1 /*- 2 * SPDX-License-Identifier: (BSD-4-Clause AND MIT-CMU) 3 * 4 * Copyright (c) 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * Copyright (c) 1994 John S. Dyson 7 * All rights reserved. 8 * Copyright (c) 1994 David Greenman 9 * All rights reserved. 10 * 11 * 12 * This code is derived from software contributed to Berkeley by 13 * The Mach Operating System project at Carnegie-Mellon University. 14 * 15 * Redistribution and use in source and binary forms, with or without 16 * modification, are permitted provided that the following conditions 17 * are met: 18 * 1. Redistributions of source code must retain the above copyright 19 * notice, this list of conditions and the following disclaimer. 20 * 2. Redistributions in binary form must reproduce the above copyright 21 * notice, this list of conditions and the following disclaimer in the 22 * documentation and/or other materials provided with the distribution. 23 * 3. All advertising materials mentioning features or use of this software 24 * must display the following acknowledgement: 25 * This product includes software developed by the University of 26 * California, Berkeley and its contributors. 27 * 4. Neither the name of the University nor the names of its contributors 28 * may be used to endorse or promote products derived from this software 29 * without specific prior written permission. 30 * 31 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 32 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 33 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 34 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 35 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 39 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 40 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 41 * SUCH DAMAGE. 42 * 43 * 44 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 45 * All rights reserved. 46 * 47 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 48 * 49 * Permission to use, copy, modify and distribute this software and 50 * its documentation is hereby granted, provided that both the copyright 51 * notice and this permission notice appear in all copies of the 52 * software, derivative works or modified versions, and any portions 53 * thereof, and that both notices appear in supporting documentation. 54 * 55 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 56 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 57 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 58 * 59 * Carnegie Mellon requests users of this software to return to 60 * 61 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 62 * School of Computer Science 63 * Carnegie Mellon University 64 * Pittsburgh PA 15213-3890 65 * 66 * any improvements or extensions that they make and grant Carnegie the 67 * rights to redistribute these changes. 68 */ 69 70 /* 71 * Page fault handling module. 72 */ 73 74 #include "opt_ktrace.h" 75 #include "opt_vm.h" 76 77 #include <sys/systm.h> 78 #include <sys/kernel.h> 79 #include <sys/lock.h> 80 #include <sys/mman.h> 81 #include <sys/mutex.h> 82 #include <sys/pctrie.h> 83 #include <sys/proc.h> 84 #include <sys/racct.h> 85 #include <sys/refcount.h> 86 #include <sys/resourcevar.h> 87 #include <sys/rwlock.h> 88 #include <sys/sched.h> 89 #include <sys/sf_buf.h> 90 #include <sys/signalvar.h> 91 #include <sys/sysctl.h> 92 #include <sys/sysent.h> 93 #include <sys/vmmeter.h> 94 #include <sys/vnode.h> 95 #ifdef KTRACE 96 #include <sys/ktrace.h> 97 #endif 98 99 #include <vm/vm.h> 100 #include <vm/vm_param.h> 101 #include <vm/pmap.h> 102 #include <vm/vm_map.h> 103 #include <vm/vm_object.h> 104 #include <vm/vm_page.h> 105 #include <vm/vm_pageout.h> 106 #include <vm/vm_kern.h> 107 #include <vm/vm_pager.h> 108 #include <vm/vm_radix.h> 109 #include <vm/vm_extern.h> 110 #include <vm/vm_reserv.h> 111 112 #define PFBAK 4 113 #define PFFOR 4 114 115 #define VM_FAULT_READ_DEFAULT (1 + VM_FAULT_READ_AHEAD_INIT) 116 117 #define VM_FAULT_DONTNEED_MIN 1048576 118 119 struct faultstate { 120 /* Fault parameters. */ 121 vm_offset_t vaddr; 122 vm_page_t *m_hold; 123 vm_prot_t fault_type; 124 vm_prot_t prot; 125 int fault_flags; 126 boolean_t wired; 127 128 /* Control state. */ 129 struct timeval oom_start_time; 130 bool oom_started; 131 int nera; 132 bool can_read_lock; 133 134 /* Page reference for cow. */ 135 vm_page_t m_cow; 136 137 /* Current object. */ 138 vm_object_t object; 139 vm_pindex_t pindex; 140 vm_page_t m; 141 bool m_needs_zeroing; 142 143 /* Top-level map object. */ 144 vm_object_t first_object; 145 vm_pindex_t first_pindex; 146 vm_page_t first_m; 147 148 /* Map state. */ 149 vm_map_t map; 150 vm_map_entry_t entry; 151 int map_generation; 152 bool lookup_still_valid; 153 154 /* Vnode if locked. */ 155 struct vnode *vp; 156 }; 157 158 /* 159 * Return codes for internal fault routines. 160 */ 161 enum fault_status { 162 FAULT_SUCCESS = 10000, /* Return success to user. */ 163 FAULT_FAILURE, /* Return failure to user. */ 164 FAULT_CONTINUE, /* Continue faulting. */ 165 FAULT_RESTART, /* Restart fault. */ 166 FAULT_OUT_OF_BOUNDS, /* Invalid address for pager. */ 167 FAULT_HARD, /* Performed I/O. */ 168 FAULT_SOFT, /* Found valid page. */ 169 FAULT_PROTECTION_FAILURE, /* Invalid access. */ 170 }; 171 172 enum fault_next_status { 173 FAULT_NEXT_GOTOBJ = 1, 174 FAULT_NEXT_NOOBJ, 175 FAULT_NEXT_RESTART, 176 }; 177 178 static void vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, 179 int ahead); 180 static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra, 181 int backward, int forward, bool obj_locked); 182 183 static int vm_pfault_oom_attempts = 3; 184 SYSCTL_INT(_vm, OID_AUTO, pfault_oom_attempts, CTLFLAG_RWTUN, 185 &vm_pfault_oom_attempts, 0, 186 "Number of page allocation attempts in page fault handler before it " 187 "triggers OOM handling"); 188 189 static int vm_pfault_oom_wait = 10; 190 SYSCTL_INT(_vm, OID_AUTO, pfault_oom_wait, CTLFLAG_RWTUN, 191 &vm_pfault_oom_wait, 0, 192 "Number of seconds to wait for free pages before retrying " 193 "the page fault handler"); 194 195 static inline void 196 vm_fault_page_release(vm_page_t *mp) 197 { 198 vm_page_t m; 199 200 m = *mp; 201 if (m != NULL) { 202 /* 203 * We are likely to loop around again and attempt to busy 204 * this page. Deactivating it leaves it available for 205 * pageout while optimizing fault restarts. 206 */ 207 vm_page_deactivate(m); 208 if (vm_page_xbusied(m)) 209 vm_page_xunbusy(m); 210 else 211 vm_page_sunbusy(m); 212 *mp = NULL; 213 } 214 } 215 216 static inline void 217 vm_fault_page_free(vm_page_t *mp) 218 { 219 vm_page_t m; 220 221 m = *mp; 222 if (m != NULL) { 223 VM_OBJECT_ASSERT_WLOCKED(m->object); 224 if (!vm_page_wired(m)) 225 vm_page_free(m); 226 else 227 vm_page_xunbusy(m); 228 *mp = NULL; 229 } 230 } 231 232 /* 233 * Return true if a vm_pager_get_pages() call is needed in order to check 234 * whether the pager might have a particular page, false if it can be determined 235 * immediately that the pager can not have a copy. For swap objects, this can 236 * be checked quickly. 237 */ 238 static inline bool 239 vm_fault_object_needs_getpages(vm_object_t object) 240 { 241 VM_OBJECT_ASSERT_LOCKED(object); 242 243 return ((object->flags & OBJ_SWAP) == 0 || 244 !pctrie_is_empty(&object->un_pager.swp.swp_blks)); 245 } 246 247 static inline void 248 vm_fault_unlock_map(struct faultstate *fs) 249 { 250 251 if (fs->lookup_still_valid) { 252 vm_map_lookup_done(fs->map, fs->entry); 253 fs->lookup_still_valid = false; 254 } 255 } 256 257 static void 258 vm_fault_unlock_vp(struct faultstate *fs) 259 { 260 261 if (fs->vp != NULL) { 262 vput(fs->vp); 263 fs->vp = NULL; 264 } 265 } 266 267 static bool 268 vm_fault_might_be_cow(struct faultstate *fs) 269 { 270 return (fs->object != fs->first_object); 271 } 272 273 static void 274 vm_fault_deallocate(struct faultstate *fs) 275 { 276 277 fs->m_needs_zeroing = true; 278 vm_fault_page_release(&fs->m_cow); 279 vm_fault_page_release(&fs->m); 280 vm_object_pip_wakeup(fs->object); 281 if (vm_fault_might_be_cow(fs)) { 282 VM_OBJECT_WLOCK(fs->first_object); 283 vm_fault_page_free(&fs->first_m); 284 VM_OBJECT_WUNLOCK(fs->first_object); 285 vm_object_pip_wakeup(fs->first_object); 286 } 287 vm_object_deallocate(fs->first_object); 288 vm_fault_unlock_map(fs); 289 vm_fault_unlock_vp(fs); 290 } 291 292 static void 293 vm_fault_unlock_and_deallocate(struct faultstate *fs) 294 { 295 296 VM_OBJECT_UNLOCK(fs->object); 297 vm_fault_deallocate(fs); 298 } 299 300 static void 301 vm_fault_dirty(struct faultstate *fs, vm_page_t m) 302 { 303 bool need_dirty; 304 305 if (((fs->prot & VM_PROT_WRITE) == 0 && 306 (fs->fault_flags & VM_FAULT_DIRTY) == 0) || 307 (m->oflags & VPO_UNMANAGED) != 0) 308 return; 309 310 VM_PAGE_OBJECT_BUSY_ASSERT(m); 311 312 need_dirty = ((fs->fault_type & VM_PROT_WRITE) != 0 && 313 (fs->fault_flags & VM_FAULT_WIRE) == 0) || 314 (fs->fault_flags & VM_FAULT_DIRTY) != 0; 315 316 vm_object_set_writeable_dirty(m->object); 317 318 /* 319 * If the fault is a write, we know that this page is being 320 * written NOW so dirty it explicitly to save on 321 * pmap_is_modified() calls later. 322 * 323 * Also, since the page is now dirty, we can possibly tell 324 * the pager to release any swap backing the page. 325 */ 326 if (need_dirty && vm_page_set_dirty(m) == 0) { 327 /* 328 * If this is a NOSYNC mmap we do not want to set PGA_NOSYNC 329 * if the page is already dirty to prevent data written with 330 * the expectation of being synced from not being synced. 331 * Likewise if this entry does not request NOSYNC then make 332 * sure the page isn't marked NOSYNC. Applications sharing 333 * data should use the same flags to avoid ping ponging. 334 */ 335 if ((fs->entry->eflags & MAP_ENTRY_NOSYNC) != 0) 336 vm_page_aflag_set(m, PGA_NOSYNC); 337 else 338 vm_page_aflag_clear(m, PGA_NOSYNC); 339 } 340 341 } 342 343 static bool 344 vm_fault_is_read(const struct faultstate *fs) 345 { 346 return ((fs->prot & VM_PROT_WRITE) == 0 && 347 (fs->fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) == 0); 348 } 349 350 /* 351 * Unlocks fs.first_object and fs.map on success. 352 */ 353 static enum fault_status 354 vm_fault_soft_fast(struct faultstate *fs) 355 { 356 vm_page_t m, m_map; 357 #if VM_NRESERVLEVEL > 0 358 vm_page_t m_super; 359 int flags; 360 #endif 361 int psind; 362 vm_offset_t vaddr; 363 364 MPASS(fs->vp == NULL); 365 366 /* 367 * If we fail, vast majority of the time it is because the page is not 368 * there to begin with. Opportunistically perform the lookup and 369 * subsequent checks without the object lock, revalidate later. 370 * 371 * Note: a busy page can be mapped for read|execute access. 372 */ 373 m = vm_page_lookup_unlocked(fs->first_object, fs->first_pindex); 374 if (m == NULL || !vm_page_all_valid(m) || 375 ((fs->prot & VM_PROT_WRITE) != 0 && vm_page_busied(m))) { 376 VM_OBJECT_WLOCK(fs->first_object); 377 return (FAULT_FAILURE); 378 } 379 380 vaddr = fs->vaddr; 381 382 VM_OBJECT_RLOCK(fs->first_object); 383 384 /* 385 * Now that we stabilized the state, revalidate the page is in the shape 386 * we encountered above. 387 */ 388 389 if (m->object != fs->first_object || m->pindex != fs->first_pindex) 390 goto fail; 391 392 vm_object_busy(fs->first_object); 393 394 if (!vm_page_all_valid(m) || 395 ((fs->prot & VM_PROT_WRITE) != 0 && vm_page_busied(m))) 396 goto fail_busy; 397 398 m_map = m; 399 psind = 0; 400 #if VM_NRESERVLEVEL > 0 401 if ((m->flags & PG_FICTITIOUS) == 0 && 402 (m_super = vm_reserv_to_superpage(m)) != NULL) { 403 psind = m_super->psind; 404 KASSERT(psind > 0, 405 ("psind %d of m_super %p < 1", psind, m_super)); 406 flags = PS_ALL_VALID; 407 if ((fs->prot & VM_PROT_WRITE) != 0) { 408 /* 409 * Create a superpage mapping allowing write access 410 * only if none of the constituent pages are busy and 411 * all of them are already dirty (except possibly for 412 * the page that was faulted on). 413 */ 414 flags |= PS_NONE_BUSY; 415 if ((fs->first_object->flags & OBJ_UNMANAGED) == 0) 416 flags |= PS_ALL_DIRTY; 417 } 418 while (rounddown2(vaddr, pagesizes[psind]) < fs->entry->start || 419 roundup2(vaddr + 1, pagesizes[psind]) > fs->entry->end || 420 (vaddr & (pagesizes[psind] - 1)) != 421 (VM_PAGE_TO_PHYS(m) & (pagesizes[psind] - 1)) || 422 !vm_page_ps_test(m_super, psind, flags, m) || 423 !pmap_ps_enabled(fs->map->pmap)) { 424 psind--; 425 if (psind == 0) 426 break; 427 m_super += rounddown2(m - m_super, 428 atop(pagesizes[psind])); 429 KASSERT(m_super->psind >= psind, 430 ("psind %d of m_super %p < %d", m_super->psind, 431 m_super, psind)); 432 } 433 if (psind > 0) { 434 m_map = m_super; 435 vaddr = rounddown2(vaddr, pagesizes[psind]); 436 /* Preset the modified bit for dirty superpages. */ 437 if ((flags & PS_ALL_DIRTY) != 0) 438 fs->fault_type |= VM_PROT_WRITE; 439 } 440 } 441 #endif 442 if (pmap_enter(fs->map->pmap, vaddr, m_map, fs->prot, fs->fault_type | 443 PMAP_ENTER_NOSLEEP | (fs->wired ? PMAP_ENTER_WIRED : 0), psind) != 444 KERN_SUCCESS) 445 goto fail_busy; 446 if (fs->m_hold != NULL) { 447 (*fs->m_hold) = m; 448 vm_page_wire(m); 449 } 450 if (psind == 0 && !fs->wired) 451 vm_fault_prefault(fs, vaddr, PFBAK, PFFOR, true); 452 VM_OBJECT_RUNLOCK(fs->first_object); 453 vm_fault_dirty(fs, m); 454 vm_object_unbusy(fs->first_object); 455 vm_map_lookup_done(fs->map, fs->entry); 456 curthread->td_ru.ru_minflt++; 457 return (FAULT_SUCCESS); 458 fail_busy: 459 vm_object_unbusy(fs->first_object); 460 fail: 461 if (!VM_OBJECT_TRYUPGRADE(fs->first_object)) { 462 VM_OBJECT_RUNLOCK(fs->first_object); 463 VM_OBJECT_WLOCK(fs->first_object); 464 } 465 return (FAULT_FAILURE); 466 } 467 468 static void 469 vm_fault_restore_map_lock(struct faultstate *fs) 470 { 471 472 VM_OBJECT_ASSERT_WLOCKED(fs->first_object); 473 MPASS(blockcount_read(&fs->first_object->paging_in_progress) > 0); 474 475 if (!vm_map_trylock_read(fs->map)) { 476 VM_OBJECT_WUNLOCK(fs->first_object); 477 vm_map_lock_read(fs->map); 478 VM_OBJECT_WLOCK(fs->first_object); 479 } 480 fs->lookup_still_valid = true; 481 } 482 483 static void 484 vm_fault_populate_check_page(vm_page_t m) 485 { 486 487 /* 488 * Check each page to ensure that the pager is obeying the 489 * interface: the page must be installed in the object, fully 490 * valid, and exclusively busied. 491 */ 492 MPASS(m != NULL); 493 MPASS(vm_page_all_valid(m)); 494 MPASS(vm_page_xbusied(m)); 495 } 496 497 static void 498 vm_fault_populate_cleanup(vm_object_t object, vm_pindex_t first, 499 vm_pindex_t last) 500 { 501 struct pctrie_iter pages; 502 vm_page_t m; 503 504 VM_OBJECT_ASSERT_WLOCKED(object); 505 MPASS(first <= last); 506 vm_page_iter_limit_init(&pages, object, last + 1); 507 VM_RADIX_FORALL_FROM(m, &pages, first) { 508 vm_fault_populate_check_page(m); 509 vm_page_deactivate(m); 510 vm_page_xunbusy(m); 511 } 512 KASSERT(pages.index == last, ("%s: pindex mismatch", __func__)); 513 } 514 515 static enum fault_status 516 vm_fault_populate(struct faultstate *fs) 517 { 518 vm_offset_t vaddr; 519 vm_page_t m; 520 vm_pindex_t map_first, map_last, pager_first, pager_last, pidx; 521 int bdry_idx, i, npages, psind, rv; 522 enum fault_status res; 523 524 MPASS(fs->object == fs->first_object); 525 VM_OBJECT_ASSERT_WLOCKED(fs->first_object); 526 MPASS(blockcount_read(&fs->first_object->paging_in_progress) > 0); 527 MPASS(fs->first_object->backing_object == NULL); 528 MPASS(fs->lookup_still_valid); 529 530 pager_first = OFF_TO_IDX(fs->entry->offset); 531 pager_last = pager_first + atop(fs->entry->end - fs->entry->start) - 1; 532 vm_fault_unlock_map(fs); 533 vm_fault_unlock_vp(fs); 534 535 res = FAULT_SUCCESS; 536 537 /* 538 * Call the pager (driver) populate() method. 539 * 540 * There is no guarantee that the method will be called again 541 * if the current fault is for read, and a future fault is 542 * for write. Report the entry's maximum allowed protection 543 * to the driver. 544 */ 545 rv = vm_pager_populate(fs->first_object, fs->first_pindex, 546 fs->fault_type, fs->entry->max_protection, &pager_first, 547 &pager_last); 548 549 VM_OBJECT_ASSERT_WLOCKED(fs->first_object); 550 if (rv == VM_PAGER_BAD) { 551 /* 552 * VM_PAGER_BAD is the backdoor for a pager to request 553 * normal fault handling. 554 */ 555 vm_fault_restore_map_lock(fs); 556 if (fs->map->timestamp != fs->map_generation) 557 return (FAULT_RESTART); 558 return (FAULT_CONTINUE); 559 } 560 if (rv != VM_PAGER_OK) 561 return (FAULT_FAILURE); /* AKA SIGSEGV */ 562 563 /* Ensure that the driver is obeying the interface. */ 564 MPASS(pager_first <= pager_last); 565 MPASS(fs->first_pindex <= pager_last); 566 MPASS(fs->first_pindex >= pager_first); 567 MPASS(pager_last < fs->first_object->size); 568 569 vm_fault_restore_map_lock(fs); 570 bdry_idx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(fs->entry); 571 if (fs->map->timestamp != fs->map_generation) { 572 if (bdry_idx == 0) { 573 vm_fault_populate_cleanup(fs->first_object, pager_first, 574 pager_last); 575 } else { 576 m = vm_page_lookup(fs->first_object, pager_first); 577 if (m != fs->m) 578 vm_page_xunbusy(m); 579 } 580 return (FAULT_RESTART); 581 } 582 583 /* 584 * The map is unchanged after our last unlock. Process the fault. 585 * 586 * First, the special case of largepage mappings, where 587 * populate only busies the first page in superpage run. 588 */ 589 if (bdry_idx != 0) { 590 KASSERT(PMAP_HAS_LARGEPAGES, 591 ("missing pmap support for large pages")); 592 m = vm_page_lookup(fs->first_object, pager_first); 593 vm_fault_populate_check_page(m); 594 VM_OBJECT_WUNLOCK(fs->first_object); 595 vaddr = fs->entry->start + IDX_TO_OFF(pager_first) - 596 fs->entry->offset; 597 /* assert alignment for entry */ 598 KASSERT((vaddr & (pagesizes[bdry_idx] - 1)) == 0, 599 ("unaligned superpage start %#jx pager_first %#jx offset %#jx vaddr %#jx", 600 (uintmax_t)fs->entry->start, (uintmax_t)pager_first, 601 (uintmax_t)fs->entry->offset, (uintmax_t)vaddr)); 602 KASSERT((VM_PAGE_TO_PHYS(m) & (pagesizes[bdry_idx] - 1)) == 0, 603 ("unaligned superpage m %p %#jx", m, 604 (uintmax_t)VM_PAGE_TO_PHYS(m))); 605 rv = pmap_enter(fs->map->pmap, vaddr, m, fs->prot, 606 fs->fault_type | (fs->wired ? PMAP_ENTER_WIRED : 0) | 607 PMAP_ENTER_LARGEPAGE, bdry_idx); 608 VM_OBJECT_WLOCK(fs->first_object); 609 vm_page_xunbusy(m); 610 if (rv != KERN_SUCCESS) { 611 res = FAULT_FAILURE; 612 goto out; 613 } 614 if ((fs->fault_flags & VM_FAULT_WIRE) != 0) { 615 for (i = 0; i < atop(pagesizes[bdry_idx]); i++) 616 vm_page_wire(m + i); 617 } 618 if (fs->m_hold != NULL) { 619 *fs->m_hold = m + (fs->first_pindex - pager_first); 620 vm_page_wire(*fs->m_hold); 621 } 622 goto out; 623 } 624 625 /* 626 * The range [pager_first, pager_last] that is given to the 627 * pager is only a hint. The pager may populate any range 628 * within the object that includes the requested page index. 629 * In case the pager expanded the range, clip it to fit into 630 * the map entry. 631 */ 632 map_first = OFF_TO_IDX(fs->entry->offset); 633 if (map_first > pager_first) { 634 vm_fault_populate_cleanup(fs->first_object, pager_first, 635 map_first - 1); 636 pager_first = map_first; 637 } 638 map_last = map_first + atop(fs->entry->end - fs->entry->start) - 1; 639 if (map_last < pager_last) { 640 vm_fault_populate_cleanup(fs->first_object, map_last + 1, 641 pager_last); 642 pager_last = map_last; 643 } 644 for (pidx = pager_first; pidx <= pager_last; pidx += npages) { 645 m = vm_page_lookup(fs->first_object, pidx); 646 vaddr = fs->entry->start + IDX_TO_OFF(pidx) - fs->entry->offset; 647 KASSERT(m != NULL && m->pindex == pidx, 648 ("%s: pindex mismatch", __func__)); 649 psind = m->psind; 650 while (psind > 0 && ((vaddr & (pagesizes[psind] - 1)) != 0 || 651 pidx + OFF_TO_IDX(pagesizes[psind]) - 1 > pager_last || 652 !pmap_ps_enabled(fs->map->pmap))) 653 psind--; 654 655 npages = atop(pagesizes[psind]); 656 for (i = 0; i < npages; i++) { 657 vm_fault_populate_check_page(&m[i]); 658 vm_fault_dirty(fs, &m[i]); 659 } 660 VM_OBJECT_WUNLOCK(fs->first_object); 661 rv = pmap_enter(fs->map->pmap, vaddr, m, fs->prot, fs->fault_type | 662 (fs->wired ? PMAP_ENTER_WIRED : 0), psind); 663 664 /* 665 * pmap_enter() may fail for a superpage mapping if additional 666 * protection policies prevent the full mapping. 667 * For example, this will happen on amd64 if the entire 668 * address range does not share the same userspace protection 669 * key. Revert to single-page mappings if this happens. 670 */ 671 MPASS(rv == KERN_SUCCESS || 672 (psind > 0 && rv == KERN_PROTECTION_FAILURE)); 673 if (__predict_false(psind > 0 && 674 rv == KERN_PROTECTION_FAILURE)) { 675 MPASS(!fs->wired); 676 for (i = 0; i < npages; i++) { 677 rv = pmap_enter(fs->map->pmap, vaddr + ptoa(i), 678 &m[i], fs->prot, fs->fault_type, 0); 679 MPASS(rv == KERN_SUCCESS); 680 } 681 } 682 683 VM_OBJECT_WLOCK(fs->first_object); 684 for (i = 0; i < npages; i++) { 685 if ((fs->fault_flags & VM_FAULT_WIRE) != 0 && 686 m[i].pindex == fs->first_pindex) 687 vm_page_wire(&m[i]); 688 else 689 vm_page_activate(&m[i]); 690 if (fs->m_hold != NULL && 691 m[i].pindex == fs->first_pindex) { 692 (*fs->m_hold) = &m[i]; 693 vm_page_wire(&m[i]); 694 } 695 vm_page_xunbusy(&m[i]); 696 } 697 } 698 out: 699 curthread->td_ru.ru_majflt++; 700 return (res); 701 } 702 703 static int prot_fault_translation; 704 SYSCTL_INT(_machdep, OID_AUTO, prot_fault_translation, CTLFLAG_RWTUN, 705 &prot_fault_translation, 0, 706 "Control signal to deliver on protection fault"); 707 708 /* compat definition to keep common code for signal translation */ 709 #define UCODE_PAGEFLT 12 710 #ifdef T_PAGEFLT 711 _Static_assert(UCODE_PAGEFLT == T_PAGEFLT, "T_PAGEFLT"); 712 #endif 713 714 /* 715 * vm_fault_trap: 716 * 717 * Helper for the machine-dependent page fault trap handlers, wrapping 718 * vm_fault(). Issues ktrace(2) tracepoints for the faults. 719 * 720 * If the fault cannot be handled successfully by updating the 721 * required mapping, and the faulted instruction cannot be restarted, 722 * the signal number and si_code values are returned for trapsignal() 723 * to deliver. 724 * 725 * Returns Mach error codes, but callers should only check for 726 * KERN_SUCCESS. 727 */ 728 int 729 vm_fault_trap(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, 730 int fault_flags, int *signo, int *ucode) 731 { 732 int result; 733 734 MPASS(signo == NULL || ucode != NULL); 735 #ifdef KTRACE 736 if (map != kernel_map && KTRPOINT(curthread, KTR_FAULT)) 737 ktrfault(vaddr, fault_type); 738 #endif 739 result = vm_fault(map, trunc_page(vaddr), fault_type, fault_flags, 740 NULL); 741 KASSERT(result == KERN_SUCCESS || result == KERN_FAILURE || 742 result == KERN_INVALID_ADDRESS || 743 result == KERN_RESOURCE_SHORTAGE || 744 result == KERN_PROTECTION_FAILURE || 745 result == KERN_OUT_OF_BOUNDS, 746 ("Unexpected Mach error %d from vm_fault()", result)); 747 #ifdef KTRACE 748 if (map != kernel_map && KTRPOINT(curthread, KTR_FAULTEND)) 749 ktrfaultend(result); 750 #endif 751 if (result != KERN_SUCCESS && signo != NULL) { 752 switch (result) { 753 case KERN_FAILURE: 754 case KERN_INVALID_ADDRESS: 755 *signo = SIGSEGV; 756 *ucode = SEGV_MAPERR; 757 break; 758 case KERN_RESOURCE_SHORTAGE: 759 *signo = SIGBUS; 760 *ucode = BUS_OOMERR; 761 break; 762 case KERN_OUT_OF_BOUNDS: 763 *signo = SIGBUS; 764 *ucode = BUS_OBJERR; 765 break; 766 case KERN_PROTECTION_FAILURE: 767 if (prot_fault_translation == 0) { 768 /* 769 * Autodetect. This check also covers 770 * the images without the ABI-tag ELF 771 * note. 772 */ 773 if (SV_CURPROC_ABI() == SV_ABI_FREEBSD && 774 curproc->p_osrel >= P_OSREL_SIGSEGV) { 775 *signo = SIGSEGV; 776 *ucode = SEGV_ACCERR; 777 } else { 778 *signo = SIGBUS; 779 *ucode = UCODE_PAGEFLT; 780 } 781 } else if (prot_fault_translation == 1) { 782 /* Always compat mode. */ 783 *signo = SIGBUS; 784 *ucode = UCODE_PAGEFLT; 785 } else { 786 /* Always SIGSEGV mode. */ 787 *signo = SIGSEGV; 788 *ucode = SEGV_ACCERR; 789 } 790 break; 791 default: 792 KASSERT(0, ("Unexpected Mach error %d from vm_fault()", 793 result)); 794 break; 795 } 796 } 797 return (result); 798 } 799 800 static bool 801 vm_fault_object_ensure_wlocked(struct faultstate *fs) 802 { 803 if (fs->object == fs->first_object) 804 VM_OBJECT_ASSERT_WLOCKED(fs->object); 805 806 if (!fs->can_read_lock) { 807 VM_OBJECT_ASSERT_WLOCKED(fs->object); 808 return (true); 809 } 810 811 if (VM_OBJECT_WOWNED(fs->object)) 812 return (true); 813 814 if (VM_OBJECT_TRYUPGRADE(fs->object)) 815 return (true); 816 817 return (false); 818 } 819 820 static enum fault_status 821 vm_fault_lock_vnode(struct faultstate *fs, bool objlocked) 822 { 823 struct vnode *vp; 824 int error, locked; 825 826 if (fs->object->type != OBJT_VNODE) 827 return (FAULT_CONTINUE); 828 vp = fs->object->handle; 829 if (vp == fs->vp) { 830 ASSERT_VOP_LOCKED(vp, "saved vnode is not locked"); 831 return (FAULT_CONTINUE); 832 } 833 834 /* 835 * Perform an unlock in case the desired vnode changed while 836 * the map was unlocked during a retry. 837 */ 838 vm_fault_unlock_vp(fs); 839 840 locked = VOP_ISLOCKED(vp); 841 if (locked != LK_EXCLUSIVE) 842 locked = LK_SHARED; 843 844 /* 845 * We must not sleep acquiring the vnode lock while we have 846 * the page exclusive busied or the object's 847 * paging-in-progress count incremented. Otherwise, we could 848 * deadlock. 849 */ 850 error = vget(vp, locked | LK_CANRECURSE | LK_NOWAIT); 851 if (error == 0) { 852 fs->vp = vp; 853 return (FAULT_CONTINUE); 854 } 855 856 vhold(vp); 857 if (objlocked) 858 vm_fault_unlock_and_deallocate(fs); 859 else 860 vm_fault_deallocate(fs); 861 error = vget(vp, locked | LK_RETRY | LK_CANRECURSE); 862 vdrop(vp); 863 fs->vp = vp; 864 KASSERT(error == 0, ("vm_fault: vget failed %d", error)); 865 return (FAULT_RESTART); 866 } 867 868 /* 869 * Calculate the desired readahead. Handle drop-behind. 870 * 871 * Returns the number of readahead blocks to pass to the pager. 872 */ 873 static int 874 vm_fault_readahead(struct faultstate *fs) 875 { 876 int era, nera; 877 u_char behavior; 878 879 KASSERT(fs->lookup_still_valid, ("map unlocked")); 880 era = fs->entry->read_ahead; 881 behavior = vm_map_entry_behavior(fs->entry); 882 if (behavior == MAP_ENTRY_BEHAV_RANDOM) { 883 nera = 0; 884 } else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) { 885 nera = VM_FAULT_READ_AHEAD_MAX; 886 if (fs->vaddr == fs->entry->next_read) 887 vm_fault_dontneed(fs, fs->vaddr, nera); 888 } else if (fs->vaddr == fs->entry->next_read) { 889 /* 890 * This is a sequential fault. Arithmetically 891 * increase the requested number of pages in 892 * the read-ahead window. The requested 893 * number of pages is "# of sequential faults 894 * x (read ahead min + 1) + read ahead min" 895 */ 896 nera = VM_FAULT_READ_AHEAD_MIN; 897 if (era > 0) { 898 nera += era + 1; 899 if (nera > VM_FAULT_READ_AHEAD_MAX) 900 nera = VM_FAULT_READ_AHEAD_MAX; 901 } 902 if (era == VM_FAULT_READ_AHEAD_MAX) 903 vm_fault_dontneed(fs, fs->vaddr, nera); 904 } else { 905 /* 906 * This is a non-sequential fault. 907 */ 908 nera = 0; 909 } 910 if (era != nera) { 911 /* 912 * A read lock on the map suffices to update 913 * the read ahead count safely. 914 */ 915 fs->entry->read_ahead = nera; 916 } 917 918 return (nera); 919 } 920 921 static int 922 vm_fault_lookup(struct faultstate *fs) 923 { 924 int result; 925 926 KASSERT(!fs->lookup_still_valid, 927 ("vm_fault_lookup: Map already locked.")); 928 result = vm_map_lookup(&fs->map, fs->vaddr, fs->fault_type | 929 VM_PROT_FAULT_LOOKUP, &fs->entry, &fs->first_object, 930 &fs->first_pindex, &fs->prot, &fs->wired); 931 if (result != KERN_SUCCESS) { 932 vm_fault_unlock_vp(fs); 933 return (result); 934 } 935 936 fs->map_generation = fs->map->timestamp; 937 938 if (fs->entry->eflags & MAP_ENTRY_NOFAULT) { 939 panic("%s: fault on nofault entry, addr: %#lx", 940 __func__, (u_long)fs->vaddr); 941 } 942 943 if (fs->entry->eflags & MAP_ENTRY_IN_TRANSITION && 944 fs->entry->wiring_thread != curthread) { 945 vm_map_unlock_read(fs->map); 946 vm_map_lock(fs->map); 947 if (vm_map_lookup_entry(fs->map, fs->vaddr, &fs->entry) && 948 (fs->entry->eflags & MAP_ENTRY_IN_TRANSITION)) { 949 vm_fault_unlock_vp(fs); 950 fs->entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 951 vm_map_unlock_and_wait(fs->map, 0); 952 } else 953 vm_map_unlock(fs->map); 954 return (KERN_RESOURCE_SHORTAGE); 955 } 956 957 MPASS((fs->entry->eflags & MAP_ENTRY_GUARD) == 0); 958 959 if (fs->wired) 960 fs->fault_type = fs->prot | (fs->fault_type & VM_PROT_COPY); 961 else 962 KASSERT((fs->fault_flags & VM_FAULT_WIRE) == 0, 963 ("!fs->wired && VM_FAULT_WIRE")); 964 fs->lookup_still_valid = true; 965 966 return (KERN_SUCCESS); 967 } 968 969 static int 970 vm_fault_relookup(struct faultstate *fs) 971 { 972 vm_object_t retry_object; 973 vm_pindex_t retry_pindex; 974 vm_prot_t retry_prot; 975 int result; 976 977 if (!vm_map_trylock_read(fs->map)) 978 return (KERN_RESTART); 979 980 fs->lookup_still_valid = true; 981 if (fs->map->timestamp == fs->map_generation) 982 return (KERN_SUCCESS); 983 984 result = vm_map_lookup_locked(&fs->map, fs->vaddr, fs->fault_type, 985 &fs->entry, &retry_object, &retry_pindex, &retry_prot, 986 &fs->wired); 987 if (result != KERN_SUCCESS) { 988 /* 989 * If retry of map lookup would have blocked then 990 * retry fault from start. 991 */ 992 if (result == KERN_FAILURE) 993 return (KERN_RESTART); 994 return (result); 995 } 996 if (retry_object != fs->first_object || 997 retry_pindex != fs->first_pindex) 998 return (KERN_RESTART); 999 1000 /* 1001 * Check whether the protection has changed or the object has 1002 * been copied while we left the map unlocked. Changing from 1003 * read to write permission is OK - we leave the page 1004 * write-protected, and catch the write fault. Changing from 1005 * write to read permission means that we can't mark the page 1006 * write-enabled after all. 1007 */ 1008 fs->prot &= retry_prot; 1009 fs->fault_type &= retry_prot; 1010 if (fs->prot == 0) 1011 return (KERN_RESTART); 1012 1013 /* Reassert because wired may have changed. */ 1014 KASSERT(fs->wired || (fs->fault_flags & VM_FAULT_WIRE) == 0, 1015 ("!wired && VM_FAULT_WIRE")); 1016 1017 return (KERN_SUCCESS); 1018 } 1019 1020 static bool 1021 vm_fault_can_cow_rename(struct faultstate *fs) 1022 { 1023 return ( 1024 /* Only one shadow object and no other refs. */ 1025 fs->object->shadow_count == 1 && fs->object->ref_count == 1 && 1026 /* No other ways to look the object up. */ 1027 fs->object->handle == NULL && (fs->object->flags & OBJ_ANON) != 0); 1028 } 1029 1030 static void 1031 vm_fault_cow(struct faultstate *fs) 1032 { 1033 bool is_first_object_locked, rename_cow; 1034 1035 KASSERT(vm_fault_might_be_cow(fs), 1036 ("source and target COW objects are identical")); 1037 1038 /* 1039 * This allows pages to be virtually copied from a backing_object 1040 * into the first_object, where the backing object has no other 1041 * refs to it, and cannot gain any more refs. Instead of a bcopy, 1042 * we just move the page from the backing object to the first 1043 * object. Note that we must mark the page dirty in the first 1044 * object so that it will go out to swap when needed. 1045 */ 1046 is_first_object_locked = false; 1047 rename_cow = false; 1048 1049 if (vm_fault_can_cow_rename(fs) && vm_page_xbusied(fs->m)) { 1050 /* 1051 * Check that we don't chase down the shadow chain and 1052 * we can acquire locks. Recheck the conditions for 1053 * rename after the shadow chain is stable after the 1054 * object locking. 1055 */ 1056 is_first_object_locked = VM_OBJECT_TRYWLOCK(fs->first_object); 1057 if (is_first_object_locked && 1058 fs->object == fs->first_object->backing_object) { 1059 if (VM_OBJECT_TRYWLOCK(fs->object)) { 1060 rename_cow = vm_fault_can_cow_rename(fs); 1061 if (!rename_cow) 1062 VM_OBJECT_WUNLOCK(fs->object); 1063 } 1064 } 1065 } 1066 1067 if (rename_cow) { 1068 vm_page_assert_xbusied(fs->m); 1069 1070 /* 1071 * Remove but keep xbusy for replace. fs->m is moved into 1072 * fs->first_object and left busy while fs->first_m is 1073 * conditionally freed. 1074 */ 1075 vm_page_remove_xbusy(fs->m); 1076 vm_page_replace(fs->m, fs->first_object, fs->first_pindex, 1077 fs->first_m); 1078 vm_page_dirty(fs->m); 1079 #if VM_NRESERVLEVEL > 0 1080 /* 1081 * Rename the reservation. 1082 */ 1083 vm_reserv_rename(fs->m, fs->first_object, fs->object, 1084 OFF_TO_IDX(fs->first_object->backing_object_offset)); 1085 #endif 1086 VM_OBJECT_WUNLOCK(fs->object); 1087 VM_OBJECT_WUNLOCK(fs->first_object); 1088 fs->first_m = fs->m; 1089 fs->m = NULL; 1090 VM_CNT_INC(v_cow_optim); 1091 } else { 1092 if (is_first_object_locked) 1093 VM_OBJECT_WUNLOCK(fs->first_object); 1094 /* 1095 * Oh, well, lets copy it. 1096 */ 1097 pmap_copy_page(fs->m, fs->first_m); 1098 if (fs->wired && (fs->fault_flags & VM_FAULT_WIRE) == 0) { 1099 vm_page_wire(fs->first_m); 1100 vm_page_unwire(fs->m, PQ_INACTIVE); 1101 } 1102 /* 1103 * Save the COW page to be released after pmap_enter is 1104 * complete. The new copy will be marked valid when we're ready 1105 * to map it. 1106 */ 1107 fs->m_cow = fs->m; 1108 fs->m = NULL; 1109 1110 /* 1111 * Typically, the shadow object is either private to this 1112 * address space (OBJ_ONEMAPPING) or its pages are read only. 1113 * In the highly unusual case where the pages of a shadow object 1114 * are read/write shared between this and other address spaces, 1115 * we need to ensure that any pmap-level mappings to the 1116 * original, copy-on-write page from the backing object are 1117 * removed from those other address spaces. 1118 * 1119 * The flag check is racy, but this is tolerable: if 1120 * OBJ_ONEMAPPING is cleared after the check, the busy state 1121 * ensures that new mappings of m_cow can't be created. 1122 * pmap_enter() will replace an existing mapping in the current 1123 * address space. If OBJ_ONEMAPPING is set after the check, 1124 * removing mappings will at worse trigger some unnecessary page 1125 * faults. 1126 * 1127 * In the fs->m shared busy case, the xbusy state of 1128 * fs->first_m prevents new mappings of fs->m from 1129 * being created because a parallel fault on this 1130 * shadow chain should wait for xbusy on fs->first_m. 1131 */ 1132 if ((fs->first_object->flags & OBJ_ONEMAPPING) == 0) 1133 pmap_remove_all(fs->m_cow); 1134 } 1135 1136 vm_object_pip_wakeup(fs->object); 1137 1138 /* 1139 * Only use the new page below... 1140 */ 1141 fs->object = fs->first_object; 1142 fs->pindex = fs->first_pindex; 1143 fs->m = fs->first_m; 1144 VM_CNT_INC(v_cow_faults); 1145 curthread->td_cow++; 1146 } 1147 1148 static enum fault_next_status 1149 vm_fault_next(struct faultstate *fs) 1150 { 1151 vm_object_t next_object; 1152 1153 if (fs->object == fs->first_object || !fs->can_read_lock) 1154 VM_OBJECT_ASSERT_WLOCKED(fs->object); 1155 else 1156 VM_OBJECT_ASSERT_LOCKED(fs->object); 1157 1158 /* 1159 * The requested page does not exist at this object/ 1160 * offset. Remove the invalid page from the object, 1161 * waking up anyone waiting for it, and continue on to 1162 * the next object. However, if this is the top-level 1163 * object, we must leave the busy page in place to 1164 * prevent another process from rushing past us, and 1165 * inserting the page in that object at the same time 1166 * that we are. 1167 */ 1168 if (fs->object == fs->first_object) { 1169 fs->first_m = fs->m; 1170 fs->m = NULL; 1171 } else if (fs->m != NULL) { 1172 if (!vm_fault_object_ensure_wlocked(fs)) { 1173 fs->can_read_lock = false; 1174 vm_fault_unlock_and_deallocate(fs); 1175 return (FAULT_NEXT_RESTART); 1176 } 1177 vm_fault_page_free(&fs->m); 1178 } 1179 1180 /* 1181 * Move on to the next object. Lock the next object before 1182 * unlocking the current one. 1183 */ 1184 next_object = fs->object->backing_object; 1185 if (next_object == NULL) 1186 return (FAULT_NEXT_NOOBJ); 1187 MPASS(fs->first_m != NULL); 1188 KASSERT(fs->object != next_object, ("object loop %p", next_object)); 1189 if (fs->can_read_lock) 1190 VM_OBJECT_RLOCK(next_object); 1191 else 1192 VM_OBJECT_WLOCK(next_object); 1193 vm_object_pip_add(next_object, 1); 1194 if (fs->object != fs->first_object) 1195 vm_object_pip_wakeup(fs->object); 1196 fs->pindex += OFF_TO_IDX(fs->object->backing_object_offset); 1197 VM_OBJECT_UNLOCK(fs->object); 1198 fs->object = next_object; 1199 1200 return (FAULT_NEXT_GOTOBJ); 1201 } 1202 1203 static void 1204 vm_fault_zerofill(struct faultstate *fs) 1205 { 1206 1207 /* 1208 * If there's no object left, fill the page in the top 1209 * object with zeros. 1210 */ 1211 if (vm_fault_might_be_cow(fs)) { 1212 vm_object_pip_wakeup(fs->object); 1213 fs->object = fs->first_object; 1214 fs->pindex = fs->first_pindex; 1215 } 1216 MPASS(fs->first_m != NULL); 1217 MPASS(fs->m == NULL); 1218 fs->m = fs->first_m; 1219 fs->first_m = NULL; 1220 1221 /* 1222 * Zero the page if necessary and mark it valid. 1223 */ 1224 if (fs->m_needs_zeroing) { 1225 pmap_zero_page(fs->m); 1226 } else { 1227 #ifdef INVARIANTS 1228 if (vm_check_pg_zero) { 1229 struct sf_buf *sf; 1230 unsigned long *p; 1231 int i; 1232 1233 sched_pin(); 1234 sf = sf_buf_alloc(fs->m, SFB_CPUPRIVATE); 1235 p = (unsigned long *)sf_buf_kva(sf); 1236 for (i = 0; i < PAGE_SIZE / sizeof(*p); i++, p++) { 1237 KASSERT(*p == 0, 1238 ("zerocheck failed page %p PG_ZERO %d %jx", 1239 fs->m, i, (uintmax_t)*p)); 1240 } 1241 sf_buf_free(sf); 1242 sched_unpin(); 1243 } 1244 #endif 1245 VM_CNT_INC(v_ozfod); 1246 } 1247 VM_CNT_INC(v_zfod); 1248 vm_page_valid(fs->m); 1249 } 1250 1251 /* 1252 * Initiate page fault after timeout. Returns true if caller should 1253 * do vm_waitpfault() after the call. 1254 */ 1255 static bool 1256 vm_fault_allocate_oom(struct faultstate *fs) 1257 { 1258 struct timeval now; 1259 1260 vm_fault_unlock_and_deallocate(fs); 1261 if (vm_pfault_oom_attempts < 0) 1262 return (true); 1263 if (!fs->oom_started) { 1264 fs->oom_started = true; 1265 getmicrotime(&fs->oom_start_time); 1266 return (true); 1267 } 1268 1269 getmicrotime(&now); 1270 timevalsub(&now, &fs->oom_start_time); 1271 if (now.tv_sec < vm_pfault_oom_attempts * vm_pfault_oom_wait) 1272 return (true); 1273 1274 if (bootverbose) 1275 printf( 1276 "proc %d (%s) failed to alloc page on fault, starting OOM\n", 1277 curproc->p_pid, curproc->p_comm); 1278 vm_pageout_oom(VM_OOM_MEM_PF); 1279 fs->oom_started = false; 1280 return (false); 1281 } 1282 1283 /* 1284 * Allocate a page directly or via the object populate method. 1285 */ 1286 static enum fault_status 1287 vm_fault_allocate(struct faultstate *fs, struct pctrie_iter *pages) 1288 { 1289 struct domainset *dset; 1290 enum fault_status res; 1291 1292 if ((fs->object->flags & OBJ_SIZEVNLOCK) != 0) { 1293 res = vm_fault_lock_vnode(fs, true); 1294 MPASS(res == FAULT_CONTINUE || res == FAULT_RESTART); 1295 if (res == FAULT_RESTART) 1296 return (res); 1297 } 1298 1299 if (fs->pindex >= fs->object->size) { 1300 vm_fault_unlock_and_deallocate(fs); 1301 return (FAULT_OUT_OF_BOUNDS); 1302 } 1303 1304 if (fs->object == fs->first_object && 1305 (fs->first_object->flags & OBJ_POPULATE) != 0 && 1306 fs->first_object->shadow_count == 0) { 1307 res = vm_fault_populate(fs); 1308 switch (res) { 1309 case FAULT_SUCCESS: 1310 case FAULT_FAILURE: 1311 case FAULT_RESTART: 1312 vm_fault_unlock_and_deallocate(fs); 1313 return (res); 1314 case FAULT_CONTINUE: 1315 pctrie_iter_reset(pages); 1316 /* 1317 * Pager's populate() method 1318 * returned VM_PAGER_BAD. 1319 */ 1320 break; 1321 default: 1322 panic("inconsistent return codes"); 1323 } 1324 } 1325 1326 /* 1327 * Allocate a new page for this object/offset pair. 1328 * 1329 * If the process has a fatal signal pending, prioritize the allocation 1330 * with the expectation that the process will exit shortly and free some 1331 * pages. In particular, the signal may have been posted by the page 1332 * daemon in an attempt to resolve an out-of-memory condition. 1333 * 1334 * The unlocked read of the p_flag is harmless. At worst, the P_KILLED 1335 * might be not observed here, and allocation fails, causing a restart 1336 * and new reading of the p_flag. 1337 */ 1338 dset = fs->object->domain.dr_policy; 1339 if (dset == NULL) 1340 dset = curthread->td_domain.dr_policy; 1341 if (!vm_page_count_severe_set(&dset->ds_mask) || P_KILLED(curproc)) { 1342 #if VM_NRESERVLEVEL > 0 1343 vm_object_color(fs->object, atop(fs->vaddr) - fs->pindex); 1344 #endif 1345 if (!vm_pager_can_alloc_page(fs->object, fs->pindex)) { 1346 vm_fault_unlock_and_deallocate(fs); 1347 return (FAULT_FAILURE); 1348 } 1349 fs->m = vm_page_alloc_iter(fs->object, fs->pindex, 1350 P_KILLED(curproc) ? VM_ALLOC_SYSTEM : 0, pages); 1351 } 1352 if (fs->m == NULL) { 1353 if (vm_fault_allocate_oom(fs)) 1354 vm_waitpfault(dset, vm_pfault_oom_wait * hz); 1355 return (FAULT_RESTART); 1356 } 1357 fs->m_needs_zeroing = (fs->m->flags & PG_ZERO) == 0; 1358 fs->oom_started = false; 1359 1360 return (FAULT_CONTINUE); 1361 } 1362 1363 /* 1364 * Call the pager to retrieve the page if there is a chance 1365 * that the pager has it, and potentially retrieve additional 1366 * pages at the same time. 1367 */ 1368 static enum fault_status 1369 vm_fault_getpages(struct faultstate *fs, int *behindp, int *aheadp) 1370 { 1371 vm_offset_t e_end, e_start; 1372 int ahead, behind, cluster_offset, rv; 1373 enum fault_status status; 1374 u_char behavior; 1375 1376 /* 1377 * Prepare for unlocking the map. Save the map 1378 * entry's start and end addresses, which are used to 1379 * optimize the size of the pager operation below. 1380 * Even if the map entry's addresses change after 1381 * unlocking the map, using the saved addresses is 1382 * safe. 1383 */ 1384 e_start = fs->entry->start; 1385 e_end = fs->entry->end; 1386 behavior = vm_map_entry_behavior(fs->entry); 1387 1388 /* 1389 * If the pager for the current object might have 1390 * the page, then determine the number of additional 1391 * pages to read and potentially reprioritize 1392 * previously read pages for earlier reclamation. 1393 * These operations should only be performed once per 1394 * page fault. Even if the current pager doesn't 1395 * have the page, the number of additional pages to 1396 * read will apply to subsequent objects in the 1397 * shadow chain. 1398 */ 1399 if (fs->nera == -1 && !P_KILLED(curproc)) 1400 fs->nera = vm_fault_readahead(fs); 1401 1402 /* 1403 * Release the map lock before locking the vnode or 1404 * sleeping in the pager. (If the current object has 1405 * a shadow, then an earlier iteration of this loop 1406 * may have already unlocked the map.) 1407 */ 1408 vm_fault_unlock_map(fs); 1409 1410 status = vm_fault_lock_vnode(fs, false); 1411 MPASS(status == FAULT_CONTINUE || status == FAULT_RESTART); 1412 if (status == FAULT_RESTART) 1413 return (status); 1414 KASSERT(fs->vp == NULL || !vm_map_is_system(fs->map), 1415 ("vm_fault: vnode-backed object mapped by system map")); 1416 1417 /* 1418 * Page in the requested page and hint the pager, 1419 * that it may bring up surrounding pages. 1420 */ 1421 if (fs->nera == -1 || behavior == MAP_ENTRY_BEHAV_RANDOM || 1422 P_KILLED(curproc)) { 1423 behind = 0; 1424 ahead = 0; 1425 } else { 1426 /* Is this a sequential fault? */ 1427 if (fs->nera > 0) { 1428 behind = 0; 1429 ahead = fs->nera; 1430 } else { 1431 /* 1432 * Request a cluster of pages that is 1433 * aligned to a VM_FAULT_READ_DEFAULT 1434 * page offset boundary within the 1435 * object. Alignment to a page offset 1436 * boundary is more likely to coincide 1437 * with the underlying file system 1438 * block than alignment to a virtual 1439 * address boundary. 1440 */ 1441 cluster_offset = fs->pindex % VM_FAULT_READ_DEFAULT; 1442 behind = ulmin(cluster_offset, 1443 atop(fs->vaddr - e_start)); 1444 ahead = VM_FAULT_READ_DEFAULT - 1 - cluster_offset; 1445 } 1446 ahead = ulmin(ahead, atop(e_end - fs->vaddr) - 1); 1447 } 1448 *behindp = behind; 1449 *aheadp = ahead; 1450 rv = vm_pager_get_pages(fs->object, &fs->m, 1, behindp, aheadp); 1451 if (rv == VM_PAGER_OK) 1452 return (FAULT_HARD); 1453 if (rv == VM_PAGER_ERROR) 1454 printf("vm_fault: pager read error, pid %d (%s)\n", 1455 curproc->p_pid, curproc->p_comm); 1456 /* 1457 * If an I/O error occurred or the requested page was 1458 * outside the range of the pager, clean up and return 1459 * an error. 1460 */ 1461 if (rv == VM_PAGER_ERROR || rv == VM_PAGER_BAD) { 1462 VM_OBJECT_WLOCK(fs->object); 1463 vm_fault_page_free(&fs->m); 1464 vm_fault_unlock_and_deallocate(fs); 1465 return (FAULT_OUT_OF_BOUNDS); 1466 } 1467 KASSERT(rv == VM_PAGER_FAIL, 1468 ("%s: unexpected pager error %d", __func__, rv)); 1469 return (FAULT_CONTINUE); 1470 } 1471 1472 /* 1473 * Wait/Retry if the page is busy. We have to do this if the page is 1474 * either exclusive or shared busy because the vm_pager may be using 1475 * read busy for pageouts (and even pageins if it is the vnode pager), 1476 * and we could end up trying to pagein and pageout the same page 1477 * simultaneously. 1478 * 1479 * We allow the busy case on a read fault if the page is valid. We 1480 * cannot under any circumstances mess around with a shared busied 1481 * page except, perhaps, to pmap it. This is controlled by the 1482 * VM_ALLOC_SBUSY bit in the allocflags argument. 1483 */ 1484 static void 1485 vm_fault_busy_sleep(struct faultstate *fs, int allocflags) 1486 { 1487 /* 1488 * Reference the page before unlocking and 1489 * sleeping so that the page daemon is less 1490 * likely to reclaim it. 1491 */ 1492 vm_page_aflag_set(fs->m, PGA_REFERENCED); 1493 if (vm_fault_might_be_cow(fs)) { 1494 vm_fault_page_release(&fs->first_m); 1495 vm_object_pip_wakeup(fs->first_object); 1496 } 1497 vm_object_pip_wakeup(fs->object); 1498 vm_fault_unlock_map(fs); 1499 if (!vm_page_busy_sleep(fs->m, "vmpfw", allocflags)) 1500 VM_OBJECT_UNLOCK(fs->object); 1501 VM_CNT_INC(v_intrans); 1502 vm_object_deallocate(fs->first_object); 1503 } 1504 1505 /* 1506 * Handle page lookup, populate, allocate, page-in for the current 1507 * object. 1508 * 1509 * The object is locked on entry and will remain locked with a return 1510 * code of FAULT_CONTINUE so that fault may follow the shadow chain. 1511 * Otherwise, the object will be unlocked upon return. 1512 */ 1513 static enum fault_status 1514 vm_fault_object(struct faultstate *fs, int *behindp, int *aheadp) 1515 { 1516 struct pctrie_iter pages; 1517 enum fault_status res; 1518 bool dead; 1519 1520 if (fs->object == fs->first_object || !fs->can_read_lock) 1521 VM_OBJECT_ASSERT_WLOCKED(fs->object); 1522 else 1523 VM_OBJECT_ASSERT_LOCKED(fs->object); 1524 1525 /* 1526 * If the object is marked for imminent termination, we retry 1527 * here, since the collapse pass has raced with us. Otherwise, 1528 * if we see terminally dead object, return fail. 1529 */ 1530 if ((fs->object->flags & OBJ_DEAD) != 0) { 1531 dead = fs->object->type == OBJT_DEAD; 1532 vm_fault_unlock_and_deallocate(fs); 1533 if (dead) 1534 return (FAULT_PROTECTION_FAILURE); 1535 pause("vmf_de", 1); 1536 return (FAULT_RESTART); 1537 } 1538 1539 /* 1540 * See if the page is resident. 1541 */ 1542 vm_page_iter_init(&pages, fs->object); 1543 fs->m = vm_radix_iter_lookup(&pages, fs->pindex); 1544 if (fs->m != NULL) { 1545 /* 1546 * If the found page is valid, will be either shadowed 1547 * or mapped read-only, and will not be renamed for 1548 * COW, then busy it in shared mode. This allows 1549 * other faults needing this page to proceed in 1550 * parallel. 1551 * 1552 * Unlocked check for validity, rechecked after busy 1553 * is obtained. 1554 */ 1555 if (vm_page_all_valid(fs->m) && 1556 /* 1557 * No write permissions for the new fs->m mapping, 1558 * or the first object has only one mapping, so 1559 * other writeable COW mappings of fs->m cannot 1560 * appear under us. 1561 */ 1562 (vm_fault_is_read(fs) || vm_fault_might_be_cow(fs)) && 1563 /* 1564 * fs->m cannot be renamed from object to 1565 * first_object. These conditions will be 1566 * re-checked with proper synchronization in 1567 * vm_fault_cow(). 1568 */ 1569 (!vm_fault_can_cow_rename(fs) || 1570 fs->object != fs->first_object->backing_object)) { 1571 if (!vm_page_trysbusy(fs->m)) { 1572 vm_fault_busy_sleep(fs, VM_ALLOC_SBUSY); 1573 return (FAULT_RESTART); 1574 } 1575 1576 /* 1577 * Now make sure that racily checked 1578 * conditions are still valid. 1579 */ 1580 if (__predict_true(vm_page_all_valid(fs->m) && 1581 (vm_fault_is_read(fs) || 1582 vm_fault_might_be_cow(fs)))) { 1583 VM_OBJECT_UNLOCK(fs->object); 1584 return (FAULT_SOFT); 1585 } 1586 1587 vm_page_sunbusy(fs->m); 1588 } 1589 1590 if (!vm_page_tryxbusy(fs->m)) { 1591 vm_fault_busy_sleep(fs, 0); 1592 return (FAULT_RESTART); 1593 } 1594 1595 /* 1596 * The page is marked busy for other processes and the 1597 * pagedaemon. If it is still completely valid we are 1598 * done. 1599 */ 1600 if (vm_page_all_valid(fs->m)) { 1601 VM_OBJECT_UNLOCK(fs->object); 1602 return (FAULT_SOFT); 1603 } 1604 } 1605 1606 /* 1607 * Page is not resident. If the pager might contain the page 1608 * or this is the beginning of the search, allocate a new 1609 * page. 1610 */ 1611 if (fs->m == NULL && (vm_fault_object_needs_getpages(fs->object) || 1612 fs->object == fs->first_object)) { 1613 if (!vm_fault_object_ensure_wlocked(fs)) { 1614 fs->can_read_lock = false; 1615 vm_fault_unlock_and_deallocate(fs); 1616 return (FAULT_RESTART); 1617 } 1618 res = vm_fault_allocate(fs, &pages); 1619 if (res != FAULT_CONTINUE) 1620 return (res); 1621 } 1622 1623 /* 1624 * Check to see if the pager can possibly satisfy this fault. 1625 * If not, skip to the next object without dropping the lock to 1626 * preserve atomicity of shadow faults. 1627 */ 1628 if (vm_fault_object_needs_getpages(fs->object)) { 1629 /* 1630 * At this point, we have either allocated a new page 1631 * or found an existing page that is only partially 1632 * valid. 1633 * 1634 * We hold a reference on the current object and the 1635 * page is exclusive busied. The exclusive busy 1636 * prevents simultaneous faults and collapses while 1637 * the object lock is dropped. 1638 */ 1639 VM_OBJECT_UNLOCK(fs->object); 1640 res = vm_fault_getpages(fs, behindp, aheadp); 1641 if (res == FAULT_CONTINUE) 1642 VM_OBJECT_WLOCK(fs->object); 1643 } else { 1644 res = FAULT_CONTINUE; 1645 } 1646 return (res); 1647 } 1648 1649 /* 1650 * vm_fault: 1651 * 1652 * Handle a page fault occurring at the given address, requiring the 1653 * given permissions, in the map specified. If successful, the page 1654 * is inserted into the associated physical map, and optionally 1655 * referenced and returned in *m_hold. 1656 * 1657 * The given address should be truncated to the proper page address. 1658 * 1659 * KERN_SUCCESS is returned if the page fault is handled; otherwise, a 1660 * Mach error code explaining why the fault is fatal is returned. 1661 * 1662 * The map in question must be alive, either being the map for the current 1663 * process, or the owner process hold count has been incremented to prevent 1664 * exit(). 1665 * 1666 * If the thread private TDP_NOFAULTING flag is set, any fault results 1667 * in immediate protection failure. Otherwise the fault is processed, 1668 * and caller may hold no locks. 1669 */ 1670 int 1671 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, 1672 int fault_flags, vm_page_t *m_hold) 1673 { 1674 struct pctrie_iter pages; 1675 struct faultstate fs; 1676 int ahead, behind, faultcount, rv; 1677 enum fault_status res; 1678 enum fault_next_status res_next; 1679 bool hardfault; 1680 1681 VM_CNT_INC(v_vm_faults); 1682 1683 if ((curthread->td_pflags & TDP_NOFAULTING) != 0) 1684 return (KERN_PROTECTION_FAILURE); 1685 1686 fs.vp = NULL; 1687 fs.vaddr = vaddr; 1688 fs.m_hold = m_hold; 1689 fs.fault_flags = fault_flags; 1690 fs.map = map; 1691 fs.lookup_still_valid = false; 1692 fs.m_needs_zeroing = true; 1693 fs.oom_started = false; 1694 fs.nera = -1; 1695 fs.can_read_lock = true; 1696 faultcount = 0; 1697 hardfault = false; 1698 1699 RetryFault: 1700 fs.fault_type = fault_type; 1701 1702 /* 1703 * Find the backing store object and offset into it to begin the 1704 * search. 1705 */ 1706 rv = vm_fault_lookup(&fs); 1707 if (rv != KERN_SUCCESS) { 1708 if (rv == KERN_RESOURCE_SHORTAGE) 1709 goto RetryFault; 1710 return (rv); 1711 } 1712 1713 /* 1714 * Try to avoid lock contention on the top-level object through 1715 * special-case handling of some types of page faults, specifically, 1716 * those that are mapping an existing page from the top-level object. 1717 * Under this condition, a read lock on the object suffices, allowing 1718 * multiple page faults of a similar type to run in parallel. 1719 */ 1720 if (fs.vp == NULL /* avoid locked vnode leak */ && 1721 (fs.entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) == 0 && 1722 (fs.fault_flags & (VM_FAULT_WIRE | VM_FAULT_DIRTY)) == 0) { 1723 res = vm_fault_soft_fast(&fs); 1724 if (res == FAULT_SUCCESS) { 1725 VM_OBJECT_ASSERT_UNLOCKED(fs.first_object); 1726 return (KERN_SUCCESS); 1727 } 1728 VM_OBJECT_ASSERT_WLOCKED(fs.first_object); 1729 } else { 1730 vm_page_iter_init(&pages, fs.first_object); 1731 VM_OBJECT_WLOCK(fs.first_object); 1732 } 1733 1734 /* 1735 * Make a reference to this object to prevent its disposal while we 1736 * are messing with it. Once we have the reference, the map is free 1737 * to be diddled. Since objects reference their shadows (and copies), 1738 * they will stay around as well. 1739 * 1740 * Bump the paging-in-progress count to prevent size changes (e.g. 1741 * truncation operations) during I/O. 1742 */ 1743 vm_object_reference_locked(fs.first_object); 1744 vm_object_pip_add(fs.first_object, 1); 1745 1746 fs.m_cow = fs.m = fs.first_m = NULL; 1747 1748 /* 1749 * Search for the page at object/offset. 1750 */ 1751 fs.object = fs.first_object; 1752 fs.pindex = fs.first_pindex; 1753 1754 if ((fs.entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) != 0) { 1755 res = vm_fault_allocate(&fs, &pages); 1756 switch (res) { 1757 case FAULT_RESTART: 1758 goto RetryFault; 1759 case FAULT_SUCCESS: 1760 return (KERN_SUCCESS); 1761 case FAULT_FAILURE: 1762 return (KERN_FAILURE); 1763 case FAULT_OUT_OF_BOUNDS: 1764 return (KERN_OUT_OF_BOUNDS); 1765 case FAULT_CONTINUE: 1766 break; 1767 default: 1768 panic("vm_fault: Unhandled status %d", res); 1769 } 1770 } 1771 1772 while (TRUE) { 1773 KASSERT(fs.m == NULL, 1774 ("page still set %p at loop start", fs.m)); 1775 1776 res = vm_fault_object(&fs, &behind, &ahead); 1777 switch (res) { 1778 case FAULT_SOFT: 1779 goto found; 1780 case FAULT_HARD: 1781 faultcount = behind + 1 + ahead; 1782 hardfault = true; 1783 goto found; 1784 case FAULT_RESTART: 1785 goto RetryFault; 1786 case FAULT_SUCCESS: 1787 return (KERN_SUCCESS); 1788 case FAULT_FAILURE: 1789 return (KERN_FAILURE); 1790 case FAULT_OUT_OF_BOUNDS: 1791 return (KERN_OUT_OF_BOUNDS); 1792 case FAULT_PROTECTION_FAILURE: 1793 return (KERN_PROTECTION_FAILURE); 1794 case FAULT_CONTINUE: 1795 break; 1796 default: 1797 panic("vm_fault: Unhandled status %d", res); 1798 } 1799 1800 /* 1801 * The page was not found in the current object. Try to 1802 * traverse into a backing object or zero fill if none is 1803 * found. 1804 */ 1805 res_next = vm_fault_next(&fs); 1806 if (res_next == FAULT_NEXT_RESTART) 1807 goto RetryFault; 1808 else if (res_next == FAULT_NEXT_GOTOBJ) 1809 continue; 1810 MPASS(res_next == FAULT_NEXT_NOOBJ); 1811 if ((fs.fault_flags & VM_FAULT_NOFILL) != 0) { 1812 if (fs.first_object == fs.object) 1813 vm_fault_page_free(&fs.first_m); 1814 vm_fault_unlock_and_deallocate(&fs); 1815 return (KERN_OUT_OF_BOUNDS); 1816 } 1817 VM_OBJECT_UNLOCK(fs.object); 1818 vm_fault_zerofill(&fs); 1819 /* Don't try to prefault neighboring pages. */ 1820 faultcount = 1; 1821 break; 1822 } 1823 1824 found: 1825 /* 1826 * A valid page has been found and busied. The object lock 1827 * must no longer be held if the page was busied. 1828 * 1829 * Regardless of the busy state of fs.m, fs.first_m is always 1830 * exclusively busied after the first iteration of the loop 1831 * calling vm_fault_object(). This is an ordering point for 1832 * the parallel faults occuring in on the same page. 1833 */ 1834 vm_page_assert_busied(fs.m); 1835 VM_OBJECT_ASSERT_UNLOCKED(fs.object); 1836 1837 /* 1838 * If the page is being written, but isn't already owned by the 1839 * top-level object, we have to copy it into a new page owned by the 1840 * top-level object. 1841 */ 1842 if (vm_fault_might_be_cow(&fs)) { 1843 /* 1844 * We only really need to copy if we want to write it. 1845 */ 1846 if ((fs.fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) { 1847 vm_fault_cow(&fs); 1848 /* 1849 * We only try to prefault read-only mappings to the 1850 * neighboring pages when this copy-on-write fault is 1851 * a hard fault. In other cases, trying to prefault 1852 * is typically wasted effort. 1853 */ 1854 if (faultcount == 0) 1855 faultcount = 1; 1856 1857 } else { 1858 fs.prot &= ~VM_PROT_WRITE; 1859 } 1860 } 1861 1862 /* 1863 * We must verify that the maps have not changed since our last 1864 * lookup. 1865 */ 1866 if (!fs.lookup_still_valid) { 1867 rv = vm_fault_relookup(&fs); 1868 if (rv != KERN_SUCCESS) { 1869 vm_fault_deallocate(&fs); 1870 if (rv == KERN_RESTART) 1871 goto RetryFault; 1872 return (rv); 1873 } 1874 } 1875 VM_OBJECT_ASSERT_UNLOCKED(fs.object); 1876 1877 /* 1878 * If the page was filled by a pager, save the virtual address that 1879 * should be faulted on next under a sequential access pattern to the 1880 * map entry. A read lock on the map suffices to update this address 1881 * safely. 1882 */ 1883 if (hardfault) 1884 fs.entry->next_read = vaddr + ptoa(ahead) + PAGE_SIZE; 1885 1886 /* 1887 * If the page to be mapped was copied from a backing object, we defer 1888 * marking it valid until here, where the fault handler is guaranteed to 1889 * succeed. Otherwise we can end up with a shadowed, mapped page in the 1890 * backing object, which violates an invariant of vm_object_collapse() 1891 * that shadowed pages are not mapped. 1892 */ 1893 if (fs.m_cow != NULL) { 1894 KASSERT(vm_page_none_valid(fs.m), 1895 ("vm_fault: page %p is already valid", fs.m_cow)); 1896 vm_page_valid(fs.m); 1897 } 1898 1899 /* 1900 * Page must be completely valid or it is not fit to 1901 * map into user space. vm_pager_get_pages() ensures this. 1902 */ 1903 vm_page_assert_busied(fs.m); 1904 KASSERT(vm_page_all_valid(fs.m), 1905 ("vm_fault: page %p partially invalid", fs.m)); 1906 1907 vm_fault_dirty(&fs, fs.m); 1908 1909 /* 1910 * Put this page into the physical map. We had to do the unlock above 1911 * because pmap_enter() may sleep. We don't put the page 1912 * back on the active queue until later so that the pageout daemon 1913 * won't find it (yet). 1914 */ 1915 pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot, 1916 fs.fault_type | (fs.wired ? PMAP_ENTER_WIRED : 0), 0); 1917 if (faultcount != 1 && (fs.fault_flags & VM_FAULT_WIRE) == 0 && 1918 fs.wired == 0) 1919 vm_fault_prefault(&fs, vaddr, 1920 faultcount > 0 ? behind : PFBAK, 1921 faultcount > 0 ? ahead : PFFOR, false); 1922 1923 /* 1924 * If the page is not wired down, then put it where the pageout daemon 1925 * can find it. 1926 */ 1927 if ((fs.fault_flags & VM_FAULT_WIRE) != 0) 1928 vm_page_wire(fs.m); 1929 else 1930 vm_page_activate(fs.m); 1931 if (fs.m_hold != NULL) { 1932 (*fs.m_hold) = fs.m; 1933 vm_page_wire(fs.m); 1934 } 1935 1936 KASSERT(fs.first_object == fs.object || vm_page_xbusied(fs.first_m), 1937 ("first_m must be xbusy")); 1938 if (vm_page_xbusied(fs.m)) 1939 vm_page_xunbusy(fs.m); 1940 else 1941 vm_page_sunbusy(fs.m); 1942 fs.m = NULL; 1943 1944 /* 1945 * Unlock everything, and return 1946 */ 1947 vm_fault_deallocate(&fs); 1948 if (hardfault) { 1949 VM_CNT_INC(v_io_faults); 1950 curthread->td_ru.ru_majflt++; 1951 #ifdef RACCT 1952 if (racct_enable && fs.object->type == OBJT_VNODE) { 1953 PROC_LOCK(curproc); 1954 if ((fs.fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) { 1955 racct_add_force(curproc, RACCT_WRITEBPS, 1956 PAGE_SIZE + behind * PAGE_SIZE); 1957 racct_add_force(curproc, RACCT_WRITEIOPS, 1); 1958 } else { 1959 racct_add_force(curproc, RACCT_READBPS, 1960 PAGE_SIZE + ahead * PAGE_SIZE); 1961 racct_add_force(curproc, RACCT_READIOPS, 1); 1962 } 1963 PROC_UNLOCK(curproc); 1964 } 1965 #endif 1966 } else 1967 curthread->td_ru.ru_minflt++; 1968 1969 return (KERN_SUCCESS); 1970 } 1971 1972 /* 1973 * Speed up the reclamation of pages that precede the faulting pindex within 1974 * the first object of the shadow chain. Essentially, perform the equivalent 1975 * to madvise(..., MADV_DONTNEED) on a large cluster of pages that precedes 1976 * the faulting pindex by the cluster size when the pages read by vm_fault() 1977 * cross a cluster-size boundary. The cluster size is the greater of the 1978 * smallest superpage size and VM_FAULT_DONTNEED_MIN. 1979 * 1980 * When "fs->first_object" is a shadow object, the pages in the backing object 1981 * that precede the faulting pindex are deactivated by vm_fault(). So, this 1982 * function must only be concerned with pages in the first object. 1983 */ 1984 static void 1985 vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, int ahead) 1986 { 1987 struct pctrie_iter pages; 1988 vm_map_entry_t entry; 1989 vm_object_t first_object; 1990 vm_offset_t end, start; 1991 vm_page_t m; 1992 vm_size_t size; 1993 1994 VM_OBJECT_ASSERT_UNLOCKED(fs->object); 1995 first_object = fs->first_object; 1996 /* Neither fictitious nor unmanaged pages can be reclaimed. */ 1997 if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) { 1998 VM_OBJECT_RLOCK(first_object); 1999 size = VM_FAULT_DONTNEED_MIN; 2000 if (MAXPAGESIZES > 1 && size < pagesizes[1]) 2001 size = pagesizes[1]; 2002 end = rounddown2(vaddr, size); 2003 if (vaddr - end >= size - PAGE_SIZE - ptoa(ahead) && 2004 (entry = fs->entry)->start < end) { 2005 if (end - entry->start < size) 2006 start = entry->start; 2007 else 2008 start = end - size; 2009 pmap_advise(fs->map->pmap, start, end, MADV_DONTNEED); 2010 vm_page_iter_limit_init(&pages, first_object, 2011 OFF_TO_IDX(entry->offset) + 2012 atop(end - entry->start)); 2013 VM_RADIX_FOREACH_FROM(m, &pages, 2014 OFF_TO_IDX(entry->offset) + 2015 atop(start - entry->start)) { 2016 if (!vm_page_all_valid(m) || 2017 vm_page_busied(m)) 2018 continue; 2019 2020 /* 2021 * Don't clear PGA_REFERENCED, since it would 2022 * likely represent a reference by a different 2023 * process. 2024 * 2025 * Typically, at this point, prefetched pages 2026 * are still in the inactive queue. Only 2027 * pages that triggered page faults are in the 2028 * active queue. The test for whether the page 2029 * is in the inactive queue is racy; in the 2030 * worst case we will requeue the page 2031 * unnecessarily. 2032 */ 2033 if (!vm_page_inactive(m)) 2034 vm_page_deactivate(m); 2035 } 2036 } 2037 VM_OBJECT_RUNLOCK(first_object); 2038 } 2039 } 2040 2041 /* 2042 * vm_fault_prefault provides a quick way of clustering 2043 * pagefaults into a processes address space. It is a "cousin" 2044 * of vm_map_pmap_enter, except it runs at page fault time instead 2045 * of mmap time. 2046 */ 2047 static void 2048 vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra, 2049 int backward, int forward, bool obj_locked) 2050 { 2051 pmap_t pmap; 2052 vm_map_entry_t entry; 2053 vm_object_t backing_object, lobject; 2054 vm_offset_t addr, starta; 2055 vm_pindex_t pindex; 2056 vm_page_t m; 2057 vm_prot_t prot; 2058 int i; 2059 2060 pmap = fs->map->pmap; 2061 if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) 2062 return; 2063 2064 entry = fs->entry; 2065 2066 if (addra < backward * PAGE_SIZE) { 2067 starta = entry->start; 2068 } else { 2069 starta = addra - backward * PAGE_SIZE; 2070 if (starta < entry->start) 2071 starta = entry->start; 2072 } 2073 prot = entry->protection; 2074 2075 /* 2076 * If pmap_enter() has enabled write access on a nearby mapping, then 2077 * don't attempt promotion, because it will fail. 2078 */ 2079 if ((fs->prot & VM_PROT_WRITE) != 0) 2080 prot |= VM_PROT_NO_PROMOTE; 2081 2082 /* 2083 * Generate the sequence of virtual addresses that are candidates for 2084 * prefaulting in an outward spiral from the faulting virtual address, 2085 * "addra". Specifically, the sequence is "addra - PAGE_SIZE", "addra 2086 * + PAGE_SIZE", "addra - 2 * PAGE_SIZE", "addra + 2 * PAGE_SIZE", ... 2087 * If the candidate address doesn't have a backing physical page, then 2088 * the loop immediately terminates. 2089 */ 2090 for (i = 0; i < 2 * imax(backward, forward); i++) { 2091 addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE : 2092 PAGE_SIZE); 2093 if (addr > addra + forward * PAGE_SIZE) 2094 addr = 0; 2095 2096 if (addr < starta || addr >= entry->end) 2097 continue; 2098 2099 if (!pmap_is_prefaultable(pmap, addr)) 2100 continue; 2101 2102 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT; 2103 lobject = entry->object.vm_object; 2104 if (!obj_locked) 2105 VM_OBJECT_RLOCK(lobject); 2106 while ((m = vm_page_lookup(lobject, pindex)) == NULL && 2107 !vm_fault_object_needs_getpages(lobject) && 2108 (backing_object = lobject->backing_object) != NULL) { 2109 KASSERT((lobject->backing_object_offset & PAGE_MASK) == 2110 0, ("vm_fault_prefault: unaligned object offset")); 2111 pindex += lobject->backing_object_offset >> PAGE_SHIFT; 2112 VM_OBJECT_RLOCK(backing_object); 2113 if (!obj_locked || lobject != entry->object.vm_object) 2114 VM_OBJECT_RUNLOCK(lobject); 2115 lobject = backing_object; 2116 } 2117 if (m == NULL) { 2118 if (!obj_locked || lobject != entry->object.vm_object) 2119 VM_OBJECT_RUNLOCK(lobject); 2120 break; 2121 } 2122 if (vm_page_all_valid(m) && 2123 (m->flags & PG_FICTITIOUS) == 0) 2124 pmap_enter_quick(pmap, addr, m, prot); 2125 if (!obj_locked || lobject != entry->object.vm_object) 2126 VM_OBJECT_RUNLOCK(lobject); 2127 } 2128 } 2129 2130 /* 2131 * Hold each of the physical pages that are mapped by the specified 2132 * range of virtual addresses, ["addr", "addr" + "len"), if those 2133 * mappings are valid and allow the specified types of access, "prot". 2134 * If all of the implied pages are successfully held, then the number 2135 * of held pages is assigned to *ppages_count, together with pointers 2136 * to those pages in the array "ma". The returned value is zero. 2137 * 2138 * However, if any of the pages cannot be held, an error is returned, 2139 * and no pages are held. 2140 * Error values: 2141 * ENOMEM - the range is not valid 2142 * EINVAL - the provided vm_page array is too small to hold all pages 2143 * EAGAIN - a page was not mapped, and the thread is in nofaulting mode 2144 * EFAULT - a page with requested permissions cannot be mapped 2145 * (more detailed result from vm_fault() is lost) 2146 */ 2147 int 2148 vm_fault_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len, 2149 vm_prot_t prot, vm_page_t *ma, int max_count, int *ppages_count) 2150 { 2151 vm_offset_t end, va; 2152 vm_page_t *mp; 2153 int count, error; 2154 boolean_t pmap_failed; 2155 2156 if (len == 0) { 2157 *ppages_count = 0; 2158 return (0); 2159 } 2160 end = round_page(addr + len); 2161 addr = trunc_page(addr); 2162 2163 if (!vm_map_range_valid(map, addr, end)) 2164 return (ENOMEM); 2165 2166 if (atop(end - addr) > max_count) 2167 return (EINVAL); 2168 count = atop(end - addr); 2169 2170 /* 2171 * Most likely, the physical pages are resident in the pmap, so it is 2172 * faster to try pmap_extract_and_hold() first. 2173 */ 2174 pmap_failed = FALSE; 2175 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) { 2176 *mp = pmap_extract_and_hold(map->pmap, va, prot); 2177 if (*mp == NULL) 2178 pmap_failed = TRUE; 2179 else if ((prot & VM_PROT_WRITE) != 0 && 2180 (*mp)->dirty != VM_PAGE_BITS_ALL) { 2181 /* 2182 * Explicitly dirty the physical page. Otherwise, the 2183 * caller's changes may go unnoticed because they are 2184 * performed through an unmanaged mapping or by a DMA 2185 * operation. 2186 * 2187 * The object lock is not held here. 2188 * See vm_page_clear_dirty_mask(). 2189 */ 2190 vm_page_dirty(*mp); 2191 } 2192 } 2193 if (pmap_failed) { 2194 /* 2195 * One or more pages could not be held by the pmap. Either no 2196 * page was mapped at the specified virtual address or that 2197 * mapping had insufficient permissions. Attempt to fault in 2198 * and hold these pages. 2199 * 2200 * If vm_fault_disable_pagefaults() was called, 2201 * i.e., TDP_NOFAULTING is set, we must not sleep nor 2202 * acquire MD VM locks, which means we must not call 2203 * vm_fault(). Some (out of tree) callers mark 2204 * too wide a code area with vm_fault_disable_pagefaults() 2205 * already, use the VM_PROT_QUICK_NOFAULT flag to request 2206 * the proper behaviour explicitly. 2207 */ 2208 if ((prot & VM_PROT_QUICK_NOFAULT) != 0 && 2209 (curthread->td_pflags & TDP_NOFAULTING) != 0) { 2210 error = EAGAIN; 2211 goto fail; 2212 } 2213 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) { 2214 if (*mp == NULL && vm_fault(map, va, prot, 2215 VM_FAULT_NORMAL, mp) != KERN_SUCCESS) { 2216 error = EFAULT; 2217 goto fail; 2218 } 2219 } 2220 } 2221 *ppages_count = count; 2222 return (0); 2223 fail: 2224 for (mp = ma; mp < ma + count; mp++) 2225 if (*mp != NULL) 2226 vm_page_unwire(*mp, PQ_INACTIVE); 2227 return (error); 2228 } 2229 2230 /* 2231 * Hold each of the physical pages that are mapped by the specified range of 2232 * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid 2233 * and allow the specified types of access, "prot". If all of the implied 2234 * pages are successfully held, then the number of held pages is returned 2235 * together with pointers to those pages in the array "ma". However, if any 2236 * of the pages cannot be held, -1 is returned. 2237 */ 2238 int 2239 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len, 2240 vm_prot_t prot, vm_page_t *ma, int max_count) 2241 { 2242 int error, pages_count; 2243 2244 error = vm_fault_hold_pages(map, addr, len, prot, ma, 2245 max_count, &pages_count); 2246 if (error != 0) { 2247 if (error == EINVAL) 2248 panic("vm_fault_quick_hold_pages: count > max_count"); 2249 return (-1); 2250 } 2251 return (pages_count); 2252 } 2253 2254 /* 2255 * Routine: 2256 * vm_fault_copy_entry 2257 * Function: 2258 * Create new object backing dst_entry with private copy of all 2259 * underlying pages. When src_entry is equal to dst_entry, function 2260 * implements COW for wired-down map entry. Otherwise, it forks 2261 * wired entry into dst_map. 2262 * 2263 * In/out conditions: 2264 * The source and destination maps must be locked for write. 2265 * The source map entry must be wired down (or be a sharing map 2266 * entry corresponding to a main map entry that is wired down). 2267 */ 2268 void 2269 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map __unused, 2270 vm_map_entry_t dst_entry, vm_map_entry_t src_entry, 2271 vm_ooffset_t *fork_charge) 2272 { 2273 struct pctrie_iter pages; 2274 vm_object_t backing_object, dst_object, object, src_object; 2275 vm_pindex_t dst_pindex, pindex, src_pindex; 2276 vm_prot_t access, prot; 2277 vm_offset_t vaddr; 2278 vm_page_t dst_m; 2279 vm_page_t src_m; 2280 bool upgrade; 2281 2282 upgrade = src_entry == dst_entry; 2283 KASSERT(upgrade || dst_entry->object.vm_object == NULL, 2284 ("vm_fault_copy_entry: vm_object not NULL")); 2285 2286 /* 2287 * If not an upgrade, then enter the mappings in the pmap as 2288 * read and/or execute accesses. Otherwise, enter them as 2289 * write accesses. 2290 * 2291 * A writeable large page mapping is only created if all of 2292 * the constituent small page mappings are modified. Marking 2293 * PTEs as modified on inception allows promotion to happen 2294 * without taking potentially large number of soft faults. 2295 */ 2296 access = prot = dst_entry->protection; 2297 if (!upgrade) 2298 access &= ~VM_PROT_WRITE; 2299 2300 src_object = src_entry->object.vm_object; 2301 src_pindex = OFF_TO_IDX(src_entry->offset); 2302 2303 if (upgrade && (dst_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) { 2304 dst_object = src_object; 2305 vm_object_reference(dst_object); 2306 } else { 2307 /* 2308 * Create the top-level object for the destination entry. 2309 * Doesn't actually shadow anything - we copy the pages 2310 * directly. 2311 */ 2312 dst_object = vm_object_allocate_anon(atop(dst_entry->end - 2313 dst_entry->start), NULL, NULL, 0); 2314 #if VM_NRESERVLEVEL > 0 2315 dst_object->flags |= OBJ_COLORED; 2316 dst_object->pg_color = atop(dst_entry->start); 2317 #endif 2318 dst_object->domain = src_object->domain; 2319 dst_object->charge = dst_entry->end - dst_entry->start; 2320 2321 dst_entry->object.vm_object = dst_object; 2322 dst_entry->offset = 0; 2323 dst_entry->eflags &= ~MAP_ENTRY_VN_EXEC; 2324 } 2325 2326 VM_OBJECT_WLOCK(dst_object); 2327 if (fork_charge != NULL) { 2328 KASSERT(dst_entry->cred == NULL, 2329 ("vm_fault_copy_entry: leaked swp charge")); 2330 dst_object->cred = curthread->td_ucred; 2331 crhold(dst_object->cred); 2332 *fork_charge += dst_object->charge; 2333 } else if ((dst_object->flags & OBJ_SWAP) != 0 && 2334 dst_object->cred == NULL) { 2335 KASSERT(dst_entry->cred != NULL, ("no cred for entry %p", 2336 dst_entry)); 2337 dst_object->cred = dst_entry->cred; 2338 dst_entry->cred = NULL; 2339 } 2340 2341 /* 2342 * Loop through all of the virtual pages within the entry's 2343 * range, copying each page from the source object to the 2344 * destination object. Since the source is wired, those pages 2345 * must exist. In contrast, the destination is pageable. 2346 * Since the destination object doesn't share any backing storage 2347 * with the source object, all of its pages must be dirtied, 2348 * regardless of whether they can be written. 2349 */ 2350 vm_page_iter_init(&pages, dst_object); 2351 for (vaddr = dst_entry->start, dst_pindex = 0; 2352 vaddr < dst_entry->end; 2353 vaddr += PAGE_SIZE, dst_pindex++) { 2354 again: 2355 /* 2356 * Find the page in the source object, and copy it in. 2357 * Because the source is wired down, the page will be 2358 * in memory. 2359 */ 2360 if (src_object != dst_object) 2361 VM_OBJECT_RLOCK(src_object); 2362 object = src_object; 2363 pindex = src_pindex + dst_pindex; 2364 while ((src_m = vm_page_lookup(object, pindex)) == NULL && 2365 (backing_object = object->backing_object) != NULL) { 2366 /* 2367 * Unless the source mapping is read-only or 2368 * it is presently being upgraded from 2369 * read-only, the first object in the shadow 2370 * chain should provide all of the pages. In 2371 * other words, this loop body should never be 2372 * executed when the source mapping is already 2373 * read/write. 2374 */ 2375 KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 || 2376 upgrade, 2377 ("vm_fault_copy_entry: main object missing page")); 2378 2379 VM_OBJECT_RLOCK(backing_object); 2380 pindex += OFF_TO_IDX(object->backing_object_offset); 2381 if (object != dst_object) 2382 VM_OBJECT_RUNLOCK(object); 2383 object = backing_object; 2384 } 2385 KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing")); 2386 2387 if (object != dst_object) { 2388 /* 2389 * Allocate a page in the destination object. 2390 */ 2391 pindex = (src_object == dst_object ? src_pindex : 0) + 2392 dst_pindex; 2393 dst_m = vm_page_alloc_iter(dst_object, pindex, 2394 VM_ALLOC_NORMAL, &pages); 2395 if (dst_m == NULL) { 2396 VM_OBJECT_WUNLOCK(dst_object); 2397 VM_OBJECT_RUNLOCK(object); 2398 vm_wait(dst_object); 2399 VM_OBJECT_WLOCK(dst_object); 2400 pctrie_iter_reset(&pages); 2401 goto again; 2402 } 2403 2404 /* 2405 * See the comment in vm_fault_cow(). 2406 */ 2407 if (src_object == dst_object && 2408 (object->flags & OBJ_ONEMAPPING) == 0) 2409 pmap_remove_all(src_m); 2410 pmap_copy_page(src_m, dst_m); 2411 2412 /* 2413 * The object lock does not guarantee that "src_m" will 2414 * transition from invalid to valid, but it does ensure 2415 * that "src_m" will not transition from valid to 2416 * invalid. 2417 */ 2418 dst_m->dirty = dst_m->valid = src_m->valid; 2419 VM_OBJECT_RUNLOCK(object); 2420 } else { 2421 dst_m = src_m; 2422 if (vm_page_busy_acquire( 2423 dst_m, VM_ALLOC_WAITFAIL) == 0) { 2424 pctrie_iter_reset(&pages); 2425 goto again; 2426 } 2427 if (dst_m->pindex >= dst_object->size) { 2428 /* 2429 * We are upgrading. Index can occur 2430 * out of bounds if the object type is 2431 * vnode and the file was truncated. 2432 */ 2433 vm_page_xunbusy(dst_m); 2434 break; 2435 } 2436 } 2437 2438 /* 2439 * Enter it in the pmap. If a wired, copy-on-write 2440 * mapping is being replaced by a write-enabled 2441 * mapping, then wire that new mapping. 2442 * 2443 * The page can be invalid if the user called 2444 * msync(MS_INVALIDATE) or truncated the backing vnode 2445 * or shared memory object. In this case, do not 2446 * insert it into pmap, but still do the copy so that 2447 * all copies of the wired map entry have similar 2448 * backing pages. 2449 */ 2450 if (vm_page_all_valid(dst_m)) { 2451 VM_OBJECT_WUNLOCK(dst_object); 2452 pmap_enter(dst_map->pmap, vaddr, dst_m, prot, 2453 access | (upgrade ? PMAP_ENTER_WIRED : 0), 0); 2454 VM_OBJECT_WLOCK(dst_object); 2455 } 2456 2457 /* 2458 * Mark it no longer busy, and put it on the active list. 2459 */ 2460 if (upgrade) { 2461 if (src_m != dst_m) { 2462 vm_page_unwire(src_m, PQ_INACTIVE); 2463 vm_page_wire(dst_m); 2464 } else { 2465 KASSERT(vm_page_wired(dst_m), 2466 ("dst_m %p is not wired", dst_m)); 2467 } 2468 } else { 2469 vm_page_activate(dst_m); 2470 } 2471 vm_page_xunbusy(dst_m); 2472 } 2473 VM_OBJECT_WUNLOCK(dst_object); 2474 if (upgrade) { 2475 dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY); 2476 vm_object_deallocate(src_object); 2477 } 2478 } 2479 2480 /* 2481 * Block entry into the machine-independent layer's page fault handler by 2482 * the calling thread. Subsequent calls to vm_fault() by that thread will 2483 * return KERN_PROTECTION_FAILURE. Enable machine-dependent handling of 2484 * spurious page faults. 2485 */ 2486 int 2487 vm_fault_disable_pagefaults(void) 2488 { 2489 2490 return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR)); 2491 } 2492 2493 void 2494 vm_fault_enable_pagefaults(int save) 2495 { 2496 2497 curthread_pflags_restore(save); 2498 } 2499