup_still_valid) { 921 vm_object_t retry_object; 922 vm_pindex_t retry_pindex; 923 vm_prot_t retry_prot; 924 925 if (!vm_map_trylock_read(fs.map)) { 926 release_page(&fs); 927 unlock_and_deallocate(&fs); 928 goto RetryFault; 929 } 930 fs.lookup_still_valid = TRUE; 931 if (fs.map->timestamp != map_generation) { 932 result = vm_map_lookup_locked(&fs.map, vaddr, fault_type, 933 &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired); 934 935 /* 936 * If we don't need the page any longer, put it on the inactive 937 * list (the easiest thing to do here). If no one needs it, 938 * pageout will grab it eventually. 939 */ 940 if (result != KERN_SUCCESS) { 941 release_page(&fs); 942 unlock_and_deallocate(&fs); 943 944 /* 945 * If retry of map lookup would have blocked then 946 * retry fault from start. 947 */ 948 if (result == KERN_FAILURE) 949 goto RetryFault; 950 return (result); 951 } 952 if ((retry_object != fs.first_object) || 953 (retry_pindex != fs.first_pindex)) { 954 release_page(&fs); 955 unlock_and_deallocate(&fs); 956 goto RetryFault; 957 } 958 959 /* 960 * Check whether the protection has changed or the object has 961 * been copied while we left the map unlocked. Changing from 962 * read to write permission is OK - we leave the page 963 * write-protected, and catch the write fault. Changing from 964 * write to read permission means that we can't mark the page 965 * write-enabled after all. 966 */ 967 prot &= retry_prot; 968 } 969 } 970 /* 971 * If the page was filled by a pager, update the map entry's 972 * last read offset. Since the pager does not return the 973 * actual set of pages that it read, this update is based on 974 * the requested set. Typically, the requested and actual 975 * sets are the same. 976 * 977 * XXX The following assignment modifies the map 978 * without holding a write lock on it. 979 */ 980 if (hardfault) 981 fs.entry->next_read = fs.pindex + faultcount - reqpage; 982 983 vm_fault_dirty(fs.entry, fs.m, prot, fault_type, fault_flags, TRUE); 984 vm_page_assert_xbusied(fs.m); 985 986 /* 987 * Page must be completely valid or it is not fit to 988 * map into user space. vm_pager_get_pages() ensures this. 989 */ 990 KASSERT(fs.m->valid == VM_PAGE_BITS_ALL, 991 ("vm_fault: page %p partially invalid", fs.m)); 992 VM_OBJECT_WUNLOCK(fs.object); 993 994 /* 995 * Put this page into the physical map. We had to do the unlock above 996 * because pmap_enter() may sleep. We don't put the page 997 * back on the active queue until later so that the pageout daemon 998 * won't find it (yet). 999 */ 1000 pmap_enter(fs.map->pmap, vaddr, fs.m, prot, 1001 fault_type | (wired ? PMAP_ENTER_WIRED : 0), 0); 1002 if (faultcount != 1 && (fault_flags & VM_FAULT_CHANGE_WIRING) == 0 && 1003 wired == 0) 1004 vm_fault_prefault(&fs, vaddr, faultcount, reqpage); 1005 VM_OBJECT_WLOCK(fs.object); 1006 vm_page_lock(fs.m); 1007 1008 /* 1009 * If the page is not wired down, then put it where the pageout daemon 1010 * can find it. 1011 */ 1012 if (fault_flags & VM_FAULT_CHANGE_WIRING) { 1013 if (wired) 1014 vm_page_wire(fs.m); 1015 else 1016 vm_page_unwire(fs.m, PQ_ACTIVE); 1017 } else 1018 vm_page_activate(fs.m); 1019 if (m_hold != NULL) { 1020 *m_hold = fs.m; 1021 vm_page_hold(fs.m); 1022 } 1023 vm_page_unlock(fs.m); 1024 vm_page_xunbusy(fs.m); 1025 1026 /* 1027 * Unlock everything, and return 1028 */ 1029 unlock_and_deallocate(&fs); 1030 if (hardfault) { 1031 PCPU_INC(cnt.v_io_faults); 1032 curthread->td_ru.ru_majflt++; 1033 } else 1034 curthread->td_ru.ru_minflt++; 1035 1036 return (KERN_SUCCESS); 1037 } 1038 1039 /* 1040 * Speed up the reclamation of up to "distance" pages that precede the 1041 * faulting pindex within the first object of the shadow chain. 1042 */ 1043 static void 1044 vm_fault_cache_behind(const struct faultstate *fs, int distance) 1045 { 1046 vm_object_t first_object, object; 1047 vm_page_t m, m_prev; 1048 vm_pindex_t pindex; 1049 1050 object = fs->object; 1051 VM_OBJECT_ASSERT_WLOCKED(object); 1052 first_object = fs->first_object; 1053 if (first_object != object) { 1054 if (!VM_OBJECT_TRYWLOCK(first_object)) { 1055 VM_OBJECT_WUNLOCK(object); 1056 VM_OBJECT_WLOCK(first_object); 1057 VM_OBJECT_WLOCK(object); 1058 } 1059 } 1060 /* Neither fictitious nor unmanaged pages can be cached. */ 1061 if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) { 1062 if (fs->first_pindex < distance) 1063 pindex = 0; 1064 else 1065 pindex = fs->first_pindex - distance; 1066 if (pindex < OFF_TO_IDX(fs->entry->offset)) 1067 pindex = OFF_TO_IDX(fs->entry->offset); 1068 m = first_object != object ? fs->first_m : fs->m; 1069 vm_page_assert_xbusied(m); 1070 m_prev = vm_page_prev(m); 1071 while ((m = m_prev) != NULL && m->pindex >= pindex && 1072 m->valid == VM_PAGE_BITS_ALL) { 1073 m_prev = vm_page_prev(m); 1074 if (vm_page_busied(m)) 1075 continue; 1076 vm_page_lock(m); 1077 if (m->hold_count == 0 && m->wire_count == 0) { 1078 pmap_remove_all(m); 1079 vm_page_aflag_clear(m, PGA_REFERENCED); 1080 if (m->dirty != 0) 1081 vm_page_deactivate(m); 1082 else 1083 vm_page_cache(m); 1084 } 1085 vm_page_unlock(m); 1086 } 1087 } 1088 if (first_object != object) 1089 VM_OBJECT_WUNLOCK(first_object); 1090 } 1091 1092 /* 1093 * vm_fault_prefault provides a quick way of clustering 1094 * pagefaults into a processes address space. It is a "cousin" 1095 * of vm_map_pmap_enter, except it runs at page fault time instead 1096 * of mmap time. 1097 */ 1098 static void 1099 vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra, 1100 int faultcount, int reqpage) 1101 { 1102 pmap_t pmap; 1103 vm_map_entry_t entry; 1104 vm_object_t backing_object, lobject; 1105 vm_offset_t addr, starta; 1106 vm_pindex_t pindex; 1107 vm_page_t m; 1108 int backward, forward, i; 1109 1110 pmap = fs->map->pmap; 1111 if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) 1112 return; 1113 1114 if (faultcount > 0) { 1115 backward = reqpage; 1116 forward = faultcount - reqpage - 1; 1117 } else { 1118 backward = PFBAK; 1119 forward = PFFOR; 1120 } 1121 entry = fs->entry; 1122 1123 starta = addra - backward * PAGE_SIZE; 1124 if (starta < entry->start) { 1125 starta = entry->start; 1126 } else if (starta > addra) { 1127 starta = 0; 1128 } 1129 1130 /* 1131 * Generate the sequence of virtual addresses that are candidates for 1132 * prefaulting in an outward spiral from the faulting virtual address, 1133 * "addra". Specifically, the sequence is "addra - PAGE_SIZE", "addra 1134 * + PAGE_SIZE", "addra - 2 * PAGE_SIZE", "addra + 2 * PAGE_SIZE", ... 1135 * If the candidate address doesn't have a backing physical page, then 1136 * the loop immediately terminates. 1137 */ 1138 for (i = 0; i < 2 * imax(backward, forward); i++) { 1139 addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE : 1140 PAGE_SIZE); 1141 if (addr > addra + forward * PAGE_SIZE) 1142 addr = 0; 1143 1144 if (addr < starta || addr >= entry->end) 1145 continue; 1146 1147 if (!pmap_is_prefaultable(pmap, addr)) 1148 continue; 1149 1150 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT; 1151 lobject = entry->object.vm_object; 1152 VM_OBJECT_RLOCK(lobject); 1153 while ((m = vm_page_lookup(lobject, pindex)) == NULL && 1154 lobject->type == OBJT_DEFAULT && 1155 (backing_object = lobject->backing_object) != NULL) { 1156 KASSERT((lobject->backing_object_offset & PAGE_MASK) == 1157 0, ("vm_fault_prefault: unaligned object offset")); 1158 pindex += lobject->backing_object_offset >> PAGE_SHIFT; 1159 VM_OBJECT_RLOCK(backing_object); 1160 VM_OBJECT_RUNLOCK(lobject); 1161 lobject = backing_object; 1162 } 1163 if (m == NULL) { 1164 VM_OBJECT_RUNLOCK(lobject); 1165 break; 1166 } 1167 if (m->valid == VM_PAGE_BITS_ALL && 1168 (m->flags & PG_FICTITIOUS) == 0) 1169 pmap_enter_quick(pmap, addr, m, entry->protection); 1170 VM_OBJECT_RUNLOCK(lobject); 1171 } 1172 } 1173 1174 /* 1175 * Hold each of the physical pages that are mapped by the specified range of 1176 * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid 1177 * and allow the specified types of access, "prot". If all of the implied 1178 * pages are successfully held, then the number of held pages is returned 1179 * together with pointers to those pages in the array "ma". However, if any 1180 * of the pages cannot be held, -1 is returned. 1181 */ 1182 int 1183 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len, 1184 vm_prot_t prot, vm_page_t *ma, int max_count) 1185 { 1186 vm_offset_t end, va; 1187 vm_page_t *mp; 1188 int count; 1189 boolean_t pmap_failed; 1190 1191 if (len == 0) 1192 return (0); 1193 end = round_page(addr + len); 1194 addr = trunc_page(addr); 1195 1196 /* 1197 * Check for illegal addresses. 1198 */ 1199 if (addr < vm_map_min(map) || addr > end || end > vm_map_max(map)) 1200 return (-1); 1201 1202 if (atop(end - addr) > max_count) 1203 panic("vm_fault_quick_hold_pages: count > max_count"); 1204 count = atop(end - addr); 1205 1206 /* 1207 * Most likely, the physical pages are resident in the pmap, so it is 1208 * faster to try pmap_extract_and_hold() first. 1209 */ 1210 pmap_failed = FALSE; 1211 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) { 1212 *mp = pmap_extract_and_hold(map->pmap, va, prot); 1213 if (*mp == NULL) 1214 pmap_failed = TRUE; 1215 else if ((prot & VM_PROT_WRITE) != 0 && 1216 (*mp)->dirty != VM_PAGE_BITS_ALL) { 1217 /* 1218 * Explicitly dirty the physical page. Otherwise, the 1219 * caller's changes may go unnoticed because they are 1220 * performed through an unmanaged mapping or by a DMA 1221 * operation. 1222 * 1223 * The object lock is not held here. 1224 * See vm_page_clear_dirty_mask(). 1225 */ 1226 vm_page_dirty(*mp); 1227 } 1228 } 1229 if (pmap_failed) { 1230 /* 1231 * One or more pages could not be held by the pmap. Either no 1232 * page was mapped at the specified virtual address or that 1233 * mapping had insufficient permissions. Attempt to fault in 1234 * and hold these pages. 1235 */ 1236 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) 1237 if (*mp == NULL && vm_fault_hold(map, va, prot, 1238 VM_FAULT_NORMAL, mp) != KERN_SUCCESS) 1239 goto error; 1240 } 1241 return (count); 1242 error: 1243 for (mp = ma; mp < ma + count; mp++) 1244 if (*mp != NULL) { 1245 vm_page_lock(*mp); 1246 vm_page_unhold(*mp); 1247 vm_page_unlock(*mp); 1248 } 1249 return (-1); 1250 } 1251 1252 /* 1253 * Routine: 1254 * vm_fault_copy_entry 1255 * Function: 1256 * Create new shadow object backing dst_entry with private copy of 1257 * all underlying pages. When src_entry is equal to dst_entry, 1258 * function implements COW for wired-down map entry. Otherwise, 1259 * it forks wired entry into dst_map. 1260 * 1261 * In/out conditions: 1262 * The source and destination maps must be locked for write. 1263 * The source map entry must be wired down (or be a sharing map 1264 * entry corresponding to a main map entry that is wired down). 1265 */ 1266 void 1267 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map, 1268 vm_map_entry_t dst_entry, vm_map_entry_t src_entry, 1269 vm_ooffset_t *fork_charge) 1270 { 1271 vm_object_t backing_object, dst_object, object, src_object; 1272 vm_pindex_t dst_pindex, pindex, src_pindex; 1273 vm_prot_t access, prot; 1274 vm_offset_t vaddr; 1275 vm_page_t dst_m; 1276 vm_page_t src_m; 1277 boolean_t upgrade; 1278 1279 #ifdef lint 1280 src_map++; 1281 #endif /* lint */ 1282 1283 upgrade = src_entry == dst_entry; 1284 access = prot = dst_entry->protection; 1285 1286 src_object = src_entry->object.vm_object; 1287 src_pindex = OFF_TO_IDX(src_entry->offset); 1288 1289 if (upgrade && (dst_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) { 1290 dst_object = src_object; 1291 vm_object_reference(dst_object); 1292 } else { 1293 /* 1294 * Create the top-level object for the destination entry. (Doesn't 1295 * actually shadow anything - we copy the pages directly.) 1296 */ 1297 dst_object = vm_object_allocate(OBJT_DEFAULT, 1298 OFF_TO_IDX(dst_entry->end - dst_entry->start)); 1299 #if VM_NRESERVLEVEL > 0 1300 dst_object->flags |= OBJ_COLORED; 1301 dst_object->pg_color = atop(dst_entry->start); 1302 #endif 1303 } 1304 1305 VM_OBJECT_WLOCK(dst_object); 1306 KASSERT(upgrade || dst_entry->object.vm_object == NULL, 1307 ("vm_fault_copy_entry: vm_object not NULL")); 1308 if (src_object != dst_object) { 1309 dst_entry->object.vm_object = dst_object; 1310 dst_entry->offset = 0; 1311 dst_object->charge = dst_entry->end - dst_entry->start; 1312 } 1313 if (fork_charge != NULL) { 1314 KASSERT(dst_entry->cred == NULL, 1315 ("vm_fault_copy_entry: leaked swp charge")); 1316 dst_object->cred = curthread->td_ucred; 1317 crhold(dst_object->cred); 1318 *fork_charge += dst_object->charge; 1319 } else if (dst_object->cred == NULL) { 1320 KASSERT(dst_entry->cred != NULL, ("no cred for entry %p", 1321 dst_entry)); 1322 dst_object->cred = dst_entry->cred; 1323 dst_entry->cred = NULL; 1324 } 1325 1326 /* 1327 * If not an upgrade, then enter the mappings in the pmap as 1328 * read and/or execute accesses. Otherwise, enter them as 1329 * write accesses. 1330 * 1331 * A writeable large page mapping is only created if all of 1332 * the constituent small page mappings are modified. Marking 1333 * PTEs as modified on inception allows promotion to happen 1334 * without taking potentially large number of soft faults. 1335 */ 1336 if (!upgrade) 1337 access &= ~VM_PROT_WRITE; 1338 1339 /* 1340 * Loop through all of the virtual pages within the entry's 1341 * range, copying each page from the source object to the 1342 * destination object. Since the source is wired, those pages 1343 * must exist. In contrast, the destination is pageable. 1344 * Since the destination object does share any backing storage 1345 * with the source object, all of its pages must be dirtied, 1346 * regardless of whether they can be written. 1347 */ 1348 for (vaddr = dst_entry->start, dst_pindex = 0; 1349 vaddr < dst_entry->end; 1350 vaddr += PAGE_SIZE, dst_pindex++) { 1351 again: 1352 /* 1353 * Find the page in the source object, and copy it in. 1354 * Because the source is wired down, the page will be 1355 * in memory. 1356 */ 1357 if (src_object != dst_object) 1358 VM_OBJECT_RLOCK(src_object); 1359 object = src_object; 1360 pindex = src_pindex + dst_pindex; 1361 while ((src_m = vm_page_lookup(object, pindex)) == NULL && 1362 (backing_object = object->backing_object) != NULL) { 1363 /* 1364 * Unless the source mapping is read-only or 1365 * it is presently being upgraded from 1366 * read-only, the first object in the shadow 1367 * chain should provide all of the pages. In 1368 * other words, this loop body should never be 1369 * executed when the source mapping is already 1370 * read/write. 1371 */ 1372 KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 || 1373 upgrade, 1374 ("vm_fault_copy_entry: main object missing page")); 1375 1376 VM_OBJECT_RLOCK(backing_object); 1377 pindex += OFF_TO_IDX(object->backing_object_offset); 1378 if (object != dst_object) 1379 VM_OBJECT_RUNLOCK(object); 1380 object = backing_object; 1381 } 1382 KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing")); 1383 1384 if (object != dst_object) { 1385 /* 1386 * Allocate a page in the destination object. 1387 */ 1388 dst_m = vm_page_alloc(dst_object, (src_object == 1389 dst_object ? src_pindex : 0) + dst_pindex, 1390 VM_ALLOC_NORMAL); 1391 if (dst_m == NULL) { 1392 VM_OBJECT_WUNLOCK(dst_object); 1393 VM_OBJECT_RUNLOCK(object); 1394 VM_WAIT; 1395 VM_OBJECT_WLOCK(dst_object); 1396 goto again; 1397 } 1398 pmap_copy_page(src_m, dst_m); 1399 VM_OBJECT_RUNLOCK(object); 1400 dst_m->valid = VM_PAGE_BITS_ALL; 1401 dst_m->dirty = VM_PAGE_BITS_ALL; 1402 } else { 1403 dst_m = src_m; 1404 if (vm_page_sleep_if_busy(dst_m, "fltupg")) 1405 goto again; 1406 vm_page_xbusy(dst_m); 1407 KASSERT(dst_m->valid == VM_PAGE_BITS_ALL, 1408 ("invalid dst page %p", dst_m)); 1409 } 1410 VM_OBJECT_WUNLOCK(dst_object); 1411 1412 /* 1413 * Enter it in the pmap. If a wired, copy-on-write 1414 * mapping is being replaced by a write-enabled 1415 * mapping, then wire that new mapping. 1416 */ 1417 pmap_enter(dst_map->pmap, vaddr, dst_m, prot, 1418 access | (upgrade ? PMAP_ENTER_WIRED : 0), 0); 1419 1420 /* 1421 * Mark it no longer busy, and put it on the active list. 1422 */ 1423 VM_OBJECT_WLOCK(dst_object); 1424 1425 if (upgrade) { 1426 if (src_m != dst_m) { 1427 vm_page_lock(src_m); 1428 vm_page_unwire(src_m, PQ_INACTIVE); 1429 vm_page_unlock(src_m); 1430 vm_page_lock(dst_m); 1431 vm_page_wire(dst_m); 1432 vm_page_unlock(dst_m); 1433 } else { 1434 KASSERT(dst_m->wire_count > 0, 1435 ("dst_m %p is not wired", dst_m)); 1436 } 1437 } else { 1438 vm_page_lock(dst_m); 1439 vm_page_activate(dst_m); 1440 vm_page_unlock(dst_m); 1441 } 1442 vm_page_xunbusy(dst_m); 1443 } 1444 VM_OBJECT_WUNLOCK(dst_object); 1445 if (upgrade) { 1446 dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY); 1447 vm_object_deallocate(src_object); 1448 } 1449 } 1450 1451 1452 /* 1453 * This routine checks around the requested page for other pages that 1454 * might be able to be faulted in. This routine brackets the viable 1455 * pages for the pages to be paged in. 1456 * 1457 * Inputs: 1458 * m, rbehind, rahead 1459 * 1460 * Outputs: 1461 * marray (array of vm_page_t), reqpage (index of requested page) 1462 * 1463 * Return value: 1464 * number of pages in marray 1465 */ 1466 static int 1467 vm_fault_additional_pages(m, rbehind, rahead, marray, reqpage) 1468 vm_page_t m; 1469 int rbehind; 1470 int rahead; 1471 vm_page_t *marray; 1472 int *reqpage; 1473 { 1474 int i,j; 1475 vm_object_t object; 1476 vm_pindex_t pindex, startpindex, endpindex, tpindex; 1477 vm_page_t rtm; 1478 int cbehind, cahead; 1479 1480 VM_OBJECT_ASSERT_WLOCKED(m->object); 1481 1482 object = m->object; 1483 pindex = m->pindex; 1484 cbehind = cahead = 0; 1485 1486 /* 1487 * if the requested page is not available, then give up now 1488 */ 1489 if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) { 1490 return 0; 1491 } 1492 1493 if ((cbehind == 0) && (cahead == 0)) { 1494 *reqpage = 0; 1495 marray[0] = m; 1496 return 1; 1497 } 1498 1499 if (rahead > cahead) { 1500 rahead = cahead; 1501 } 1502 1503 if (rbehind > cbehind) { 1504 rbehind = cbehind; 1505 } 1506 1507 /* 1508 * scan backward for the read behind pages -- in memory 1509 */ 1510 if (pindex > 0) { 1511 if (rbehind > pindex) { 1512 rbehind = pindex; 1513 startpindex = 0; 1514 } else { 1515 startpindex = pindex - rbehind; 1516 } 1517 1518 if ((rtm = TAILQ_PREV(m, pglist, listq)) != NULL && 1519 rtm->pindex >= startpindex) 1520 startpindex = rtm->pindex + 1; 1521 1522 /* tpindex is unsigned; beware of numeric underflow. */ 1523 for (i = 0, tpindex = pindex - 1; tpindex >= startpindex && 1524 tpindex < pindex; i++, tpindex--) { 1525 1526 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL | 1527 VM_ALLOC_IFNOTCACHED); 1528 if (rtm == NULL) { 1529 /* 1530 * Shift the allocated pages to the 1531 * beginning of the array. 1532 */ 1533 for (j = 0; j < i; j++) { 1534 marray[j] = marray[j + tpindex + 1 - 1535 startpindex]; 1536 } 1537 break; 1538 } 1539 1540 marray[tpindex - startpindex] = rtm; 1541 } 1542 } else { 1543 startpindex = 0; 1544 i = 0; 1545 } 1546 1547 marray[i] = m; 1548 /* page offset of the required page */ 1549 *reqpage = i; 1550 1551 tpindex = pindex + 1; 1552 i++; 1553 1554 /* 1555 * scan forward for the read ahead pages 1556 */ 1557 endpindex = tpindex + rahead; 1558 if ((rtm = TAILQ_NEXT(m, listq)) != NULL && rtm->pindex < endpindex) 1559 endpindex = rtm->pindex; 1560 if (endpindex > object->size) 1561 endpindex = object->size; 1562 1563 for (; tpindex < endpindex; i++, tpindex++) { 1564 1565 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL | 1566 VM_ALLOC_IFNOTCACHED); 1567 if (rtm == NULL) { 1568 break; 1569 } 1570 1571 marray[i] = rtm; 1572 } 1573 1574 /* return number of pages */ 1575 return i; 1576 } 1577 1578 /* 1579 * Block entry into the machine-independent layer's page fault handler by 1580 * the calling thread. Subsequent calls to vm_fault() by that thread will 1581 * return KERN_PROTECTION_FAILURE. Enable machine-dependent handling of 1582 * spurious page faults. 1583 */ 1584 int 1585 vm_fault_disable_pagefaults(void) 1586 { 1587 1588 return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR)); 1589 } 1590 1591 void 1592 vm_fault_enable_pagefaults(int save) 1593 { 1594 1595 curthread_pflags_restore(save); 1596 } 1597