xref: /freebsd/sys/vm/vm_fault.c (revision e4e9813eb92cd7c4d4b819a8fbed5cbd3d92f5d8)
1 /*-
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  *
10  * This code is derived from software contributed to Berkeley by
11  * The Mach Operating System project at Carnegie-Mellon University.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. All advertising materials mentioning features or use of this software
22  *    must display the following acknowledgement:
23  *	This product includes software developed by the University of
24  *	California, Berkeley and its contributors.
25  * 4. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *	from: @(#)vm_fault.c	8.4 (Berkeley) 1/12/94
42  *
43  *
44  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45  * All rights reserved.
46  *
47  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48  *
49  * Permission to use, copy, modify and distribute this software and
50  * its documentation is hereby granted, provided that both the copyright
51  * notice and this permission notice appear in all copies of the
52  * software, derivative works or modified versions, and any portions
53  * thereof, and that both notices appear in supporting documentation.
54  *
55  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58  *
59  * Carnegie Mellon requests users of this software to return to
60  *
61  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62  *  School of Computer Science
63  *  Carnegie Mellon University
64  *  Pittsburgh PA 15213-3890
65  *
66  * any improvements or extensions that they make and grant Carnegie the
67  * rights to redistribute these changes.
68  */
69 
70 /*
71  *	Page fault handling module.
72  */
73 
74 #include <sys/cdefs.h>
75 __FBSDID("$FreeBSD$");
76 
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/kernel.h>
80 #include <sys/lock.h>
81 #include <sys/mutex.h>
82 #include <sys/proc.h>
83 #include <sys/resourcevar.h>
84 #include <sys/sysctl.h>
85 #include <sys/vmmeter.h>
86 #include <sys/vnode.h>
87 
88 #include <vm/vm.h>
89 #include <vm/vm_param.h>
90 #include <vm/pmap.h>
91 #include <vm/vm_map.h>
92 #include <vm/vm_object.h>
93 #include <vm/vm_page.h>
94 #include <vm/vm_pageout.h>
95 #include <vm/vm_kern.h>
96 #include <vm/vm_pager.h>
97 #include <vm/vnode_pager.h>
98 #include <vm/vm_extern.h>
99 
100 #include <sys/mount.h>	/* XXX Temporary for VFS_LOCK_GIANT() */
101 
102 #define PFBAK 4
103 #define PFFOR 4
104 #define PAGEORDER_SIZE (PFBAK+PFFOR)
105 
106 static int prefault_pageorder[] = {
107 	-1 * PAGE_SIZE, 1 * PAGE_SIZE,
108 	-2 * PAGE_SIZE, 2 * PAGE_SIZE,
109 	-3 * PAGE_SIZE, 3 * PAGE_SIZE,
110 	-4 * PAGE_SIZE, 4 * PAGE_SIZE
111 };
112 
113 static int vm_fault_additional_pages(vm_page_t, int, int, vm_page_t *, int *);
114 static void vm_fault_prefault(pmap_t, vm_offset_t, vm_map_entry_t);
115 
116 #define VM_FAULT_READ_AHEAD 8
117 #define VM_FAULT_READ_BEHIND 7
118 #define VM_FAULT_READ (VM_FAULT_READ_AHEAD+VM_FAULT_READ_BEHIND+1)
119 
120 struct faultstate {
121 	vm_page_t m;
122 	vm_object_t object;
123 	vm_pindex_t pindex;
124 	vm_page_t first_m;
125 	vm_object_t	first_object;
126 	vm_pindex_t first_pindex;
127 	vm_map_t map;
128 	vm_map_entry_t entry;
129 	int lookup_still_valid;
130 	struct vnode *vp;
131 };
132 
133 static inline void
134 release_page(struct faultstate *fs)
135 {
136 	vm_page_lock_queues();
137 	vm_page_wakeup(fs->m);
138 	vm_page_deactivate(fs->m);
139 	vm_page_unlock_queues();
140 	fs->m = NULL;
141 }
142 
143 static inline void
144 unlock_map(struct faultstate *fs)
145 {
146 	if (fs->lookup_still_valid) {
147 		vm_map_lookup_done(fs->map, fs->entry);
148 		fs->lookup_still_valid = FALSE;
149 	}
150 }
151 
152 static void
153 unlock_and_deallocate(struct faultstate *fs)
154 {
155 
156 	vm_object_pip_wakeup(fs->object);
157 	VM_OBJECT_UNLOCK(fs->object);
158 	if (fs->object != fs->first_object) {
159 		VM_OBJECT_LOCK(fs->first_object);
160 		vm_page_lock_queues();
161 		vm_page_free(fs->first_m);
162 		vm_page_unlock_queues();
163 		vm_object_pip_wakeup(fs->first_object);
164 		VM_OBJECT_UNLOCK(fs->first_object);
165 		fs->first_m = NULL;
166 	}
167 	vm_object_deallocate(fs->first_object);
168 	unlock_map(fs);
169 	if (fs->vp != NULL) {
170 		int vfslocked;
171 
172 		vfslocked = VFS_LOCK_GIANT(fs->vp->v_mount);
173 		vput(fs->vp);
174 		fs->vp = NULL;
175 		VFS_UNLOCK_GIANT(vfslocked);
176 	}
177 }
178 
179 /*
180  * TRYPAGER - used by vm_fault to calculate whether the pager for the
181  *	      current object *might* contain the page.
182  *
183  *	      default objects are zero-fill, there is no real pager.
184  */
185 #define TRYPAGER	(fs.object->type != OBJT_DEFAULT && \
186 			(((fault_flags & VM_FAULT_WIRE_MASK) == 0) || wired))
187 
188 /*
189  *	vm_fault:
190  *
191  *	Handle a page fault occurring at the given address,
192  *	requiring the given permissions, in the map specified.
193  *	If successful, the page is inserted into the
194  *	associated physical map.
195  *
196  *	NOTE: the given address should be truncated to the
197  *	proper page address.
198  *
199  *	KERN_SUCCESS is returned if the page fault is handled; otherwise,
200  *	a standard error specifying why the fault is fatal is returned.
201  *
202  *
203  *	The map in question must be referenced, and remains so.
204  *	Caller may hold no locks.
205  */
206 int
207 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
208 	 int fault_flags)
209 {
210 	vm_prot_t prot;
211 	int is_first_object_locked, result;
212 	boolean_t growstack, wired;
213 	int map_generation;
214 	vm_object_t next_object;
215 	vm_page_t marray[VM_FAULT_READ];
216 	int hardfault;
217 	int faultcount;
218 	struct faultstate fs;
219 
220 	hardfault = 0;
221 	growstack = TRUE;
222 	atomic_add_int(&cnt.v_vm_faults, 1);
223 
224 RetryFault:;
225 
226 	/*
227 	 * Find the backing store object and offset into it to begin the
228 	 * search.
229 	 */
230 	fs.map = map;
231 	result = vm_map_lookup(&fs.map, vaddr, fault_type, &fs.entry,
232 	    &fs.first_object, &fs.first_pindex, &prot, &wired);
233 	if (result != KERN_SUCCESS) {
234 		if (result != KERN_PROTECTION_FAILURE ||
235 		    (fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE) {
236 			if (growstack && result == KERN_INVALID_ADDRESS &&
237 			    map != kernel_map && curproc != NULL) {
238 				result = vm_map_growstack(curproc, vaddr);
239 				if (result != KERN_SUCCESS)
240 					return (KERN_FAILURE);
241 				growstack = FALSE;
242 				goto RetryFault;
243 			}
244 			return (result);
245 		}
246 
247 		/*
248    		 * If we are user-wiring a r/w segment, and it is COW, then
249    		 * we need to do the COW operation.  Note that we don't COW
250    		 * currently RO sections now, because it is NOT desirable
251    		 * to COW .text.  We simply keep .text from ever being COW'ed
252    		 * and take the heat that one cannot debug wired .text sections.
253    		 */
254 		result = vm_map_lookup(&fs.map, vaddr,
255 			VM_PROT_READ|VM_PROT_WRITE|VM_PROT_OVERRIDE_WRITE,
256 			&fs.entry, &fs.first_object, &fs.first_pindex, &prot, &wired);
257 		if (result != KERN_SUCCESS)
258 			return (result);
259 
260 		/*
261 		 * If we don't COW now, on a user wire, the user will never
262 		 * be able to write to the mapping.  If we don't make this
263 		 * restriction, the bookkeeping would be nearly impossible.
264 		 *
265 		 * XXX The following assignment modifies the map without
266 		 * holding a write lock on it.
267 		 */
268 		if ((fs.entry->protection & VM_PROT_WRITE) == 0)
269 			fs.entry->max_protection &= ~VM_PROT_WRITE;
270 	}
271 
272 	map_generation = fs.map->timestamp;
273 
274 	if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
275 		panic("vm_fault: fault on nofault entry, addr: %lx",
276 		    (u_long)vaddr);
277 	}
278 
279 	/*
280 	 * Make a reference to this object to prevent its disposal while we
281 	 * are messing with it.  Once we have the reference, the map is free
282 	 * to be diddled.  Since objects reference their shadows (and copies),
283 	 * they will stay around as well.
284 	 *
285 	 * Bump the paging-in-progress count to prevent size changes (e.g.
286 	 * truncation operations) during I/O.  This must be done after
287 	 * obtaining the vnode lock in order to avoid possible deadlocks.
288 	 *
289 	 * XXX vnode_pager_lock() can block without releasing the map lock.
290 	 */
291 	if (fs.first_object->flags & OBJ_NEEDGIANT)
292 		mtx_lock(&Giant);
293 	VM_OBJECT_LOCK(fs.first_object);
294 	vm_object_reference_locked(fs.first_object);
295 	fs.vp = vnode_pager_lock(fs.first_object);
296 	KASSERT(fs.vp == NULL || !fs.map->system_map,
297 	    ("vm_fault: vnode-backed object mapped by system map"));
298 	KASSERT((fs.first_object->flags & OBJ_NEEDGIANT) == 0 ||
299 	    !fs.map->system_map,
300 	    ("vm_fault: Object requiring giant mapped by system map"));
301 	if (fs.first_object->flags & OBJ_NEEDGIANT)
302 		mtx_unlock(&Giant);
303 	vm_object_pip_add(fs.first_object, 1);
304 
305 	fs.lookup_still_valid = TRUE;
306 
307 	if (wired)
308 		fault_type = prot;
309 
310 	fs.first_m = NULL;
311 
312 	/*
313 	 * Search for the page at object/offset.
314 	 */
315 	fs.object = fs.first_object;
316 	fs.pindex = fs.first_pindex;
317 	while (TRUE) {
318 		/*
319 		 * If the object is dead, we stop here
320 		 */
321 		if (fs.object->flags & OBJ_DEAD) {
322 			unlock_and_deallocate(&fs);
323 			return (KERN_PROTECTION_FAILURE);
324 		}
325 
326 		/*
327 		 * See if page is resident
328 		 */
329 		fs.m = vm_page_lookup(fs.object, fs.pindex);
330 		if (fs.m != NULL) {
331 			int queue;
332 
333 			/*
334 			 * check for page-based copy on write.
335 			 * We check fs.object == fs.first_object so
336 			 * as to ensure the legacy COW mechanism is
337 			 * used when the page in question is part of
338 			 * a shadow object.  Otherwise, vm_page_cowfault()
339 			 * removes the page from the backing object,
340 			 * which is not what we want.
341 			 */
342 			vm_page_lock_queues();
343 			if ((fs.m->cow) &&
344 			    (fault_type & VM_PROT_WRITE) &&
345 			    (fs.object == fs.first_object)) {
346 				vm_page_cowfault(fs.m);
347 				vm_page_unlock_queues();
348 				unlock_and_deallocate(&fs);
349 				goto RetryFault;
350 			}
351 
352 			/*
353 			 * Wait/Retry if the page is busy.  We have to do this
354 			 * if the page is busy via either PG_BUSY or
355 			 * vm_page_t->busy because the vm_pager may be using
356 			 * vm_page_t->busy for pageouts ( and even pageins if
357 			 * it is the vnode pager ), and we could end up trying
358 			 * to pagein and pageout the same page simultaneously.
359 			 *
360 			 * We can theoretically allow the busy case on a read
361 			 * fault if the page is marked valid, but since such
362 			 * pages are typically already pmap'd, putting that
363 			 * special case in might be more effort then it is
364 			 * worth.  We cannot under any circumstances mess
365 			 * around with a vm_page_t->busy page except, perhaps,
366 			 * to pmap it.
367 			 */
368 			if ((fs.m->flags & PG_BUSY) || fs.m->busy) {
369 				vm_page_unlock_queues();
370 				VM_OBJECT_UNLOCK(fs.object);
371 				if (fs.object != fs.first_object) {
372 					VM_OBJECT_LOCK(fs.first_object);
373 					vm_page_lock_queues();
374 					vm_page_free(fs.first_m);
375 					vm_page_unlock_queues();
376 					vm_object_pip_wakeup(fs.first_object);
377 					VM_OBJECT_UNLOCK(fs.first_object);
378 					fs.first_m = NULL;
379 				}
380 				unlock_map(&fs);
381 				if (fs.vp != NULL) {
382 					int vfslck;
383 
384 					vfslck = VFS_LOCK_GIANT(fs.vp->v_mount);
385 					vput(fs.vp);
386 					fs.vp = NULL;
387 					VFS_UNLOCK_GIANT(vfslck);
388 				}
389 				VM_OBJECT_LOCK(fs.object);
390 				if (fs.m == vm_page_lookup(fs.object,
391 				    fs.pindex)) {
392 					vm_page_lock_queues();
393 					if (!vm_page_sleep_if_busy(fs.m, TRUE,
394 					    "vmpfw"))
395 						vm_page_unlock_queues();
396 				}
397 				vm_object_pip_wakeup(fs.object);
398 				VM_OBJECT_UNLOCK(fs.object);
399 				atomic_add_int(&cnt.v_intrans, 1);
400 				vm_object_deallocate(fs.first_object);
401 				goto RetryFault;
402 			}
403 			queue = fs.m->queue;
404 
405 			vm_pageq_remove_nowakeup(fs.m);
406 
407 			if (VM_PAGE_RESOLVEQUEUE(fs.m, queue) == PQ_CACHE &&
408 			    vm_page_count_severe()) {
409 				vm_page_activate(fs.m);
410 				vm_page_unlock_queues();
411 				unlock_and_deallocate(&fs);
412 				VM_WAITPFAULT;
413 				goto RetryFault;
414 			}
415 
416 			/*
417 			 * Mark page busy for other processes, and the
418 			 * pagedaemon.  If it still isn't completely valid
419 			 * (readable), jump to readrest, else break-out ( we
420 			 * found the page ).
421 			 */
422 			vm_page_busy(fs.m);
423 			vm_page_unlock_queues();
424 			if (((fs.m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) &&
425 				fs.m->object != kernel_object && fs.m->object != kmem_object) {
426 				goto readrest;
427 			}
428 
429 			break;
430 		}
431 
432 		/*
433 		 * Page is not resident, If this is the search termination
434 		 * or the pager might contain the page, allocate a new page.
435 		 */
436 		if (TRYPAGER || fs.object == fs.first_object) {
437 			if (fs.pindex >= fs.object->size) {
438 				unlock_and_deallocate(&fs);
439 				return (KERN_PROTECTION_FAILURE);
440 			}
441 
442 			/*
443 			 * Allocate a new page for this object/offset pair.
444 			 */
445 			fs.m = NULL;
446 			if (!vm_page_count_severe()) {
447 				fs.m = vm_page_alloc(fs.object, fs.pindex,
448 				    (fs.vp || fs.object->backing_object)? VM_ALLOC_NORMAL: VM_ALLOC_ZERO);
449 			}
450 			if (fs.m == NULL) {
451 				unlock_and_deallocate(&fs);
452 				VM_WAITPFAULT;
453 				goto RetryFault;
454 			}
455 		}
456 
457 readrest:
458 		/*
459 		 * We have found a valid page or we have allocated a new page.
460 		 * The page thus may not be valid or may not be entirely
461 		 * valid.
462 		 *
463 		 * Attempt to fault-in the page if there is a chance that the
464 		 * pager has it, and potentially fault in additional pages
465 		 * at the same time.
466 		 */
467 		if (TRYPAGER) {
468 			int rv;
469 			int reqpage;
470 			int ahead, behind;
471 			u_char behavior = vm_map_entry_behavior(fs.entry);
472 
473 			if (behavior == MAP_ENTRY_BEHAV_RANDOM) {
474 				ahead = 0;
475 				behind = 0;
476 			} else {
477 				behind = (vaddr - fs.entry->start) >> PAGE_SHIFT;
478 				if (behind > VM_FAULT_READ_BEHIND)
479 					behind = VM_FAULT_READ_BEHIND;
480 
481 				ahead = ((fs.entry->end - vaddr) >> PAGE_SHIFT) - 1;
482 				if (ahead > VM_FAULT_READ_AHEAD)
483 					ahead = VM_FAULT_READ_AHEAD;
484 			}
485 			is_first_object_locked = FALSE;
486 			if ((behavior == MAP_ENTRY_BEHAV_SEQUENTIAL ||
487 			     (behavior != MAP_ENTRY_BEHAV_RANDOM &&
488 			      fs.pindex >= fs.entry->lastr &&
489 			      fs.pindex < fs.entry->lastr + VM_FAULT_READ)) &&
490 			    (fs.first_object == fs.object ||
491 			     (is_first_object_locked = VM_OBJECT_TRYLOCK(fs.first_object))) &&
492 			    fs.first_object->type != OBJT_DEVICE) {
493 				vm_pindex_t firstpindex, tmppindex;
494 
495 				if (fs.first_pindex < 2 * VM_FAULT_READ)
496 					firstpindex = 0;
497 				else
498 					firstpindex = fs.first_pindex - 2 * VM_FAULT_READ;
499 
500 				vm_page_lock_queues();
501 				/*
502 				 * note: partially valid pages cannot be
503 				 * included in the lookahead - NFS piecemeal
504 				 * writes will barf on it badly.
505 				 */
506 				for (tmppindex = fs.first_pindex - 1;
507 					tmppindex >= firstpindex;
508 					--tmppindex) {
509 					vm_page_t mt;
510 
511 					mt = vm_page_lookup(fs.first_object, tmppindex);
512 					if (mt == NULL || (mt->valid != VM_PAGE_BITS_ALL))
513 						break;
514 					if (mt->busy ||
515 						(mt->flags & (PG_BUSY | PG_FICTITIOUS | PG_UNMANAGED)) ||
516 						mt->hold_count ||
517 						mt->wire_count)
518 						continue;
519 					pmap_remove_all(mt);
520 					if (mt->dirty) {
521 						vm_page_deactivate(mt);
522 					} else {
523 						vm_page_cache(mt);
524 					}
525 				}
526 				vm_page_unlock_queues();
527 				ahead += behind;
528 				behind = 0;
529 			}
530 			if (is_first_object_locked)
531 				VM_OBJECT_UNLOCK(fs.first_object);
532 			/*
533 			 * now we find out if any other pages should be paged
534 			 * in at this time this routine checks to see if the
535 			 * pages surrounding this fault reside in the same
536 			 * object as the page for this fault.  If they do,
537 			 * then they are faulted in also into the object.  The
538 			 * array "marray" returned contains an array of
539 			 * vm_page_t structs where one of them is the
540 			 * vm_page_t passed to the routine.  The reqpage
541 			 * return value is the index into the marray for the
542 			 * vm_page_t passed to the routine.
543 			 *
544 			 * fs.m plus the additional pages are PG_BUSY'd.
545 			 *
546 			 * XXX vm_fault_additional_pages() can block
547 			 * without releasing the map lock.
548 			 */
549 			faultcount = vm_fault_additional_pages(
550 			    fs.m, behind, ahead, marray, &reqpage);
551 
552 			/*
553 			 * update lastr imperfectly (we do not know how much
554 			 * getpages will actually read), but good enough.
555 			 *
556 			 * XXX The following assignment modifies the map
557 			 * without holding a write lock on it.
558 			 */
559 			fs.entry->lastr = fs.pindex + faultcount - behind;
560 
561 			/*
562 			 * Call the pager to retrieve the data, if any, after
563 			 * releasing the lock on the map.  We hold a ref on
564 			 * fs.object and the pages are PG_BUSY'd.
565 			 */
566 			unlock_map(&fs);
567 
568 			rv = faultcount ?
569 			    vm_pager_get_pages(fs.object, marray, faultcount,
570 				reqpage) : VM_PAGER_FAIL;
571 
572 			if (rv == VM_PAGER_OK) {
573 				/*
574 				 * Found the page. Leave it busy while we play
575 				 * with it.
576 				 */
577 
578 				/*
579 				 * Relookup in case pager changed page. Pager
580 				 * is responsible for disposition of old page
581 				 * if moved.
582 				 */
583 				fs.m = vm_page_lookup(fs.object, fs.pindex);
584 				if (!fs.m) {
585 					unlock_and_deallocate(&fs);
586 					goto RetryFault;
587 				}
588 
589 				hardfault++;
590 				break; /* break to PAGE HAS BEEN FOUND */
591 			}
592 			/*
593 			 * Remove the bogus page (which does not exist at this
594 			 * object/offset); before doing so, we must get back
595 			 * our object lock to preserve our invariant.
596 			 *
597 			 * Also wake up any other process that may want to bring
598 			 * in this page.
599 			 *
600 			 * If this is the top-level object, we must leave the
601 			 * busy page to prevent another process from rushing
602 			 * past us, and inserting the page in that object at
603 			 * the same time that we are.
604 			 */
605 			if (rv == VM_PAGER_ERROR)
606 				printf("vm_fault: pager read error, pid %d (%s)\n",
607 				    curproc->p_pid, curproc->p_comm);
608 			/*
609 			 * Data outside the range of the pager or an I/O error
610 			 */
611 			/*
612 			 * XXX - the check for kernel_map is a kludge to work
613 			 * around having the machine panic on a kernel space
614 			 * fault w/ I/O error.
615 			 */
616 			if (((fs.map != kernel_map) && (rv == VM_PAGER_ERROR)) ||
617 				(rv == VM_PAGER_BAD)) {
618 				vm_page_lock_queues();
619 				vm_page_free(fs.m);
620 				vm_page_unlock_queues();
621 				fs.m = NULL;
622 				unlock_and_deallocate(&fs);
623 				return ((rv == VM_PAGER_ERROR) ? KERN_FAILURE : KERN_PROTECTION_FAILURE);
624 			}
625 			if (fs.object != fs.first_object) {
626 				vm_page_lock_queues();
627 				vm_page_free(fs.m);
628 				vm_page_unlock_queues();
629 				fs.m = NULL;
630 				/*
631 				 * XXX - we cannot just fall out at this
632 				 * point, m has been freed and is invalid!
633 				 */
634 			}
635 		}
636 
637 		/*
638 		 * We get here if the object has default pager (or unwiring)
639 		 * or the pager doesn't have the page.
640 		 */
641 		if (fs.object == fs.first_object)
642 			fs.first_m = fs.m;
643 
644 		/*
645 		 * Move on to the next object.  Lock the next object before
646 		 * unlocking the current one.
647 		 */
648 		fs.pindex += OFF_TO_IDX(fs.object->backing_object_offset);
649 		next_object = fs.object->backing_object;
650 		if (next_object == NULL) {
651 			/*
652 			 * If there's no object left, fill the page in the top
653 			 * object with zeros.
654 			 */
655 			if (fs.object != fs.first_object) {
656 				vm_object_pip_wakeup(fs.object);
657 				VM_OBJECT_UNLOCK(fs.object);
658 
659 				fs.object = fs.first_object;
660 				fs.pindex = fs.first_pindex;
661 				fs.m = fs.first_m;
662 				VM_OBJECT_LOCK(fs.object);
663 			}
664 			fs.first_m = NULL;
665 
666 			/*
667 			 * Zero the page if necessary and mark it valid.
668 			 */
669 			if ((fs.m->flags & PG_ZERO) == 0) {
670 				pmap_zero_page(fs.m);
671 			} else {
672 				atomic_add_int(&cnt.v_ozfod, 1);
673 			}
674 			atomic_add_int(&cnt.v_zfod, 1);
675 			fs.m->valid = VM_PAGE_BITS_ALL;
676 			break;	/* break to PAGE HAS BEEN FOUND */
677 		} else {
678 			KASSERT(fs.object != next_object,
679 			    ("object loop %p", next_object));
680 			VM_OBJECT_LOCK(next_object);
681 			vm_object_pip_add(next_object, 1);
682 			if (fs.object != fs.first_object)
683 				vm_object_pip_wakeup(fs.object);
684 			VM_OBJECT_UNLOCK(fs.object);
685 			fs.object = next_object;
686 		}
687 	}
688 
689 	KASSERT((fs.m->flags & PG_BUSY) != 0,
690 	    ("vm_fault: not busy after main loop"));
691 
692 	/*
693 	 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
694 	 * is held.]
695 	 */
696 
697 	/*
698 	 * If the page is being written, but isn't already owned by the
699 	 * top-level object, we have to copy it into a new page owned by the
700 	 * top-level object.
701 	 */
702 	if (fs.object != fs.first_object) {
703 		/*
704 		 * We only really need to copy if we want to write it.
705 		 */
706 		if (fault_type & VM_PROT_WRITE) {
707 			/*
708 			 * This allows pages to be virtually copied from a
709 			 * backing_object into the first_object, where the
710 			 * backing object has no other refs to it, and cannot
711 			 * gain any more refs.  Instead of a bcopy, we just
712 			 * move the page from the backing object to the
713 			 * first object.  Note that we must mark the page
714 			 * dirty in the first object so that it will go out
715 			 * to swap when needed.
716 			 */
717 			is_first_object_locked = FALSE;
718 			if (
719 				/*
720 				 * Only one shadow object
721 				 */
722 				(fs.object->shadow_count == 1) &&
723 				/*
724 				 * No COW refs, except us
725 				 */
726 				(fs.object->ref_count == 1) &&
727 				/*
728 				 * No one else can look this object up
729 				 */
730 				(fs.object->handle == NULL) &&
731 				/*
732 				 * No other ways to look the object up
733 				 */
734 				((fs.object->type == OBJT_DEFAULT) ||
735 				 (fs.object->type == OBJT_SWAP)) &&
736 			    (is_first_object_locked = VM_OBJECT_TRYLOCK(fs.first_object)) &&
737 				/*
738 				 * We don't chase down the shadow chain
739 				 */
740 			    fs.object == fs.first_object->backing_object) {
741 				vm_page_lock_queues();
742 				/*
743 				 * get rid of the unnecessary page
744 				 */
745 				vm_page_free(fs.first_m);
746 				/*
747 				 * grab the page and put it into the
748 				 * process'es object.  The page is
749 				 * automatically made dirty.
750 				 */
751 				vm_page_rename(fs.m, fs.first_object, fs.first_pindex);
752 				vm_page_busy(fs.m);
753 				vm_page_unlock_queues();
754 				fs.first_m = fs.m;
755 				fs.m = NULL;
756 				atomic_add_int(&cnt.v_cow_optim, 1);
757 			} else {
758 				/*
759 				 * Oh, well, lets copy it.
760 				 */
761 				pmap_copy_page(fs.m, fs.first_m);
762 				fs.first_m->valid = VM_PAGE_BITS_ALL;
763 			}
764 			if (fs.m) {
765 				/*
766 				 * We no longer need the old page or object.
767 				 */
768 				release_page(&fs);
769 			}
770 			/*
771 			 * fs.object != fs.first_object due to above
772 			 * conditional
773 			 */
774 			vm_object_pip_wakeup(fs.object);
775 			VM_OBJECT_UNLOCK(fs.object);
776 			/*
777 			 * Only use the new page below...
778 			 */
779 			fs.object = fs.first_object;
780 			fs.pindex = fs.first_pindex;
781 			fs.m = fs.first_m;
782 			if (!is_first_object_locked)
783 				VM_OBJECT_LOCK(fs.object);
784 			atomic_add_int(&cnt.v_cow_faults, 1);
785 		} else {
786 			prot &= ~VM_PROT_WRITE;
787 		}
788 	}
789 
790 	/*
791 	 * We must verify that the maps have not changed since our last
792 	 * lookup.
793 	 */
794 	if (!fs.lookup_still_valid) {
795 		vm_object_t retry_object;
796 		vm_pindex_t retry_pindex;
797 		vm_prot_t retry_prot;
798 
799 		if (!vm_map_trylock_read(fs.map)) {
800 			release_page(&fs);
801 			unlock_and_deallocate(&fs);
802 			goto RetryFault;
803 		}
804 		fs.lookup_still_valid = TRUE;
805 		if (fs.map->timestamp != map_generation) {
806 			result = vm_map_lookup_locked(&fs.map, vaddr, fault_type,
807 			    &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
808 
809 			/*
810 			 * If we don't need the page any longer, put it on the inactive
811 			 * list (the easiest thing to do here).  If no one needs it,
812 			 * pageout will grab it eventually.
813 			 */
814 			if (result != KERN_SUCCESS) {
815 				release_page(&fs);
816 				unlock_and_deallocate(&fs);
817 
818 				/*
819 				 * If retry of map lookup would have blocked then
820 				 * retry fault from start.
821 				 */
822 				if (result == KERN_FAILURE)
823 					goto RetryFault;
824 				return (result);
825 			}
826 			if ((retry_object != fs.first_object) ||
827 			    (retry_pindex != fs.first_pindex)) {
828 				release_page(&fs);
829 				unlock_and_deallocate(&fs);
830 				goto RetryFault;
831 			}
832 
833 			/*
834 			 * Check whether the protection has changed or the object has
835 			 * been copied while we left the map unlocked. Changing from
836 			 * read to write permission is OK - we leave the page
837 			 * write-protected, and catch the write fault. Changing from
838 			 * write to read permission means that we can't mark the page
839 			 * write-enabled after all.
840 			 */
841 			prot &= retry_prot;
842 		}
843 	}
844 	if (prot & VM_PROT_WRITE) {
845 		vm_page_lock_queues();
846 		vm_page_flag_set(fs.m, PG_WRITEABLE);
847 		vm_object_set_writeable_dirty(fs.m->object);
848 
849 		/*
850 		 * If the fault is a write, we know that this page is being
851 		 * written NOW so dirty it explicitly to save on
852 		 * pmap_is_modified() calls later.
853 		 *
854 		 * If this is a NOSYNC mmap we do not want to set PG_NOSYNC
855 		 * if the page is already dirty to prevent data written with
856 		 * the expectation of being synced from not being synced.
857 		 * Likewise if this entry does not request NOSYNC then make
858 		 * sure the page isn't marked NOSYNC.  Applications sharing
859 		 * data should use the same flags to avoid ping ponging.
860 		 *
861 		 * Also tell the backing pager, if any, that it should remove
862 		 * any swap backing since the page is now dirty.
863 		 */
864 		if (fs.entry->eflags & MAP_ENTRY_NOSYNC) {
865 			if (fs.m->dirty == 0)
866 				vm_page_flag_set(fs.m, PG_NOSYNC);
867 		} else {
868 			vm_page_flag_clear(fs.m, PG_NOSYNC);
869 		}
870 		vm_page_unlock_queues();
871 		if (fault_flags & VM_FAULT_DIRTY) {
872 			vm_page_dirty(fs.m);
873 			vm_pager_page_unswapped(fs.m);
874 		}
875 	}
876 
877 	/*
878 	 * Page had better still be busy
879 	 */
880 	KASSERT(fs.m->flags & PG_BUSY,
881 		("vm_fault: page %p not busy!", fs.m));
882 	/*
883 	 * Sanity check: page must be completely valid or it is not fit to
884 	 * map into user space.  vm_pager_get_pages() ensures this.
885 	 */
886 	if (fs.m->valid != VM_PAGE_BITS_ALL) {
887 		vm_page_zero_invalid(fs.m, TRUE);
888 		printf("Warning: page %p partially invalid on fault\n", fs.m);
889 	}
890 	VM_OBJECT_UNLOCK(fs.object);
891 
892 	/*
893 	 * Put this page into the physical map.  We had to do the unlock above
894 	 * because pmap_enter() may sleep.  We don't put the page
895 	 * back on the active queue until later so that the pageout daemon
896 	 * won't find it (yet).
897 	 */
898 	pmap_enter(fs.map->pmap, vaddr, fs.m, prot, wired);
899 	if (((fault_flags & VM_FAULT_WIRE_MASK) == 0) && (wired == 0)) {
900 		vm_fault_prefault(fs.map->pmap, vaddr, fs.entry);
901 	}
902 	VM_OBJECT_LOCK(fs.object);
903 	vm_page_lock_queues();
904 	vm_page_flag_set(fs.m, PG_REFERENCED);
905 
906 	/*
907 	 * If the page is not wired down, then put it where the pageout daemon
908 	 * can find it.
909 	 */
910 	if (fault_flags & VM_FAULT_WIRE_MASK) {
911 		if (wired)
912 			vm_page_wire(fs.m);
913 		else
914 			vm_page_unwire(fs.m, 1);
915 	} else {
916 		vm_page_activate(fs.m);
917 	}
918 	vm_page_wakeup(fs.m);
919 	vm_page_unlock_queues();
920 
921 	/*
922 	 * Unlock everything, and return
923 	 */
924 	unlock_and_deallocate(&fs);
925 	PROC_LOCK(curproc);
926 	if ((curproc->p_sflag & PS_INMEM) && curproc->p_stats) {
927 		if (hardfault) {
928 			curproc->p_stats->p_ru.ru_majflt++;
929 		} else {
930 			curproc->p_stats->p_ru.ru_minflt++;
931 		}
932 	}
933 	PROC_UNLOCK(curproc);
934 
935 	return (KERN_SUCCESS);
936 }
937 
938 /*
939  * vm_fault_prefault provides a quick way of clustering
940  * pagefaults into a processes address space.  It is a "cousin"
941  * of vm_map_pmap_enter, except it runs at page fault time instead
942  * of mmap time.
943  */
944 static void
945 vm_fault_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry)
946 {
947 	int i;
948 	vm_offset_t addr, starta;
949 	vm_pindex_t pindex;
950 	vm_page_t m;
951 	vm_object_t object;
952 
953 	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
954 		return;
955 
956 	object = entry->object.vm_object;
957 
958 	starta = addra - PFBAK * PAGE_SIZE;
959 	if (starta < entry->start) {
960 		starta = entry->start;
961 	} else if (starta > addra) {
962 		starta = 0;
963 	}
964 
965 	for (i = 0; i < PAGEORDER_SIZE; i++) {
966 		vm_object_t backing_object, lobject;
967 
968 		addr = addra + prefault_pageorder[i];
969 		if (addr > addra + (PFFOR * PAGE_SIZE))
970 			addr = 0;
971 
972 		if (addr < starta || addr >= entry->end)
973 			continue;
974 
975 		if (!pmap_is_prefaultable(pmap, addr))
976 			continue;
977 
978 		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
979 		lobject = object;
980 		VM_OBJECT_LOCK(lobject);
981 		while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
982 		    lobject->type == OBJT_DEFAULT &&
983 		    (backing_object = lobject->backing_object) != NULL) {
984 			if (lobject->backing_object_offset & PAGE_MASK)
985 				break;
986 			pindex += lobject->backing_object_offset >> PAGE_SHIFT;
987 			VM_OBJECT_LOCK(backing_object);
988 			VM_OBJECT_UNLOCK(lobject);
989 			lobject = backing_object;
990 		}
991 		/*
992 		 * give-up when a page is not in memory
993 		 */
994 		if (m == NULL) {
995 			VM_OBJECT_UNLOCK(lobject);
996 			break;
997 		}
998 		if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
999 			(m->busy == 0) &&
1000 		    (m->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
1001 
1002 			vm_page_lock_queues();
1003 			if (VM_PAGE_INQUEUE1(m, PQ_CACHE))
1004 				vm_page_deactivate(m);
1005 			pmap_enter_quick(pmap, addr, m, entry->protection);
1006 			vm_page_unlock_queues();
1007 		}
1008 		VM_OBJECT_UNLOCK(lobject);
1009 	}
1010 }
1011 
1012 /*
1013  *	vm_fault_quick:
1014  *
1015  *	Ensure that the requested virtual address, which may be in userland,
1016  *	is valid.  Fault-in the page if necessary.  Return -1 on failure.
1017  */
1018 int
1019 vm_fault_quick(caddr_t v, int prot)
1020 {
1021 	int r;
1022 
1023 	if (prot & VM_PROT_WRITE)
1024 		r = subyte(v, fubyte(v));
1025 	else
1026 		r = fubyte(v);
1027 	return(r);
1028 }
1029 
1030 /*
1031  *	vm_fault_wire:
1032  *
1033  *	Wire down a range of virtual addresses in a map.
1034  */
1035 int
1036 vm_fault_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
1037     boolean_t user_wire, boolean_t fictitious)
1038 {
1039 	vm_offset_t va;
1040 	int rv;
1041 
1042 	/*
1043 	 * We simulate a fault to get the page and enter it in the physical
1044 	 * map.  For user wiring, we only ask for read access on currently
1045 	 * read-only sections.
1046 	 */
1047 	for (va = start; va < end; va += PAGE_SIZE) {
1048 		rv = vm_fault(map, va,
1049 		    user_wire ? VM_PROT_READ : VM_PROT_READ | VM_PROT_WRITE,
1050 		    user_wire ? VM_FAULT_USER_WIRE : VM_FAULT_CHANGE_WIRING);
1051 		if (rv) {
1052 			if (va != start)
1053 				vm_fault_unwire(map, start, va, fictitious);
1054 			return (rv);
1055 		}
1056 	}
1057 	return (KERN_SUCCESS);
1058 }
1059 
1060 /*
1061  *	vm_fault_unwire:
1062  *
1063  *	Unwire a range of virtual addresses in a map.
1064  */
1065 void
1066 vm_fault_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
1067     boolean_t fictitious)
1068 {
1069 	vm_paddr_t pa;
1070 	vm_offset_t va;
1071 	pmap_t pmap;
1072 
1073 	pmap = vm_map_pmap(map);
1074 
1075 	/*
1076 	 * Since the pages are wired down, we must be able to get their
1077 	 * mappings from the physical map system.
1078 	 */
1079 	for (va = start; va < end; va += PAGE_SIZE) {
1080 		pa = pmap_extract(pmap, va);
1081 		if (pa != 0) {
1082 			pmap_change_wiring(pmap, va, FALSE);
1083 			if (!fictitious) {
1084 				vm_page_lock_queues();
1085 				vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1);
1086 				vm_page_unlock_queues();
1087 			}
1088 		}
1089 	}
1090 }
1091 
1092 /*
1093  *	Routine:
1094  *		vm_fault_copy_entry
1095  *	Function:
1096  *		Copy all of the pages from a wired-down map entry to another.
1097  *
1098  *	In/out conditions:
1099  *		The source and destination maps must be locked for write.
1100  *		The source map entry must be wired down (or be a sharing map
1101  *		entry corresponding to a main map entry that is wired down).
1102  */
1103 void
1104 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry)
1105 	vm_map_t dst_map;
1106 	vm_map_t src_map;
1107 	vm_map_entry_t dst_entry;
1108 	vm_map_entry_t src_entry;
1109 {
1110 	vm_object_t backing_object, dst_object, object;
1111 	vm_object_t src_object;
1112 	vm_ooffset_t dst_offset;
1113 	vm_ooffset_t src_offset;
1114 	vm_pindex_t pindex;
1115 	vm_prot_t prot;
1116 	vm_offset_t vaddr;
1117 	vm_page_t dst_m;
1118 	vm_page_t src_m;
1119 
1120 #ifdef	lint
1121 	src_map++;
1122 #endif	/* lint */
1123 
1124 	src_object = src_entry->object.vm_object;
1125 	src_offset = src_entry->offset;
1126 
1127 	/*
1128 	 * Create the top-level object for the destination entry. (Doesn't
1129 	 * actually shadow anything - we copy the pages directly.)
1130 	 */
1131 	dst_object = vm_object_allocate(OBJT_DEFAULT,
1132 	    OFF_TO_IDX(dst_entry->end - dst_entry->start));
1133 
1134 	VM_OBJECT_LOCK(dst_object);
1135 	dst_entry->object.vm_object = dst_object;
1136 	dst_entry->offset = 0;
1137 
1138 	prot = dst_entry->max_protection;
1139 
1140 	/*
1141 	 * Loop through all of the pages in the entry's range, copying each
1142 	 * one from the source object (it should be there) to the destination
1143 	 * object.
1144 	 */
1145 	for (vaddr = dst_entry->start, dst_offset = 0;
1146 	    vaddr < dst_entry->end;
1147 	    vaddr += PAGE_SIZE, dst_offset += PAGE_SIZE) {
1148 
1149 		/*
1150 		 * Allocate a page in the destination object
1151 		 */
1152 		do {
1153 			dst_m = vm_page_alloc(dst_object,
1154 				OFF_TO_IDX(dst_offset), VM_ALLOC_NORMAL);
1155 			if (dst_m == NULL) {
1156 				VM_OBJECT_UNLOCK(dst_object);
1157 				VM_WAIT;
1158 				VM_OBJECT_LOCK(dst_object);
1159 			}
1160 		} while (dst_m == NULL);
1161 
1162 		/*
1163 		 * Find the page in the source object, and copy it in.
1164 		 * (Because the source is wired down, the page will be in
1165 		 * memory.)
1166 		 */
1167 		VM_OBJECT_LOCK(src_object);
1168 		object = src_object;
1169 		pindex = 0;
1170 		while ((src_m = vm_page_lookup(object, pindex +
1171 		    OFF_TO_IDX(dst_offset + src_offset))) == NULL &&
1172 		    (src_entry->protection & VM_PROT_WRITE) == 0 &&
1173 		    (backing_object = object->backing_object) != NULL) {
1174 			/*
1175 			 * Allow fallback to backing objects if we are reading.
1176 			 */
1177 			VM_OBJECT_LOCK(backing_object);
1178 			pindex += OFF_TO_IDX(object->backing_object_offset);
1179 			VM_OBJECT_UNLOCK(object);
1180 			object = backing_object;
1181 		}
1182 		if (src_m == NULL)
1183 			panic("vm_fault_copy_wired: page missing");
1184 		pmap_copy_page(src_m, dst_m);
1185 		VM_OBJECT_UNLOCK(object);
1186 		dst_m->valid = VM_PAGE_BITS_ALL;
1187 		VM_OBJECT_UNLOCK(dst_object);
1188 
1189 		/*
1190 		 * Enter it in the pmap...
1191 		 */
1192 		pmap_enter(dst_map->pmap, vaddr, dst_m, prot, FALSE);
1193 		VM_OBJECT_LOCK(dst_object);
1194 		vm_page_lock_queues();
1195 		if ((prot & VM_PROT_WRITE) != 0)
1196 			vm_page_flag_set(dst_m, PG_WRITEABLE);
1197 
1198 		/*
1199 		 * Mark it no longer busy, and put it on the active list.
1200 		 */
1201 		vm_page_activate(dst_m);
1202 		vm_page_wakeup(dst_m);
1203 		vm_page_unlock_queues();
1204 	}
1205 	VM_OBJECT_UNLOCK(dst_object);
1206 }
1207 
1208 
1209 /*
1210  * This routine checks around the requested page for other pages that
1211  * might be able to be faulted in.  This routine brackets the viable
1212  * pages for the pages to be paged in.
1213  *
1214  * Inputs:
1215  *	m, rbehind, rahead
1216  *
1217  * Outputs:
1218  *  marray (array of vm_page_t), reqpage (index of requested page)
1219  *
1220  * Return value:
1221  *  number of pages in marray
1222  *
1223  * This routine can't block.
1224  */
1225 static int
1226 vm_fault_additional_pages(m, rbehind, rahead, marray, reqpage)
1227 	vm_page_t m;
1228 	int rbehind;
1229 	int rahead;
1230 	vm_page_t *marray;
1231 	int *reqpage;
1232 {
1233 	int i,j;
1234 	vm_object_t object;
1235 	vm_pindex_t pindex, startpindex, endpindex, tpindex;
1236 	vm_page_t rtm;
1237 	int cbehind, cahead;
1238 
1239 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1240 
1241 	object = m->object;
1242 	pindex = m->pindex;
1243 
1244 	/*
1245 	 * we don't fault-ahead for device pager
1246 	 */
1247 	if (object->type == OBJT_DEVICE) {
1248 		*reqpage = 0;
1249 		marray[0] = m;
1250 		return 1;
1251 	}
1252 
1253 	/*
1254 	 * if the requested page is not available, then give up now
1255 	 */
1256 	if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
1257 		return 0;
1258 	}
1259 
1260 	if ((cbehind == 0) && (cahead == 0)) {
1261 		*reqpage = 0;
1262 		marray[0] = m;
1263 		return 1;
1264 	}
1265 
1266 	if (rahead > cahead) {
1267 		rahead = cahead;
1268 	}
1269 
1270 	if (rbehind > cbehind) {
1271 		rbehind = cbehind;
1272 	}
1273 
1274 	/*
1275 	 * try to do any readahead that we might have free pages for.
1276 	 */
1277 	if ((rahead + rbehind) >
1278 		((cnt.v_free_count + cnt.v_cache_count) - cnt.v_free_reserved)) {
1279 		pagedaemon_wakeup();
1280 		marray[0] = m;
1281 		*reqpage = 0;
1282 		return 1;
1283 	}
1284 
1285 	/*
1286 	 * scan backward for the read behind pages -- in memory
1287 	 */
1288 	if (pindex > 0) {
1289 		if (rbehind > pindex) {
1290 			rbehind = pindex;
1291 			startpindex = 0;
1292 		} else {
1293 			startpindex = pindex - rbehind;
1294 		}
1295 
1296 		if ((rtm = TAILQ_PREV(m, pglist, listq)) != NULL &&
1297 		    rtm->pindex >= startpindex)
1298 			startpindex = rtm->pindex + 1;
1299 
1300 		for (i = 0, tpindex = startpindex; tpindex < pindex; i++, tpindex++) {
1301 
1302 			rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
1303 			if (rtm == NULL) {
1304 				vm_page_lock_queues();
1305 				for (j = 0; j < i; j++) {
1306 					vm_page_free(marray[j]);
1307 				}
1308 				vm_page_unlock_queues();
1309 				marray[0] = m;
1310 				*reqpage = 0;
1311 				return 1;
1312 			}
1313 
1314 			marray[i] = rtm;
1315 		}
1316 	} else {
1317 		startpindex = 0;
1318 		i = 0;
1319 	}
1320 
1321 	marray[i] = m;
1322 	/* page offset of the required page */
1323 	*reqpage = i;
1324 
1325 	tpindex = pindex + 1;
1326 	i++;
1327 
1328 	/*
1329 	 * scan forward for the read ahead pages
1330 	 */
1331 	endpindex = tpindex + rahead;
1332 	if ((rtm = TAILQ_NEXT(m, listq)) != NULL && rtm->pindex < endpindex)
1333 		endpindex = rtm->pindex;
1334 	if (endpindex > object->size)
1335 		endpindex = object->size;
1336 
1337 	for (; tpindex < endpindex; i++, tpindex++) {
1338 
1339 		rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
1340 		if (rtm == NULL) {
1341 			break;
1342 		}
1343 
1344 		marray[i] = rtm;
1345 	}
1346 
1347 	/* return number of bytes of pages */
1348 	return i;
1349 }
1350