xref: /freebsd/sys/vm/vm_fault.c (revision dd48af360fdbbb9552f9fc6de7abe50d68ad5331)
1 /*-
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  *
10  * This code is derived from software contributed to Berkeley by
11  * The Mach Operating System project at Carnegie-Mellon University.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. All advertising materials mentioning features or use of this software
22  *    must display the following acknowledgement:
23  *	This product includes software developed by the University of
24  *	California, Berkeley and its contributors.
25  * 4. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *	from: @(#)vm_fault.c	8.4 (Berkeley) 1/12/94
42  *
43  *
44  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45  * All rights reserved.
46  *
47  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48  *
49  * Permission to use, copy, modify and distribute this software and
50  * its documentation is hereby granted, provided that both the copyright
51  * notice and this permission notice appear in all copies of the
52  * software, derivative works or modified versions, and any portions
53  * thereof, and that both notices appear in supporting documentation.
54  *
55  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58  *
59  * Carnegie Mellon requests users of this software to return to
60  *
61  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62  *  School of Computer Science
63  *  Carnegie Mellon University
64  *  Pittsburgh PA 15213-3890
65  *
66  * any improvements or extensions that they make and grant Carnegie the
67  * rights to redistribute these changes.
68  */
69 
70 /*
71  *	Page fault handling module.
72  */
73 
74 #include <sys/cdefs.h>
75 __FBSDID("$FreeBSD$");
76 
77 #include "opt_vm.h"
78 
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/lock.h>
83 #include <sys/mutex.h>
84 #include <sys/proc.h>
85 #include <sys/resourcevar.h>
86 #include <sys/sysctl.h>
87 #include <sys/vmmeter.h>
88 #include <sys/vnode.h>
89 
90 #include <vm/vm.h>
91 #include <vm/vm_param.h>
92 #include <vm/pmap.h>
93 #include <vm/vm_map.h>
94 #include <vm/vm_object.h>
95 #include <vm/vm_page.h>
96 #include <vm/vm_pageout.h>
97 #include <vm/vm_kern.h>
98 #include <vm/vm_pager.h>
99 #include <vm/vm_extern.h>
100 
101 #include <sys/mount.h>	/* XXX Temporary for VFS_LOCK_GIANT() */
102 
103 #define PFBAK 4
104 #define PFFOR 4
105 #define PAGEORDER_SIZE (PFBAK+PFFOR)
106 
107 static int prefault_pageorder[] = {
108 	-1 * PAGE_SIZE, 1 * PAGE_SIZE,
109 	-2 * PAGE_SIZE, 2 * PAGE_SIZE,
110 	-3 * PAGE_SIZE, 3 * PAGE_SIZE,
111 	-4 * PAGE_SIZE, 4 * PAGE_SIZE
112 };
113 
114 static int vm_fault_additional_pages(vm_page_t, int, int, vm_page_t *, int *);
115 static void vm_fault_prefault(pmap_t, vm_offset_t, vm_map_entry_t);
116 
117 #define VM_FAULT_READ_AHEAD 8
118 #define VM_FAULT_READ_BEHIND 7
119 #define VM_FAULT_READ (VM_FAULT_READ_AHEAD+VM_FAULT_READ_BEHIND+1)
120 
121 struct faultstate {
122 	vm_page_t m;
123 	vm_object_t object;
124 	vm_pindex_t pindex;
125 	vm_page_t first_m;
126 	vm_object_t	first_object;
127 	vm_pindex_t first_pindex;
128 	vm_map_t map;
129 	vm_map_entry_t entry;
130 	int lookup_still_valid;
131 	struct vnode *vp;
132 	int vfslocked;
133 };
134 
135 static inline void
136 release_page(struct faultstate *fs)
137 {
138 
139 	vm_page_wakeup(fs->m);
140 	vm_page_lock(fs->m);
141 	vm_page_lock_queues();
142 	vm_page_deactivate(fs->m);
143 	vm_page_unlock_queues();
144 	vm_page_unlock(fs->m);
145 	fs->m = NULL;
146 }
147 
148 static inline void
149 unlock_map(struct faultstate *fs)
150 {
151 
152 	if (fs->lookup_still_valid) {
153 		vm_map_lookup_done(fs->map, fs->entry);
154 		fs->lookup_still_valid = FALSE;
155 	}
156 }
157 
158 static void
159 unlock_and_deallocate(struct faultstate *fs)
160 {
161 
162 	vm_object_pip_wakeup(fs->object);
163 	VM_OBJECT_UNLOCK(fs->object);
164 	if (fs->object != fs->first_object) {
165 		VM_OBJECT_LOCK(fs->first_object);
166 		vm_page_lock(fs->first_m);
167 		vm_page_lock_queues();
168 		vm_page_free(fs->first_m);
169 		vm_page_unlock_queues();
170 		vm_page_unlock(fs->first_m);
171 		vm_object_pip_wakeup(fs->first_object);
172 		VM_OBJECT_UNLOCK(fs->first_object);
173 		fs->first_m = NULL;
174 	}
175 	vm_object_deallocate(fs->first_object);
176 	unlock_map(fs);
177 	if (fs->vp != NULL) {
178 		vput(fs->vp);
179 		fs->vp = NULL;
180 	}
181 	VFS_UNLOCK_GIANT(fs->vfslocked);
182 	fs->vfslocked = 0;
183 }
184 
185 /*
186  * TRYPAGER - used by vm_fault to calculate whether the pager for the
187  *	      current object *might* contain the page.
188  *
189  *	      default objects are zero-fill, there is no real pager.
190  */
191 #define TRYPAGER	(fs.object->type != OBJT_DEFAULT && \
192 			((fault_flags & VM_FAULT_CHANGE_WIRING) == 0 || wired))
193 
194 /*
195  *	vm_fault:
196  *
197  *	Handle a page fault occurring at the given address,
198  *	requiring the given permissions, in the map specified.
199  *	If successful, the page is inserted into the
200  *	associated physical map.
201  *
202  *	NOTE: the given address should be truncated to the
203  *	proper page address.
204  *
205  *	KERN_SUCCESS is returned if the page fault is handled; otherwise,
206  *	a standard error specifying why the fault is fatal is returned.
207  *
208  *
209  *	The map in question must be referenced, and remains so.
210  *	Caller may hold no locks.
211  */
212 int
213 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
214 	 int fault_flags)
215 {
216 	vm_prot_t prot;
217 	int is_first_object_locked, result;
218 	boolean_t are_queues_locked, growstack, wired;
219 	int map_generation;
220 	vm_object_t next_object;
221 	vm_page_t marray[VM_FAULT_READ];
222 	int hardfault;
223 	int faultcount, ahead, behind, alloc_req;
224 	struct faultstate fs;
225 	struct vnode *vp;
226 	int locked, error;
227 
228 	hardfault = 0;
229 	growstack = TRUE;
230 	PCPU_INC(cnt.v_vm_faults);
231 	fs.vp = NULL;
232 	fs.vfslocked = 0;
233 	faultcount = behind = 0;
234 
235 RetryFault:;
236 
237 	/*
238 	 * Find the backing store object and offset into it to begin the
239 	 * search.
240 	 */
241 	fs.map = map;
242 	result = vm_map_lookup(&fs.map, vaddr, fault_type, &fs.entry,
243 	    &fs.first_object, &fs.first_pindex, &prot, &wired);
244 	if (result != KERN_SUCCESS) {
245 		if (growstack && result == KERN_INVALID_ADDRESS &&
246 		    map != kernel_map) {
247 			result = vm_map_growstack(curproc, vaddr);
248 			if (result != KERN_SUCCESS)
249 				return (KERN_FAILURE);
250 			growstack = FALSE;
251 			goto RetryFault;
252 		}
253 		return (result);
254 	}
255 
256 	map_generation = fs.map->timestamp;
257 
258 	if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
259 		panic("vm_fault: fault on nofault entry, addr: %lx",
260 		    (u_long)vaddr);
261 	}
262 
263 	/*
264 	 * Make a reference to this object to prevent its disposal while we
265 	 * are messing with it.  Once we have the reference, the map is free
266 	 * to be diddled.  Since objects reference their shadows (and copies),
267 	 * they will stay around as well.
268 	 *
269 	 * Bump the paging-in-progress count to prevent size changes (e.g.
270 	 * truncation operations) during I/O.  This must be done after
271 	 * obtaining the vnode lock in order to avoid possible deadlocks.
272 	 */
273 	VM_OBJECT_LOCK(fs.first_object);
274 	vm_object_reference_locked(fs.first_object);
275 	vm_object_pip_add(fs.first_object, 1);
276 
277 	fs.lookup_still_valid = TRUE;
278 
279 	if (wired)
280 		fault_type = prot | (fault_type & VM_PROT_COPY);
281 
282 	fs.first_m = NULL;
283 
284 	/*
285 	 * Search for the page at object/offset.
286 	 */
287 	fs.object = fs.first_object;
288 	fs.pindex = fs.first_pindex;
289 	while (TRUE) {
290 		/*
291 		 * If the object is dead, we stop here
292 		 */
293 		if (fs.object->flags & OBJ_DEAD) {
294 			unlock_and_deallocate(&fs);
295 			return (KERN_PROTECTION_FAILURE);
296 		}
297 
298 		/*
299 		 * See if page is resident
300 		 */
301 		fs.m = vm_page_lookup(fs.object, fs.pindex);
302 		if (fs.m != NULL) {
303 			/*
304 			 * check for page-based copy on write.
305 			 * We check fs.object == fs.first_object so
306 			 * as to ensure the legacy COW mechanism is
307 			 * used when the page in question is part of
308 			 * a shadow object.  Otherwise, vm_page_cowfault()
309 			 * removes the page from the backing object,
310 			 * which is not what we want.
311 			 */
312 			vm_page_lock(fs.m);
313 			vm_page_lock_queues();
314 			if ((fs.m->cow) &&
315 			    (fault_type & VM_PROT_WRITE) &&
316 			    (fs.object == fs.first_object)) {
317 				vm_page_cowfault(fs.m);
318 				vm_page_unlock_queues();
319 				vm_page_unlock(fs.m);
320 				unlock_and_deallocate(&fs);
321 				goto RetryFault;
322 			}
323 
324 			/*
325 			 * Wait/Retry if the page is busy.  We have to do this
326 			 * if the page is busy via either VPO_BUSY or
327 			 * vm_page_t->busy because the vm_pager may be using
328 			 * vm_page_t->busy for pageouts ( and even pageins if
329 			 * it is the vnode pager ), and we could end up trying
330 			 * to pagein and pageout the same page simultaneously.
331 			 *
332 			 * We can theoretically allow the busy case on a read
333 			 * fault if the page is marked valid, but since such
334 			 * pages are typically already pmap'd, putting that
335 			 * special case in might be more effort then it is
336 			 * worth.  We cannot under any circumstances mess
337 			 * around with a vm_page_t->busy page except, perhaps,
338 			 * to pmap it.
339 			 */
340 			if ((fs.m->oflags & VPO_BUSY) || fs.m->busy) {
341 				/*
342 				 * Reference the page before unlocking and
343 				 * sleeping so that the page daemon is less
344 				 * likely to reclaim it.
345 				 */
346 				vm_page_flag_set(fs.m, PG_REFERENCED);
347 				vm_page_unlock_queues();
348 				vm_page_unlock(fs.m);
349 				VM_OBJECT_UNLOCK(fs.object);
350 				if (fs.object != fs.first_object) {
351 					VM_OBJECT_LOCK(fs.first_object);
352 					vm_page_lock(fs.first_m);
353 					vm_page_lock_queues();
354 					vm_page_free(fs.first_m);
355 					vm_page_unlock_queues();
356 					vm_page_unlock(fs.first_m);
357 					vm_object_pip_wakeup(fs.first_object);
358 					VM_OBJECT_UNLOCK(fs.first_object);
359 					fs.first_m = NULL;
360 				}
361 				unlock_map(&fs);
362 				VM_OBJECT_LOCK(fs.object);
363 				if (fs.m == vm_page_lookup(fs.object,
364 				    fs.pindex)) {
365 					vm_page_sleep_if_busy(fs.m, TRUE,
366 					    "vmpfw");
367 				}
368 				vm_object_pip_wakeup(fs.object);
369 				VM_OBJECT_UNLOCK(fs.object);
370 				PCPU_INC(cnt.v_intrans);
371 				vm_object_deallocate(fs.first_object);
372 				goto RetryFault;
373 			}
374 			vm_pageq_remove(fs.m);
375 			vm_page_unlock_queues();
376 			vm_page_unlock(fs.m);
377 
378 			/*
379 			 * Mark page busy for other processes, and the
380 			 * pagedaemon.  If it still isn't completely valid
381 			 * (readable), jump to readrest, else break-out ( we
382 			 * found the page ).
383 			 */
384 			vm_page_busy(fs.m);
385 			if (fs.m->valid != VM_PAGE_BITS_ALL &&
386 				fs.m->object != kernel_object && fs.m->object != kmem_object) {
387 				goto readrest;
388 			}
389 
390 			break;
391 		}
392 
393 		/*
394 		 * Page is not resident, If this is the search termination
395 		 * or the pager might contain the page, allocate a new page.
396 		 */
397 		if (TRYPAGER || fs.object == fs.first_object) {
398 			if (fs.pindex >= fs.object->size) {
399 				unlock_and_deallocate(&fs);
400 				return (KERN_PROTECTION_FAILURE);
401 			}
402 
403 			/*
404 			 * Allocate a new page for this object/offset pair.
405 			 *
406 			 * Unlocked read of the p_flag is harmless. At
407 			 * worst, the P_KILLED might be not observed
408 			 * there, and allocation can fail, causing
409 			 * restart and new reading of the p_flag.
410 			 */
411 			fs.m = NULL;
412 			if (!vm_page_count_severe() || P_KILLED(curproc)) {
413 #if VM_NRESERVLEVEL > 0
414 				if ((fs.object->flags & OBJ_COLORED) == 0) {
415 					fs.object->flags |= OBJ_COLORED;
416 					fs.object->pg_color = atop(vaddr) -
417 					    fs.pindex;
418 				}
419 #endif
420 				alloc_req = P_KILLED(curproc) ?
421 				    VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL;
422 				if (fs.object->type != OBJT_VNODE &&
423 				    fs.object->backing_object == NULL)
424 					alloc_req |= VM_ALLOC_ZERO;
425 				fs.m = vm_page_alloc(fs.object, fs.pindex,
426 				    alloc_req);
427 			}
428 			if (fs.m == NULL) {
429 				unlock_and_deallocate(&fs);
430 				VM_WAITPFAULT;
431 				goto RetryFault;
432 			} else if (fs.m->valid == VM_PAGE_BITS_ALL)
433 				break;
434 		}
435 
436 readrest:
437 		/*
438 		 * We have found a valid page or we have allocated a new page.
439 		 * The page thus may not be valid or may not be entirely
440 		 * valid.
441 		 *
442 		 * Attempt to fault-in the page if there is a chance that the
443 		 * pager has it, and potentially fault in additional pages
444 		 * at the same time.
445 		 */
446 		if (TRYPAGER) {
447 			int rv;
448 			int reqpage = 0;
449 			u_char behavior = vm_map_entry_behavior(fs.entry);
450 
451 			if (behavior == MAP_ENTRY_BEHAV_RANDOM ||
452 			    P_KILLED(curproc)) {
453 				ahead = 0;
454 				behind = 0;
455 			} else {
456 				behind = (vaddr - fs.entry->start) >> PAGE_SHIFT;
457 				if (behind > VM_FAULT_READ_BEHIND)
458 					behind = VM_FAULT_READ_BEHIND;
459 
460 				ahead = ((fs.entry->end - vaddr) >> PAGE_SHIFT) - 1;
461 				if (ahead > VM_FAULT_READ_AHEAD)
462 					ahead = VM_FAULT_READ_AHEAD;
463 			}
464 			is_first_object_locked = FALSE;
465 			if ((behavior == MAP_ENTRY_BEHAV_SEQUENTIAL ||
466 			     (behavior != MAP_ENTRY_BEHAV_RANDOM &&
467 			      fs.pindex >= fs.entry->lastr &&
468 			      fs.pindex < fs.entry->lastr + VM_FAULT_READ)) &&
469 			    (fs.first_object == fs.object ||
470 			     (is_first_object_locked = VM_OBJECT_TRYLOCK(fs.first_object))) &&
471 			    fs.first_object->type != OBJT_DEVICE &&
472 			    fs.first_object->type != OBJT_PHYS &&
473 			    fs.first_object->type != OBJT_SG) {
474 				vm_pindex_t firstpindex, tmppindex;
475 
476 				if (fs.first_pindex < 2 * VM_FAULT_READ)
477 					firstpindex = 0;
478 				else
479 					firstpindex = fs.first_pindex - 2 * VM_FAULT_READ;
480 
481 				are_queues_locked = FALSE;
482 				/*
483 				 * note: partially valid pages cannot be
484 				 * included in the lookahead - NFS piecemeal
485 				 * writes will barf on it badly.
486 				 */
487 				for (tmppindex = fs.first_pindex - 1;
488 					tmppindex >= firstpindex;
489 					--tmppindex) {
490 					vm_page_t mt;
491 
492 					mt = vm_page_lookup(fs.first_object, tmppindex);
493 					if (mt == NULL || (mt->valid != VM_PAGE_BITS_ALL))
494 						break;
495 					if (mt->busy ||
496 					    (mt->oflags & VPO_BUSY))
497 						continue;
498 					if (!are_queues_locked) {
499 						are_queues_locked = TRUE;
500 						vm_page_lock(mt);
501 						vm_page_lock_queues();
502 					} else {
503 						vm_page_unlock_queues();
504 						vm_page_lock(mt);
505 						vm_page_lock_queues();
506 					}
507 					if (mt->hold_count ||
508 					    mt->wire_count) {
509 						vm_page_unlock(mt);
510 						continue;
511 					}
512 					pmap_remove_all(mt);
513 					if (mt->dirty) {
514 						vm_page_deactivate(mt);
515 					} else {
516 						vm_page_cache(mt);
517 					}
518 					vm_page_unlock(mt);
519 				}
520 				if (are_queues_locked)
521 					vm_page_unlock_queues();
522 				ahead += behind;
523 				behind = 0;
524 			}
525 			if (is_first_object_locked)
526 				VM_OBJECT_UNLOCK(fs.first_object);
527 
528 			/*
529 			 * Call the pager to retrieve the data, if any, after
530 			 * releasing the lock on the map.  We hold a ref on
531 			 * fs.object and the pages are VPO_BUSY'd.
532 			 */
533 			unlock_map(&fs);
534 
535 vnode_lock:
536 			if (fs.object->type == OBJT_VNODE) {
537 				vp = fs.object->handle;
538 				if (vp == fs.vp)
539 					goto vnode_locked;
540 				else if (fs.vp != NULL) {
541 					vput(fs.vp);
542 					fs.vp = NULL;
543 				}
544 				locked = VOP_ISLOCKED(vp);
545 
546 				if (VFS_NEEDSGIANT(vp->v_mount) && !fs.vfslocked) {
547 					fs.vfslocked = 1;
548 					if (!mtx_trylock(&Giant)) {
549 						VM_OBJECT_UNLOCK(fs.object);
550 						mtx_lock(&Giant);
551 						VM_OBJECT_LOCK(fs.object);
552 						goto vnode_lock;
553 					}
554 				}
555 				if (locked != LK_EXCLUSIVE)
556 					locked = LK_SHARED;
557 				/* Do not sleep for vnode lock while fs.m is busy */
558 				error = vget(vp, locked | LK_CANRECURSE |
559 				    LK_NOWAIT, curthread);
560 				if (error != 0) {
561 					int vfslocked;
562 
563 					vfslocked = fs.vfslocked;
564 					fs.vfslocked = 0; /* Keep Giant */
565 					vhold(vp);
566 					release_page(&fs);
567 					unlock_and_deallocate(&fs);
568 					error = vget(vp, locked | LK_RETRY |
569 					    LK_CANRECURSE, curthread);
570 					vdrop(vp);
571 					fs.vp = vp;
572 					fs.vfslocked = vfslocked;
573 					KASSERT(error == 0,
574 					    ("vm_fault: vget failed"));
575 					goto RetryFault;
576 				}
577 				fs.vp = vp;
578 			}
579 vnode_locked:
580 			KASSERT(fs.vp == NULL || !fs.map->system_map,
581 			    ("vm_fault: vnode-backed object mapped by system map"));
582 
583 			/*
584 			 * now we find out if any other pages should be paged
585 			 * in at this time this routine checks to see if the
586 			 * pages surrounding this fault reside in the same
587 			 * object as the page for this fault.  If they do,
588 			 * then they are faulted in also into the object.  The
589 			 * array "marray" returned contains an array of
590 			 * vm_page_t structs where one of them is the
591 			 * vm_page_t passed to the routine.  The reqpage
592 			 * return value is the index into the marray for the
593 			 * vm_page_t passed to the routine.
594 			 *
595 			 * fs.m plus the additional pages are VPO_BUSY'd.
596 			 */
597 			faultcount = vm_fault_additional_pages(
598 			    fs.m, behind, ahead, marray, &reqpage);
599 
600 			rv = faultcount ?
601 			    vm_pager_get_pages(fs.object, marray, faultcount,
602 				reqpage) : VM_PAGER_FAIL;
603 
604 			if (rv == VM_PAGER_OK) {
605 				/*
606 				 * Found the page. Leave it busy while we play
607 				 * with it.
608 				 */
609 
610 				/*
611 				 * Relookup in case pager changed page. Pager
612 				 * is responsible for disposition of old page
613 				 * if moved.
614 				 */
615 				fs.m = vm_page_lookup(fs.object, fs.pindex);
616 				if (!fs.m) {
617 					unlock_and_deallocate(&fs);
618 					goto RetryFault;
619 				}
620 
621 				hardfault++;
622 				break; /* break to PAGE HAS BEEN FOUND */
623 			}
624 			/*
625 			 * Remove the bogus page (which does not exist at this
626 			 * object/offset); before doing so, we must get back
627 			 * our object lock to preserve our invariant.
628 			 *
629 			 * Also wake up any other process that may want to bring
630 			 * in this page.
631 			 *
632 			 * If this is the top-level object, we must leave the
633 			 * busy page to prevent another process from rushing
634 			 * past us, and inserting the page in that object at
635 			 * the same time that we are.
636 			 */
637 			if (rv == VM_PAGER_ERROR)
638 				printf("vm_fault: pager read error, pid %d (%s)\n",
639 				    curproc->p_pid, curproc->p_comm);
640 			/*
641 			 * Data outside the range of the pager or an I/O error
642 			 */
643 			/*
644 			 * XXX - the check for kernel_map is a kludge to work
645 			 * around having the machine panic on a kernel space
646 			 * fault w/ I/O error.
647 			 */
648 			if (((fs.map != kernel_map) && (rv == VM_PAGER_ERROR)) ||
649 				(rv == VM_PAGER_BAD)) {
650 				vm_page_lock(fs.m);
651 				vm_page_lock_queues();
652 				vm_page_free(fs.m);
653 				vm_page_unlock_queues();
654 				vm_page_unlock(fs.m);
655 				fs.m = NULL;
656 				unlock_and_deallocate(&fs);
657 				return ((rv == VM_PAGER_ERROR) ? KERN_FAILURE : KERN_PROTECTION_FAILURE);
658 			}
659 			if (fs.object != fs.first_object) {
660 				vm_page_lock(fs.m);
661 				vm_page_lock_queues();
662 				vm_page_free(fs.m);
663 				vm_page_unlock_queues();
664 				vm_page_unlock(fs.m);
665 				fs.m = NULL;
666 				/*
667 				 * XXX - we cannot just fall out at this
668 				 * point, m has been freed and is invalid!
669 				 */
670 			}
671 		}
672 
673 		/*
674 		 * We get here if the object has default pager (or unwiring)
675 		 * or the pager doesn't have the page.
676 		 */
677 		if (fs.object == fs.first_object)
678 			fs.first_m = fs.m;
679 
680 		/*
681 		 * Move on to the next object.  Lock the next object before
682 		 * unlocking the current one.
683 		 */
684 		fs.pindex += OFF_TO_IDX(fs.object->backing_object_offset);
685 		next_object = fs.object->backing_object;
686 		if (next_object == NULL) {
687 			/*
688 			 * If there's no object left, fill the page in the top
689 			 * object with zeros.
690 			 */
691 			if (fs.object != fs.first_object) {
692 				vm_object_pip_wakeup(fs.object);
693 				VM_OBJECT_UNLOCK(fs.object);
694 
695 				fs.object = fs.first_object;
696 				fs.pindex = fs.first_pindex;
697 				fs.m = fs.first_m;
698 				VM_OBJECT_LOCK(fs.object);
699 			}
700 			fs.first_m = NULL;
701 
702 			/*
703 			 * Zero the page if necessary and mark it valid.
704 			 */
705 			if ((fs.m->flags & PG_ZERO) == 0) {
706 				pmap_zero_page(fs.m);
707 			} else {
708 				PCPU_INC(cnt.v_ozfod);
709 			}
710 			PCPU_INC(cnt.v_zfod);
711 			fs.m->valid = VM_PAGE_BITS_ALL;
712 			break;	/* break to PAGE HAS BEEN FOUND */
713 		} else {
714 			KASSERT(fs.object != next_object,
715 			    ("object loop %p", next_object));
716 			VM_OBJECT_LOCK(next_object);
717 			vm_object_pip_add(next_object, 1);
718 			if (fs.object != fs.first_object)
719 				vm_object_pip_wakeup(fs.object);
720 			VM_OBJECT_UNLOCK(fs.object);
721 			fs.object = next_object;
722 		}
723 	}
724 
725 	KASSERT((fs.m->oflags & VPO_BUSY) != 0,
726 	    ("vm_fault: not busy after main loop"));
727 
728 	/*
729 	 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
730 	 * is held.]
731 	 */
732 
733 	/*
734 	 * If the page is being written, but isn't already owned by the
735 	 * top-level object, we have to copy it into a new page owned by the
736 	 * top-level object.
737 	 */
738 	if (fs.object != fs.first_object) {
739 		/*
740 		 * We only really need to copy if we want to write it.
741 		 */
742 		if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
743 			/*
744 			 * This allows pages to be virtually copied from a
745 			 * backing_object into the first_object, where the
746 			 * backing object has no other refs to it, and cannot
747 			 * gain any more refs.  Instead of a bcopy, we just
748 			 * move the page from the backing object to the
749 			 * first object.  Note that we must mark the page
750 			 * dirty in the first object so that it will go out
751 			 * to swap when needed.
752 			 */
753 			is_first_object_locked = FALSE;
754 			if (
755 				/*
756 				 * Only one shadow object
757 				 */
758 				(fs.object->shadow_count == 1) &&
759 				/*
760 				 * No COW refs, except us
761 				 */
762 				(fs.object->ref_count == 1) &&
763 				/*
764 				 * No one else can look this object up
765 				 */
766 				(fs.object->handle == NULL) &&
767 				/*
768 				 * No other ways to look the object up
769 				 */
770 				((fs.object->type == OBJT_DEFAULT) ||
771 				 (fs.object->type == OBJT_SWAP)) &&
772 			    (is_first_object_locked = VM_OBJECT_TRYLOCK(fs.first_object)) &&
773 				/*
774 				 * We don't chase down the shadow chain
775 				 */
776 			    fs.object == fs.first_object->backing_object) {
777 				vm_page_lock(fs.first_m);
778 				vm_page_lock_queues();
779 				/*
780 				 * get rid of the unnecessary page
781 				 */
782 				vm_page_free(fs.first_m);
783 				vm_page_unlock_queues();
784 				vm_page_unlock(fs.first_m);
785 				/*
786 				 * grab the page and put it into the
787 				 * process'es object.  The page is
788 				 * automatically made dirty.
789 				 */
790 				vm_page_lock(fs.m);
791 				vm_page_lock_queues();
792 				vm_page_rename(fs.m, fs.first_object, fs.first_pindex);
793 				vm_page_unlock_queues();
794 				vm_page_unlock(fs.m);
795 				vm_page_busy(fs.m);
796 				fs.first_m = fs.m;
797 				fs.m = NULL;
798 				PCPU_INC(cnt.v_cow_optim);
799 			} else {
800 				/*
801 				 * Oh, well, lets copy it.
802 				 */
803 				pmap_copy_page(fs.m, fs.first_m);
804 				fs.first_m->valid = VM_PAGE_BITS_ALL;
805 				if (wired && (fault_flags &
806 				    VM_FAULT_CHANGE_WIRING) == 0) {
807 					vm_page_lock(fs.first_m);
808 					vm_page_lock_queues();
809 					vm_page_wire(fs.first_m);
810 					vm_page_unlock_queues();
811 					vm_page_unlock(fs.first_m);
812 
813 					vm_page_lock(fs.m);
814 					vm_page_lock_queues();
815 					vm_page_unwire(fs.m, FALSE);
816 					vm_page_unlock_queues();
817 					vm_page_unlock(fs.m);
818 				}
819 				/*
820 				 * We no longer need the old page or object.
821 				 */
822 				release_page(&fs);
823 			}
824 			/*
825 			 * fs.object != fs.first_object due to above
826 			 * conditional
827 			 */
828 			vm_object_pip_wakeup(fs.object);
829 			VM_OBJECT_UNLOCK(fs.object);
830 			/*
831 			 * Only use the new page below...
832 			 */
833 			fs.object = fs.first_object;
834 			fs.pindex = fs.first_pindex;
835 			fs.m = fs.first_m;
836 			if (!is_first_object_locked)
837 				VM_OBJECT_LOCK(fs.object);
838 			PCPU_INC(cnt.v_cow_faults);
839 		} else {
840 			prot &= ~VM_PROT_WRITE;
841 		}
842 	}
843 
844 	/*
845 	 * We must verify that the maps have not changed since our last
846 	 * lookup.
847 	 */
848 	if (!fs.lookup_still_valid) {
849 		vm_object_t retry_object;
850 		vm_pindex_t retry_pindex;
851 		vm_prot_t retry_prot;
852 
853 		if (!vm_map_trylock_read(fs.map)) {
854 			release_page(&fs);
855 			unlock_and_deallocate(&fs);
856 			goto RetryFault;
857 		}
858 		fs.lookup_still_valid = TRUE;
859 		if (fs.map->timestamp != map_generation) {
860 			result = vm_map_lookup_locked(&fs.map, vaddr, fault_type,
861 			    &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
862 
863 			/*
864 			 * If we don't need the page any longer, put it on the inactive
865 			 * list (the easiest thing to do here).  If no one needs it,
866 			 * pageout will grab it eventually.
867 			 */
868 			if (result != KERN_SUCCESS) {
869 				release_page(&fs);
870 				unlock_and_deallocate(&fs);
871 
872 				/*
873 				 * If retry of map lookup would have blocked then
874 				 * retry fault from start.
875 				 */
876 				if (result == KERN_FAILURE)
877 					goto RetryFault;
878 				return (result);
879 			}
880 			if ((retry_object != fs.first_object) ||
881 			    (retry_pindex != fs.first_pindex)) {
882 				release_page(&fs);
883 				unlock_and_deallocate(&fs);
884 				goto RetryFault;
885 			}
886 
887 			/*
888 			 * Check whether the protection has changed or the object has
889 			 * been copied while we left the map unlocked. Changing from
890 			 * read to write permission is OK - we leave the page
891 			 * write-protected, and catch the write fault. Changing from
892 			 * write to read permission means that we can't mark the page
893 			 * write-enabled after all.
894 			 */
895 			prot &= retry_prot;
896 		}
897 	}
898 	/*
899 	 * If the page was filled by a pager, update the map entry's
900 	 * last read offset.  Since the pager does not return the
901 	 * actual set of pages that it read, this update is based on
902 	 * the requested set.  Typically, the requested and actual
903 	 * sets are the same.
904 	 *
905 	 * XXX The following assignment modifies the map
906 	 * without holding a write lock on it.
907 	 */
908 	if (hardfault)
909 		fs.entry->lastr = fs.pindex + faultcount - behind;
910 
911 	if (prot & VM_PROT_WRITE) {
912 		vm_object_set_writeable_dirty(fs.object);
913 
914 		/*
915 		 * If this is a NOSYNC mmap we do not want to set VPO_NOSYNC
916 		 * if the page is already dirty to prevent data written with
917 		 * the expectation of being synced from not being synced.
918 		 * Likewise if this entry does not request NOSYNC then make
919 		 * sure the page isn't marked NOSYNC.  Applications sharing
920 		 * data should use the same flags to avoid ping ponging.
921 		 */
922 		if (fs.entry->eflags & MAP_ENTRY_NOSYNC) {
923 			if (fs.m->dirty == 0)
924 				fs.m->oflags |= VPO_NOSYNC;
925 		} else {
926 			fs.m->oflags &= ~VPO_NOSYNC;
927 		}
928 
929 		/*
930 		 * If the fault is a write, we know that this page is being
931 		 * written NOW so dirty it explicitly to save on
932 		 * pmap_is_modified() calls later.
933 		 *
934 		 * Also tell the backing pager, if any, that it should remove
935 		 * any swap backing since the page is now dirty.
936 		 */
937 		if ((fault_type & VM_PROT_WRITE) != 0 &&
938 		    (fault_flags & VM_FAULT_CHANGE_WIRING) == 0) {
939 			vm_page_dirty(fs.m);
940 			vm_pager_page_unswapped(fs.m);
941 		}
942 	}
943 
944 	/*
945 	 * Page had better still be busy
946 	 */
947 	KASSERT(fs.m->oflags & VPO_BUSY,
948 		("vm_fault: page %p not busy!", fs.m));
949 	/*
950 	 * Page must be completely valid or it is not fit to
951 	 * map into user space.  vm_pager_get_pages() ensures this.
952 	 */
953 	KASSERT(fs.m->valid == VM_PAGE_BITS_ALL,
954 	    ("vm_fault: page %p partially invalid", fs.m));
955 	VM_OBJECT_UNLOCK(fs.object);
956 
957 	/*
958 	 * Put this page into the physical map.  We had to do the unlock above
959 	 * because pmap_enter() may sleep.  We don't put the page
960 	 * back on the active queue until later so that the pageout daemon
961 	 * won't find it (yet).
962 	 */
963 	pmap_enter(fs.map->pmap, vaddr, fault_type, fs.m, prot, wired);
964 	if ((fault_flags & VM_FAULT_CHANGE_WIRING) == 0 && wired == 0)
965 		vm_fault_prefault(fs.map->pmap, vaddr, fs.entry);
966 	VM_OBJECT_LOCK(fs.object);
967 	vm_page_lock(fs.m);
968 	vm_page_lock_queues();
969 
970 	/*
971 	 * If the page is not wired down, then put it where the pageout daemon
972 	 * can find it.
973 	 */
974 	if (fault_flags & VM_FAULT_CHANGE_WIRING) {
975 		if (wired)
976 			vm_page_wire(fs.m);
977 		else
978 			vm_page_unwire(fs.m, 1);
979 	} else {
980 		vm_page_activate(fs.m);
981 	}
982 	vm_page_unlock_queues();
983 	vm_page_unlock(fs.m);
984 	vm_page_wakeup(fs.m);
985 
986 	/*
987 	 * Unlock everything, and return
988 	 */
989 	unlock_and_deallocate(&fs);
990 	if (hardfault)
991 		curthread->td_ru.ru_majflt++;
992 	else
993 		curthread->td_ru.ru_minflt++;
994 
995 	return (KERN_SUCCESS);
996 }
997 
998 /*
999  * vm_fault_prefault provides a quick way of clustering
1000  * pagefaults into a processes address space.  It is a "cousin"
1001  * of vm_map_pmap_enter, except it runs at page fault time instead
1002  * of mmap time.
1003  */
1004 static void
1005 vm_fault_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry)
1006 {
1007 	int i;
1008 	vm_offset_t addr, starta;
1009 	vm_pindex_t pindex;
1010 	vm_page_t m;
1011 	vm_object_t object;
1012 
1013 	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
1014 		return;
1015 
1016 	object = entry->object.vm_object;
1017 
1018 	starta = addra - PFBAK * PAGE_SIZE;
1019 	if (starta < entry->start) {
1020 		starta = entry->start;
1021 	} else if (starta > addra) {
1022 		starta = 0;
1023 	}
1024 
1025 	for (i = 0; i < PAGEORDER_SIZE; i++) {
1026 		vm_object_t backing_object, lobject;
1027 
1028 		addr = addra + prefault_pageorder[i];
1029 		if (addr > addra + (PFFOR * PAGE_SIZE))
1030 			addr = 0;
1031 
1032 		if (addr < starta || addr >= entry->end)
1033 			continue;
1034 
1035 		if (!pmap_is_prefaultable(pmap, addr))
1036 			continue;
1037 
1038 		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
1039 		lobject = object;
1040 		VM_OBJECT_LOCK(lobject);
1041 		while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
1042 		    lobject->type == OBJT_DEFAULT &&
1043 		    (backing_object = lobject->backing_object) != NULL) {
1044 			KASSERT((lobject->backing_object_offset & PAGE_MASK) ==
1045 			    0, ("vm_fault_prefault: unaligned object offset"));
1046 			pindex += lobject->backing_object_offset >> PAGE_SHIFT;
1047 			VM_OBJECT_LOCK(backing_object);
1048 			VM_OBJECT_UNLOCK(lobject);
1049 			lobject = backing_object;
1050 		}
1051 		/*
1052 		 * give-up when a page is not in memory
1053 		 */
1054 		if (m == NULL) {
1055 			VM_OBJECT_UNLOCK(lobject);
1056 			break;
1057 		}
1058 		if (m->valid == VM_PAGE_BITS_ALL &&
1059 		    (m->flags & PG_FICTITIOUS) == 0) {
1060 			vm_page_lock(m);
1061 			vm_page_lock_queues();
1062 			pmap_enter_quick(pmap, addr, m, entry->protection);
1063 			vm_page_unlock_queues();
1064 			vm_page_unlock(m);
1065 		}
1066 		VM_OBJECT_UNLOCK(lobject);
1067 	}
1068 }
1069 
1070 /*
1071  *	vm_fault_quick:
1072  *
1073  *	Ensure that the requested virtual address, which may be in userland,
1074  *	is valid.  Fault-in the page if necessary.  Return -1 on failure.
1075  */
1076 int
1077 vm_fault_quick(caddr_t v, int prot)
1078 {
1079 	int r;
1080 
1081 	if (prot & VM_PROT_WRITE)
1082 		r = subyte(v, fubyte(v));
1083 	else
1084 		r = fubyte(v);
1085 	return(r);
1086 }
1087 
1088 /*
1089  *	vm_fault_wire:
1090  *
1091  *	Wire down a range of virtual addresses in a map.
1092  */
1093 int
1094 vm_fault_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
1095     boolean_t fictitious)
1096 {
1097 	vm_offset_t va;
1098 	int rv;
1099 
1100 	/*
1101 	 * We simulate a fault to get the page and enter it in the physical
1102 	 * map.  For user wiring, we only ask for read access on currently
1103 	 * read-only sections.
1104 	 */
1105 	for (va = start; va < end; va += PAGE_SIZE) {
1106 		rv = vm_fault(map, va, VM_PROT_NONE, VM_FAULT_CHANGE_WIRING);
1107 		if (rv) {
1108 			if (va != start)
1109 				vm_fault_unwire(map, start, va, fictitious);
1110 			return (rv);
1111 		}
1112 	}
1113 	return (KERN_SUCCESS);
1114 }
1115 
1116 /*
1117  *	vm_fault_unwire:
1118  *
1119  *	Unwire a range of virtual addresses in a map.
1120  */
1121 void
1122 vm_fault_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
1123     boolean_t fictitious)
1124 {
1125 	vm_paddr_t pa;
1126 	vm_offset_t va;
1127 	pmap_t pmap;
1128 
1129 	pmap = vm_map_pmap(map);
1130 
1131 	/*
1132 	 * Since the pages are wired down, we must be able to get their
1133 	 * mappings from the physical map system.
1134 	 */
1135 	for (va = start; va < end; va += PAGE_SIZE) {
1136 		pa = pmap_extract(pmap, va);
1137 		if (pa != 0) {
1138 			pmap_change_wiring(pmap, va, FALSE);
1139 			if (!fictitious) {
1140 				vm_page_lock(PHYS_TO_VM_PAGE(pa));
1141 				vm_page_lock_queues();
1142 				vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1);
1143 				vm_page_unlock_queues();
1144 				vm_page_unlock(PHYS_TO_VM_PAGE(pa));
1145 			}
1146 		}
1147 	}
1148 }
1149 
1150 /*
1151  *	Routine:
1152  *		vm_fault_copy_entry
1153  *	Function:
1154  *		Create new shadow object backing dst_entry with private copy of
1155  *		all underlying pages. When src_entry is equal to dst_entry,
1156  *		function implements COW for wired-down map entry. Otherwise,
1157  *		it forks wired entry into dst_map.
1158  *
1159  *	In/out conditions:
1160  *		The source and destination maps must be locked for write.
1161  *		The source map entry must be wired down (or be a sharing map
1162  *		entry corresponding to a main map entry that is wired down).
1163  */
1164 void
1165 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1166     vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
1167     vm_ooffset_t *fork_charge)
1168 {
1169 	vm_object_t backing_object, dst_object, object, src_object;
1170 	vm_pindex_t dst_pindex, pindex, src_pindex;
1171 	vm_prot_t access, prot;
1172 	vm_offset_t vaddr;
1173 	vm_page_t dst_m;
1174 	vm_page_t src_m;
1175 	boolean_t src_readonly, upgrade;
1176 
1177 #ifdef	lint
1178 	src_map++;
1179 #endif	/* lint */
1180 
1181 	upgrade = src_entry == dst_entry;
1182 
1183 	src_object = src_entry->object.vm_object;
1184 	src_pindex = OFF_TO_IDX(src_entry->offset);
1185 	src_readonly = (src_entry->protection & VM_PROT_WRITE) == 0;
1186 
1187 	/*
1188 	 * Create the top-level object for the destination entry. (Doesn't
1189 	 * actually shadow anything - we copy the pages directly.)
1190 	 */
1191 	dst_object = vm_object_allocate(OBJT_DEFAULT,
1192 	    OFF_TO_IDX(dst_entry->end - dst_entry->start));
1193 #if VM_NRESERVLEVEL > 0
1194 	dst_object->flags |= OBJ_COLORED;
1195 	dst_object->pg_color = atop(dst_entry->start);
1196 #endif
1197 
1198 	VM_OBJECT_LOCK(dst_object);
1199 	KASSERT(upgrade || dst_entry->object.vm_object == NULL,
1200 	    ("vm_fault_copy_entry: vm_object not NULL"));
1201 	dst_entry->object.vm_object = dst_object;
1202 	dst_entry->offset = 0;
1203 	dst_object->charge = dst_entry->end - dst_entry->start;
1204 	if (fork_charge != NULL) {
1205 		KASSERT(dst_entry->uip == NULL,
1206 		    ("vm_fault_copy_entry: leaked swp charge"));
1207 		dst_object->uip = curthread->td_ucred->cr_ruidinfo;
1208 		uihold(dst_object->uip);
1209 		*fork_charge += dst_object->charge;
1210 	} else {
1211 		dst_object->uip = dst_entry->uip;
1212 		dst_entry->uip = NULL;
1213 	}
1214 	access = prot = dst_entry->protection;
1215 	/*
1216 	 * If not an upgrade, then enter the mappings in the pmap as
1217 	 * read and/or execute accesses.  Otherwise, enter them as
1218 	 * write accesses.
1219 	 *
1220 	 * A writeable large page mapping is only created if all of
1221 	 * the constituent small page mappings are modified. Marking
1222 	 * PTEs as modified on inception allows promotion to happen
1223 	 * without taking potentially large number of soft faults.
1224 	 */
1225 	if (!upgrade)
1226 		access &= ~VM_PROT_WRITE;
1227 
1228 	/*
1229 	 * Loop through all of the pages in the entry's range, copying each
1230 	 * one from the source object (it should be there) to the destination
1231 	 * object.
1232 	 */
1233 	for (vaddr = dst_entry->start, dst_pindex = 0;
1234 	    vaddr < dst_entry->end;
1235 	    vaddr += PAGE_SIZE, dst_pindex++) {
1236 
1237 		/*
1238 		 * Allocate a page in the destination object.
1239 		 */
1240 		do {
1241 			dst_m = vm_page_alloc(dst_object, dst_pindex,
1242 			    VM_ALLOC_NORMAL);
1243 			if (dst_m == NULL) {
1244 				VM_OBJECT_UNLOCK(dst_object);
1245 				VM_WAIT;
1246 				VM_OBJECT_LOCK(dst_object);
1247 			}
1248 		} while (dst_m == NULL);
1249 
1250 		/*
1251 		 * Find the page in the source object, and copy it in.
1252 		 * (Because the source is wired down, the page will be in
1253 		 * memory.)
1254 		 */
1255 		VM_OBJECT_LOCK(src_object);
1256 		object = src_object;
1257 		pindex = src_pindex + dst_pindex;
1258 		while ((src_m = vm_page_lookup(object, pindex)) == NULL &&
1259 		    src_readonly &&
1260 		    (backing_object = object->backing_object) != NULL) {
1261 			/*
1262 			 * Allow fallback to backing objects if we are reading.
1263 			 */
1264 			VM_OBJECT_LOCK(backing_object);
1265 			pindex += OFF_TO_IDX(object->backing_object_offset);
1266 			VM_OBJECT_UNLOCK(object);
1267 			object = backing_object;
1268 		}
1269 		if (src_m == NULL)
1270 			panic("vm_fault_copy_wired: page missing");
1271 		pmap_copy_page(src_m, dst_m);
1272 		VM_OBJECT_UNLOCK(object);
1273 		dst_m->valid = VM_PAGE_BITS_ALL;
1274 		VM_OBJECT_UNLOCK(dst_object);
1275 
1276 		/*
1277 		 * Enter it in the pmap. If a wired, copy-on-write
1278 		 * mapping is being replaced by a write-enabled
1279 		 * mapping, then wire that new mapping.
1280 		 */
1281 		pmap_enter(dst_map->pmap, vaddr, access, dst_m, prot, upgrade);
1282 
1283 		/*
1284 		 * Mark it no longer busy, and put it on the active list.
1285 		 */
1286 		VM_OBJECT_LOCK(dst_object);
1287 
1288 		if (upgrade) {
1289 			vm_page_lock(src_m);
1290 			vm_page_lock_queues();
1291 			vm_page_unwire(src_m, 0);
1292 			vm_page_unlock_queues();
1293 			vm_page_unlock(src_m);
1294 
1295 			vm_page_lock(dst_m);
1296 			vm_page_lock_queues();
1297 			vm_page_wire(dst_m);
1298 			vm_page_unlock_queues();
1299 			vm_page_unlock(dst_m);
1300 		} else {
1301 			vm_page_lock(dst_m);
1302 			vm_page_lock_queues();
1303 			vm_page_activate(dst_m);
1304 			vm_page_unlock_queues();
1305 			vm_page_unlock(dst_m);
1306 		}
1307 		vm_page_wakeup(dst_m);
1308 	}
1309 	VM_OBJECT_UNLOCK(dst_object);
1310 	if (upgrade) {
1311 		dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY);
1312 		vm_object_deallocate(src_object);
1313 	}
1314 }
1315 
1316 
1317 /*
1318  * This routine checks around the requested page for other pages that
1319  * might be able to be faulted in.  This routine brackets the viable
1320  * pages for the pages to be paged in.
1321  *
1322  * Inputs:
1323  *	m, rbehind, rahead
1324  *
1325  * Outputs:
1326  *  marray (array of vm_page_t), reqpage (index of requested page)
1327  *
1328  * Return value:
1329  *  number of pages in marray
1330  */
1331 static int
1332 vm_fault_additional_pages(m, rbehind, rahead, marray, reqpage)
1333 	vm_page_t m;
1334 	int rbehind;
1335 	int rahead;
1336 	vm_page_t *marray;
1337 	int *reqpage;
1338 {
1339 	int i,j;
1340 	vm_object_t object;
1341 	vm_pindex_t pindex, startpindex, endpindex, tpindex;
1342 	vm_page_t rtm;
1343 	int cbehind, cahead;
1344 
1345 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1346 
1347 	object = m->object;
1348 	pindex = m->pindex;
1349 	cbehind = cahead = 0;
1350 
1351 	/*
1352 	 * if the requested page is not available, then give up now
1353 	 */
1354 	if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
1355 		return 0;
1356 	}
1357 
1358 	if ((cbehind == 0) && (cahead == 0)) {
1359 		*reqpage = 0;
1360 		marray[0] = m;
1361 		return 1;
1362 	}
1363 
1364 	if (rahead > cahead) {
1365 		rahead = cahead;
1366 	}
1367 
1368 	if (rbehind > cbehind) {
1369 		rbehind = cbehind;
1370 	}
1371 
1372 	/*
1373 	 * scan backward for the read behind pages -- in memory
1374 	 */
1375 	if (pindex > 0) {
1376 		if (rbehind > pindex) {
1377 			rbehind = pindex;
1378 			startpindex = 0;
1379 		} else {
1380 			startpindex = pindex - rbehind;
1381 		}
1382 
1383 		if ((rtm = TAILQ_PREV(m, pglist, listq)) != NULL &&
1384 		    rtm->pindex >= startpindex)
1385 			startpindex = rtm->pindex + 1;
1386 
1387 		/* tpindex is unsigned; beware of numeric underflow. */
1388 		for (i = 0, tpindex = pindex - 1; tpindex >= startpindex &&
1389 		    tpindex < pindex; i++, tpindex--) {
1390 
1391 			rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
1392 			    VM_ALLOC_IFNOTCACHED);
1393 			if (rtm == NULL) {
1394 				/*
1395 				 * Shift the allocated pages to the
1396 				 * beginning of the array.
1397 				 */
1398 				for (j = 0; j < i; j++) {
1399 					marray[j] = marray[j + tpindex + 1 -
1400 					    startpindex];
1401 				}
1402 				break;
1403 			}
1404 
1405 			marray[tpindex - startpindex] = rtm;
1406 		}
1407 	} else {
1408 		startpindex = 0;
1409 		i = 0;
1410 	}
1411 
1412 	marray[i] = m;
1413 	/* page offset of the required page */
1414 	*reqpage = i;
1415 
1416 	tpindex = pindex + 1;
1417 	i++;
1418 
1419 	/*
1420 	 * scan forward for the read ahead pages
1421 	 */
1422 	endpindex = tpindex + rahead;
1423 	if ((rtm = TAILQ_NEXT(m, listq)) != NULL && rtm->pindex < endpindex)
1424 		endpindex = rtm->pindex;
1425 	if (endpindex > object->size)
1426 		endpindex = object->size;
1427 
1428 	for (; tpindex < endpindex; i++, tpindex++) {
1429 
1430 		rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
1431 		    VM_ALLOC_IFNOTCACHED);
1432 		if (rtm == NULL) {
1433 			break;
1434 		}
1435 
1436 		marray[i] = rtm;
1437 	}
1438 
1439 	/* return number of pages */
1440 	return i;
1441 }
1442