1 /* 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * Copyright (c) 1994 John S. Dyson 5 * All rights reserved. 6 * Copyright (c) 1994 David Greenman 7 * All rights reserved. 8 * 9 * 10 * This code is derived from software contributed to Berkeley by 11 * The Mach Operating System project at Carnegie-Mellon University. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 3. All advertising materials mentioning features or use of this software 22 * must display the following acknowledgement: 23 * This product includes software developed by the University of 24 * California, Berkeley and its contributors. 25 * 4. Neither the name of the University nor the names of its contributors 26 * may be used to endorse or promote products derived from this software 27 * without specific prior written permission. 28 * 29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 39 * SUCH DAMAGE. 40 * 41 * from: @(#)vm_fault.c 8.4 (Berkeley) 1/12/94 42 * 43 * 44 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 45 * All rights reserved. 46 * 47 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 48 * 49 * Permission to use, copy, modify and distribute this software and 50 * its documentation is hereby granted, provided that both the copyright 51 * notice and this permission notice appear in all copies of the 52 * software, derivative works or modified versions, and any portions 53 * thereof, and that both notices appear in supporting documentation. 54 * 55 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 56 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 57 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 58 * 59 * Carnegie Mellon requests users of this software to return to 60 * 61 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 62 * School of Computer Science 63 * Carnegie Mellon University 64 * Pittsburgh PA 15213-3890 65 * 66 * any improvements or extensions that they make and grant Carnegie the 67 * rights to redistribute these changes. 68 */ 69 70 /* 71 * Page fault handling module. 72 */ 73 74 #include <sys/cdefs.h> 75 __FBSDID("$FreeBSD$"); 76 77 #include <sys/param.h> 78 #include <sys/systm.h> 79 #include <sys/kernel.h> 80 #include <sys/lock.h> 81 #include <sys/mutex.h> 82 #include <sys/proc.h> 83 #include <sys/resourcevar.h> 84 #include <sys/sysctl.h> 85 #include <sys/vmmeter.h> 86 #include <sys/vnode.h> 87 88 #include <vm/vm.h> 89 #include <vm/vm_param.h> 90 #include <vm/pmap.h> 91 #include <vm/vm_map.h> 92 #include <vm/vm_object.h> 93 #include <vm/vm_page.h> 94 #include <vm/vm_pageout.h> 95 #include <vm/vm_kern.h> 96 #include <vm/vm_pager.h> 97 #include <vm/vnode_pager.h> 98 #include <vm/vm_extern.h> 99 100 static int vm_fault_additional_pages(vm_page_t, int, int, vm_page_t *, int *); 101 102 #define VM_FAULT_READ_AHEAD 8 103 #define VM_FAULT_READ_BEHIND 7 104 #define VM_FAULT_READ (VM_FAULT_READ_AHEAD+VM_FAULT_READ_BEHIND+1) 105 106 struct faultstate { 107 vm_page_t m; 108 vm_object_t object; 109 vm_pindex_t pindex; 110 vm_page_t first_m; 111 vm_object_t first_object; 112 vm_pindex_t first_pindex; 113 vm_map_t map; 114 vm_map_entry_t entry; 115 int lookup_still_valid; 116 struct vnode *vp; 117 }; 118 119 static __inline void 120 release_page(struct faultstate *fs) 121 { 122 vm_page_lock_queues(); 123 vm_page_wakeup(fs->m); 124 vm_page_deactivate(fs->m); 125 vm_page_unlock_queues(); 126 fs->m = NULL; 127 } 128 129 static __inline void 130 unlock_map(struct faultstate *fs) 131 { 132 if (fs->lookup_still_valid) { 133 vm_map_lookup_done(fs->map, fs->entry); 134 fs->lookup_still_valid = FALSE; 135 } 136 } 137 138 static void 139 _unlock_things(struct faultstate *fs, int dealloc) 140 { 141 142 vm_object_pip_wakeup(fs->object); 143 VM_OBJECT_UNLOCK(fs->object); 144 if (fs->object != fs->first_object) { 145 VM_OBJECT_LOCK(fs->first_object); 146 vm_page_lock_queues(); 147 vm_page_free(fs->first_m); 148 vm_page_unlock_queues(); 149 vm_object_pip_wakeup(fs->first_object); 150 VM_OBJECT_UNLOCK(fs->first_object); 151 fs->first_m = NULL; 152 } 153 if (dealloc) { 154 vm_object_deallocate(fs->first_object); 155 } 156 unlock_map(fs); 157 if (fs->vp != NULL) { 158 vput(fs->vp); 159 fs->vp = NULL; 160 } 161 } 162 163 #define unlock_things(fs) _unlock_things(fs, 0) 164 #define unlock_and_deallocate(fs) _unlock_things(fs, 1) 165 166 /* 167 * TRYPAGER - used by vm_fault to calculate whether the pager for the 168 * current object *might* contain the page. 169 * 170 * default objects are zero-fill, there is no real pager. 171 */ 172 #define TRYPAGER (fs.object->type != OBJT_DEFAULT && \ 173 (((fault_flags & VM_FAULT_WIRE_MASK) == 0) || wired)) 174 175 /* 176 * vm_fault: 177 * 178 * Handle a page fault occurring at the given address, 179 * requiring the given permissions, in the map specified. 180 * If successful, the page is inserted into the 181 * associated physical map. 182 * 183 * NOTE: the given address should be truncated to the 184 * proper page address. 185 * 186 * KERN_SUCCESS is returned if the page fault is handled; otherwise, 187 * a standard error specifying why the fault is fatal is returned. 188 * 189 * 190 * The map in question must be referenced, and remains so. 191 * Caller may hold no locks. 192 */ 193 int 194 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, 195 int fault_flags) 196 { 197 vm_prot_t prot; 198 int is_first_object_locked, result; 199 boolean_t growstack, wired; 200 int map_generation; 201 vm_object_t next_object; 202 vm_page_t marray[VM_FAULT_READ]; 203 int hardfault; 204 int faultcount; 205 struct faultstate fs; 206 207 hardfault = 0; 208 growstack = TRUE; 209 atomic_add_int(&cnt.v_vm_faults, 1); 210 211 mtx_lock(&Giant); 212 RetryFault:; 213 214 /* 215 * Find the backing store object and offset into it to begin the 216 * search. 217 */ 218 fs.map = map; 219 result = vm_map_lookup(&fs.map, vaddr, fault_type, &fs.entry, 220 &fs.first_object, &fs.first_pindex, &prot, &wired); 221 if (result != KERN_SUCCESS) { 222 if (result != KERN_PROTECTION_FAILURE || 223 (fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE) { 224 if (growstack && result == KERN_INVALID_ADDRESS && 225 map != kernel_map && curproc != NULL) { 226 result = vm_map_growstack(curproc, vaddr); 227 if (result != KERN_SUCCESS) { 228 mtx_unlock(&Giant); 229 return (KERN_FAILURE); 230 } 231 growstack = FALSE; 232 goto RetryFault; 233 } 234 mtx_unlock(&Giant); 235 return (result); 236 } 237 238 /* 239 * If we are user-wiring a r/w segment, and it is COW, then 240 * we need to do the COW operation. Note that we don't COW 241 * currently RO sections now, because it is NOT desirable 242 * to COW .text. We simply keep .text from ever being COW'ed 243 * and take the heat that one cannot debug wired .text sections. 244 */ 245 result = vm_map_lookup(&fs.map, vaddr, 246 VM_PROT_READ|VM_PROT_WRITE|VM_PROT_OVERRIDE_WRITE, 247 &fs.entry, &fs.first_object, &fs.first_pindex, &prot, &wired); 248 if (result != KERN_SUCCESS) { 249 mtx_unlock(&Giant); 250 return (result); 251 } 252 253 /* 254 * If we don't COW now, on a user wire, the user will never 255 * be able to write to the mapping. If we don't make this 256 * restriction, the bookkeeping would be nearly impossible. 257 * 258 * XXX The following assignment modifies the map without 259 * holding a write lock on it. 260 */ 261 if ((fs.entry->protection & VM_PROT_WRITE) == 0) 262 fs.entry->max_protection &= ~VM_PROT_WRITE; 263 } 264 265 map_generation = fs.map->timestamp; 266 267 if (fs.entry->eflags & MAP_ENTRY_NOFAULT) { 268 panic("vm_fault: fault on nofault entry, addr: %lx", 269 (u_long)vaddr); 270 } 271 272 /* 273 * Make a reference to this object to prevent its disposal while we 274 * are messing with it. Once we have the reference, the map is free 275 * to be diddled. Since objects reference their shadows (and copies), 276 * they will stay around as well. 277 * 278 * Bump the paging-in-progress count to prevent size changes (e.g. 279 * truncation operations) during I/O. This must be done after 280 * obtaining the vnode lock in order to avoid possible deadlocks. 281 * 282 * XXX vnode_pager_lock() can block without releasing the map lock. 283 */ 284 vm_object_reference(fs.first_object); 285 fs.vp = vnode_pager_lock(fs.first_object); 286 VM_OBJECT_LOCK(fs.first_object); 287 vm_object_pip_add(fs.first_object, 1); 288 289 fs.lookup_still_valid = TRUE; 290 291 if (wired) 292 fault_type = prot; 293 294 fs.first_m = NULL; 295 296 /* 297 * Search for the page at object/offset. 298 */ 299 fs.object = fs.first_object; 300 fs.pindex = fs.first_pindex; 301 while (TRUE) { 302 /* 303 * If the object is dead, we stop here 304 */ 305 if (fs.object->flags & OBJ_DEAD) { 306 unlock_and_deallocate(&fs); 307 mtx_unlock(&Giant); 308 return (KERN_PROTECTION_FAILURE); 309 } 310 311 /* 312 * See if page is resident 313 */ 314 fs.m = vm_page_lookup(fs.object, fs.pindex); 315 if (fs.m != NULL) { 316 int queue, s; 317 318 /* 319 * check for page-based copy on write. 320 * We check fs.object == fs.first_object so 321 * as to ensure the legacy COW mechanism is 322 * used when the page in question is part of 323 * a shadow object. Otherwise, vm_page_cowfault() 324 * removes the page from the backing object, 325 * which is not what we want. 326 */ 327 vm_page_lock_queues(); 328 if ((fs.m->cow) && 329 (fault_type & VM_PROT_WRITE) && 330 (fs.object == fs.first_object)) { 331 s = splvm(); 332 vm_page_cowfault(fs.m); 333 splx(s); 334 vm_page_unlock_queues(); 335 unlock_and_deallocate(&fs); 336 goto RetryFault; 337 } 338 339 /* 340 * Wait/Retry if the page is busy. We have to do this 341 * if the page is busy via either PG_BUSY or 342 * vm_page_t->busy because the vm_pager may be using 343 * vm_page_t->busy for pageouts ( and even pageins if 344 * it is the vnode pager ), and we could end up trying 345 * to pagein and pageout the same page simultaneously. 346 * 347 * We can theoretically allow the busy case on a read 348 * fault if the page is marked valid, but since such 349 * pages are typically already pmap'd, putting that 350 * special case in might be more effort then it is 351 * worth. We cannot under any circumstances mess 352 * around with a vm_page_t->busy page except, perhaps, 353 * to pmap it. 354 */ 355 if ((fs.m->flags & PG_BUSY) || fs.m->busy) { 356 vm_page_unlock_queues(); 357 unlock_things(&fs); 358 vm_page_lock_queues(); 359 if (!vm_page_sleep_if_busy(fs.m, TRUE, "vmpfw")) 360 vm_page_unlock_queues(); 361 cnt.v_intrans++; 362 vm_object_deallocate(fs.first_object); 363 goto RetryFault; 364 } 365 queue = fs.m->queue; 366 367 s = splvm(); 368 vm_pageq_remove_nowakeup(fs.m); 369 splx(s); 370 371 if ((queue - fs.m->pc) == PQ_CACHE && vm_page_count_severe()) { 372 vm_page_activate(fs.m); 373 vm_page_unlock_queues(); 374 unlock_and_deallocate(&fs); 375 VM_WAITPFAULT; 376 goto RetryFault; 377 } 378 379 /* 380 * Mark page busy for other processes, and the 381 * pagedaemon. If it still isn't completely valid 382 * (readable), jump to readrest, else break-out ( we 383 * found the page ). 384 */ 385 vm_page_busy(fs.m); 386 vm_page_unlock_queues(); 387 if (((fs.m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) && 388 fs.m->object != kernel_object && fs.m->object != kmem_object) { 389 goto readrest; 390 } 391 392 break; 393 } 394 395 /* 396 * Page is not resident, If this is the search termination 397 * or the pager might contain the page, allocate a new page. 398 */ 399 if (TRYPAGER || fs.object == fs.first_object) { 400 if (fs.pindex >= fs.object->size) { 401 unlock_and_deallocate(&fs); 402 mtx_unlock(&Giant); 403 return (KERN_PROTECTION_FAILURE); 404 } 405 406 /* 407 * Allocate a new page for this object/offset pair. 408 */ 409 fs.m = NULL; 410 if (!vm_page_count_severe()) { 411 fs.m = vm_page_alloc(fs.object, fs.pindex, 412 (fs.vp || fs.object->backing_object)? VM_ALLOC_NORMAL: VM_ALLOC_ZERO); 413 } 414 if (fs.m == NULL) { 415 unlock_and_deallocate(&fs); 416 VM_WAITPFAULT; 417 goto RetryFault; 418 } 419 } 420 421 readrest: 422 /* 423 * We have found a valid page or we have allocated a new page. 424 * The page thus may not be valid or may not be entirely 425 * valid. 426 * 427 * Attempt to fault-in the page if there is a chance that the 428 * pager has it, and potentially fault in additional pages 429 * at the same time. 430 */ 431 if (TRYPAGER) { 432 int rv; 433 int reqpage; 434 int ahead, behind; 435 u_char behavior = vm_map_entry_behavior(fs.entry); 436 437 if (behavior == MAP_ENTRY_BEHAV_RANDOM) { 438 ahead = 0; 439 behind = 0; 440 } else { 441 behind = (vaddr - fs.entry->start) >> PAGE_SHIFT; 442 if (behind > VM_FAULT_READ_BEHIND) 443 behind = VM_FAULT_READ_BEHIND; 444 445 ahead = ((fs.entry->end - vaddr) >> PAGE_SHIFT) - 1; 446 if (ahead > VM_FAULT_READ_AHEAD) 447 ahead = VM_FAULT_READ_AHEAD; 448 } 449 450 if ((fs.first_object->type != OBJT_DEVICE) && 451 (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL || 452 (behavior != MAP_ENTRY_BEHAV_RANDOM && 453 fs.pindex >= fs.entry->lastr && 454 fs.pindex < fs.entry->lastr + VM_FAULT_READ)) 455 ) { 456 vm_pindex_t firstpindex, tmppindex; 457 458 if (fs.first_pindex < 2 * VM_FAULT_READ) 459 firstpindex = 0; 460 else 461 firstpindex = fs.first_pindex - 2 * VM_FAULT_READ; 462 463 vm_page_lock_queues(); 464 /* 465 * note: partially valid pages cannot be 466 * included in the lookahead - NFS piecemeal 467 * writes will barf on it badly. 468 */ 469 for (tmppindex = fs.first_pindex - 1; 470 tmppindex >= firstpindex; 471 --tmppindex) { 472 vm_page_t mt; 473 474 mt = vm_page_lookup(fs.first_object, tmppindex); 475 if (mt == NULL || (mt->valid != VM_PAGE_BITS_ALL)) 476 break; 477 if (mt->busy || 478 (mt->flags & (PG_BUSY | PG_FICTITIOUS | PG_UNMANAGED)) || 479 mt->hold_count || 480 mt->wire_count) 481 continue; 482 if (mt->dirty == 0) 483 vm_page_test_dirty(mt); 484 if (mt->dirty) { 485 pmap_remove_all(mt); 486 vm_page_deactivate(mt); 487 } else { 488 vm_page_cache(mt); 489 } 490 } 491 vm_page_unlock_queues(); 492 ahead += behind; 493 behind = 0; 494 } 495 496 /* 497 * now we find out if any other pages should be paged 498 * in at this time this routine checks to see if the 499 * pages surrounding this fault reside in the same 500 * object as the page for this fault. If they do, 501 * then they are faulted in also into the object. The 502 * array "marray" returned contains an array of 503 * vm_page_t structs where one of them is the 504 * vm_page_t passed to the routine. The reqpage 505 * return value is the index into the marray for the 506 * vm_page_t passed to the routine. 507 * 508 * fs.m plus the additional pages are PG_BUSY'd. 509 * 510 * XXX vm_fault_additional_pages() can block 511 * without releasing the map lock. 512 */ 513 faultcount = vm_fault_additional_pages( 514 fs.m, behind, ahead, marray, &reqpage); 515 516 /* 517 * update lastr imperfectly (we do not know how much 518 * getpages will actually read), but good enough. 519 * 520 * XXX The following assignment modifies the map 521 * without holding a write lock on it. 522 */ 523 fs.entry->lastr = fs.pindex + faultcount - behind; 524 525 /* 526 * Call the pager to retrieve the data, if any, after 527 * releasing the lock on the map. We hold a ref on 528 * fs.object and the pages are PG_BUSY'd. 529 */ 530 unlock_map(&fs); 531 532 rv = faultcount ? 533 vm_pager_get_pages(fs.object, marray, faultcount, 534 reqpage) : VM_PAGER_FAIL; 535 536 if (rv == VM_PAGER_OK) { 537 /* 538 * Found the page. Leave it busy while we play 539 * with it. 540 */ 541 542 /* 543 * Relookup in case pager changed page. Pager 544 * is responsible for disposition of old page 545 * if moved. 546 */ 547 fs.m = vm_page_lookup(fs.object, fs.pindex); 548 if (!fs.m) { 549 unlock_and_deallocate(&fs); 550 goto RetryFault; 551 } 552 553 hardfault++; 554 break; /* break to PAGE HAS BEEN FOUND */ 555 } 556 /* 557 * Remove the bogus page (which does not exist at this 558 * object/offset); before doing so, we must get back 559 * our object lock to preserve our invariant. 560 * 561 * Also wake up any other process that may want to bring 562 * in this page. 563 * 564 * If this is the top-level object, we must leave the 565 * busy page to prevent another process from rushing 566 * past us, and inserting the page in that object at 567 * the same time that we are. 568 */ 569 if (rv == VM_PAGER_ERROR) 570 printf("vm_fault: pager read error, pid %d (%s)\n", 571 curproc->p_pid, curproc->p_comm); 572 /* 573 * Data outside the range of the pager or an I/O error 574 */ 575 /* 576 * XXX - the check for kernel_map is a kludge to work 577 * around having the machine panic on a kernel space 578 * fault w/ I/O error. 579 */ 580 if (((fs.map != kernel_map) && (rv == VM_PAGER_ERROR)) || 581 (rv == VM_PAGER_BAD)) { 582 vm_page_lock_queues(); 583 vm_page_free(fs.m); 584 vm_page_unlock_queues(); 585 fs.m = NULL; 586 unlock_and_deallocate(&fs); 587 mtx_unlock(&Giant); 588 return ((rv == VM_PAGER_ERROR) ? KERN_FAILURE : KERN_PROTECTION_FAILURE); 589 } 590 if (fs.object != fs.first_object) { 591 vm_page_lock_queues(); 592 vm_page_free(fs.m); 593 vm_page_unlock_queues(); 594 fs.m = NULL; 595 /* 596 * XXX - we cannot just fall out at this 597 * point, m has been freed and is invalid! 598 */ 599 } 600 } 601 602 /* 603 * We get here if the object has default pager (or unwiring) 604 * or the pager doesn't have the page. 605 */ 606 if (fs.object == fs.first_object) 607 fs.first_m = fs.m; 608 609 /* 610 * Move on to the next object. Lock the next object before 611 * unlocking the current one. 612 */ 613 fs.pindex += OFF_TO_IDX(fs.object->backing_object_offset); 614 next_object = fs.object->backing_object; 615 if (next_object == NULL) { 616 /* 617 * If there's no object left, fill the page in the top 618 * object with zeros. 619 */ 620 if (fs.object != fs.first_object) { 621 vm_object_pip_wakeup(fs.object); 622 VM_OBJECT_UNLOCK(fs.object); 623 624 fs.object = fs.first_object; 625 fs.pindex = fs.first_pindex; 626 fs.m = fs.first_m; 627 VM_OBJECT_LOCK(fs.object); 628 } 629 fs.first_m = NULL; 630 631 /* 632 * Zero the page if necessary and mark it valid. 633 */ 634 if ((fs.m->flags & PG_ZERO) == 0) { 635 pmap_zero_page(fs.m); 636 } else { 637 cnt.v_ozfod++; 638 } 639 cnt.v_zfod++; 640 fs.m->valid = VM_PAGE_BITS_ALL; 641 break; /* break to PAGE HAS BEEN FOUND */ 642 } else { 643 KASSERT(fs.object != next_object, 644 ("object loop %p", next_object)); 645 VM_OBJECT_LOCK(next_object); 646 vm_object_pip_add(next_object, 1); 647 if (fs.object != fs.first_object) 648 vm_object_pip_wakeup(fs.object); 649 VM_OBJECT_UNLOCK(fs.object); 650 fs.object = next_object; 651 } 652 } 653 654 KASSERT((fs.m->flags & PG_BUSY) != 0, 655 ("vm_fault: not busy after main loop")); 656 657 /* 658 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock 659 * is held.] 660 */ 661 662 /* 663 * If the page is being written, but isn't already owned by the 664 * top-level object, we have to copy it into a new page owned by the 665 * top-level object. 666 */ 667 if (fs.object != fs.first_object) { 668 /* 669 * We only really need to copy if we want to write it. 670 */ 671 if (fault_type & VM_PROT_WRITE) { 672 /* 673 * This allows pages to be virtually copied from a 674 * backing_object into the first_object, where the 675 * backing object has no other refs to it, and cannot 676 * gain any more refs. Instead of a bcopy, we just 677 * move the page from the backing object to the 678 * first object. Note that we must mark the page 679 * dirty in the first object so that it will go out 680 * to swap when needed. 681 */ 682 is_first_object_locked = FALSE; 683 if ( 684 /* 685 * Only one shadow object 686 */ 687 (fs.object->shadow_count == 1) && 688 /* 689 * No COW refs, except us 690 */ 691 (fs.object->ref_count == 1) && 692 /* 693 * No one else can look this object up 694 */ 695 (fs.object->handle == NULL) && 696 /* 697 * No other ways to look the object up 698 */ 699 ((fs.object->type == OBJT_DEFAULT) || 700 (fs.object->type == OBJT_SWAP)) && 701 (is_first_object_locked = VM_OBJECT_TRYLOCK(fs.first_object)) && 702 /* 703 * We don't chase down the shadow chain 704 */ 705 fs.object == fs.first_object->backing_object) { 706 vm_page_lock_queues(); 707 /* 708 * get rid of the unnecessary page 709 */ 710 pmap_remove_all(fs.first_m); 711 vm_page_free(fs.first_m); 712 /* 713 * grab the page and put it into the 714 * process'es object. The page is 715 * automatically made dirty. 716 */ 717 vm_page_rename(fs.m, fs.first_object, fs.first_pindex); 718 vm_page_busy(fs.m); 719 vm_page_unlock_queues(); 720 fs.first_m = fs.m; 721 fs.m = NULL; 722 cnt.v_cow_optim++; 723 } else { 724 /* 725 * Oh, well, lets copy it. 726 */ 727 vm_page_copy(fs.m, fs.first_m); 728 } 729 if (fs.m) { 730 /* 731 * We no longer need the old page or object. 732 */ 733 release_page(&fs); 734 } 735 /* 736 * fs.object != fs.first_object due to above 737 * conditional 738 */ 739 vm_object_pip_wakeup(fs.object); 740 VM_OBJECT_UNLOCK(fs.object); 741 /* 742 * Only use the new page below... 743 */ 744 fs.object = fs.first_object; 745 fs.pindex = fs.first_pindex; 746 fs.m = fs.first_m; 747 if (!is_first_object_locked) 748 VM_OBJECT_LOCK(fs.object); 749 cnt.v_cow_faults++; 750 } else { 751 prot &= ~VM_PROT_WRITE; 752 } 753 } 754 755 /* 756 * We must verify that the maps have not changed since our last 757 * lookup. 758 */ 759 if (!fs.lookup_still_valid && 760 (fs.map->timestamp != map_generation)) { 761 vm_object_t retry_object; 762 vm_pindex_t retry_pindex; 763 vm_prot_t retry_prot; 764 765 /* 766 * Since map entries may be pageable, make sure we can take a 767 * page fault on them. 768 */ 769 770 /* 771 * Unlock vnode before the lookup to avoid deadlock. E.G. 772 * avoid a deadlock between the inode and exec_map that can 773 * occur due to locks being obtained in different orders. 774 */ 775 if (fs.vp != NULL) { 776 vput(fs.vp); 777 fs.vp = NULL; 778 } 779 780 if (fs.map->infork) { 781 release_page(&fs); 782 unlock_and_deallocate(&fs); 783 goto RetryFault; 784 } 785 VM_OBJECT_UNLOCK(fs.object); 786 787 /* 788 * To avoid trying to write_lock the map while another process 789 * has it read_locked (in vm_map_pageable), we do not try for 790 * write permission. If the page is still writable, we will 791 * get write permission. If it is not, or has been marked 792 * needs_copy, we enter the mapping without write permission, 793 * and will merely take another fault. 794 */ 795 result = vm_map_lookup(&fs.map, vaddr, fault_type & ~VM_PROT_WRITE, 796 &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired); 797 map_generation = fs.map->timestamp; 798 799 VM_OBJECT_LOCK(fs.object); 800 /* 801 * If we don't need the page any longer, put it on the active 802 * list (the easiest thing to do here). If no one needs it, 803 * pageout will grab it eventually. 804 */ 805 if (result != KERN_SUCCESS) { 806 release_page(&fs); 807 unlock_and_deallocate(&fs); 808 mtx_unlock(&Giant); 809 return (result); 810 } 811 fs.lookup_still_valid = TRUE; 812 813 if ((retry_object != fs.first_object) || 814 (retry_pindex != fs.first_pindex)) { 815 release_page(&fs); 816 unlock_and_deallocate(&fs); 817 goto RetryFault; 818 } 819 /* 820 * Check whether the protection has changed or the object has 821 * been copied while we left the map unlocked. Changing from 822 * read to write permission is OK - we leave the page 823 * write-protected, and catch the write fault. Changing from 824 * write to read permission means that we can't mark the page 825 * write-enabled after all. 826 */ 827 prot &= retry_prot; 828 } 829 830 /* 831 * Put this page into the physical map. We had to do the unlock above 832 * because pmap_enter may cause other faults. We don't put the page 833 * back on the active queue until later so that the page-out daemon 834 * won't find us (yet). 835 */ 836 837 if (prot & VM_PROT_WRITE) { 838 vm_page_lock_queues(); 839 vm_page_flag_set(fs.m, PG_WRITEABLE); 840 vm_object_set_writeable_dirty(fs.m->object); 841 842 /* 843 * If the fault is a write, we know that this page is being 844 * written NOW so dirty it explicitly to save on 845 * pmap_is_modified() calls later. 846 * 847 * If this is a NOSYNC mmap we do not want to set PG_NOSYNC 848 * if the page is already dirty to prevent data written with 849 * the expectation of being synced from not being synced. 850 * Likewise if this entry does not request NOSYNC then make 851 * sure the page isn't marked NOSYNC. Applications sharing 852 * data should use the same flags to avoid ping ponging. 853 * 854 * Also tell the backing pager, if any, that it should remove 855 * any swap backing since the page is now dirty. 856 */ 857 if (fs.entry->eflags & MAP_ENTRY_NOSYNC) { 858 if (fs.m->dirty == 0) 859 vm_page_flag_set(fs.m, PG_NOSYNC); 860 } else { 861 vm_page_flag_clear(fs.m, PG_NOSYNC); 862 } 863 vm_page_unlock_queues(); 864 if (fault_flags & VM_FAULT_DIRTY) { 865 int s; 866 vm_page_dirty(fs.m); 867 s = splvm(); 868 vm_pager_page_unswapped(fs.m); 869 splx(s); 870 } 871 } 872 873 /* 874 * Page had better still be busy 875 */ 876 KASSERT(fs.m->flags & PG_BUSY, 877 ("vm_fault: page %p not busy!", fs.m)); 878 unlock_things(&fs); 879 880 /* 881 * Sanity check: page must be completely valid or it is not fit to 882 * map into user space. vm_pager_get_pages() ensures this. 883 */ 884 if (fs.m->valid != VM_PAGE_BITS_ALL) { 885 vm_page_zero_invalid(fs.m, TRUE); 886 printf("Warning: page %p partially invalid on fault\n", fs.m); 887 } 888 pmap_enter(fs.map->pmap, vaddr, fs.m, prot, wired); 889 if (((fault_flags & VM_FAULT_WIRE_MASK) == 0) && (wired == 0)) { 890 pmap_prefault(fs.map->pmap, vaddr, fs.entry); 891 } 892 vm_page_lock_queues(); 893 vm_page_flag_clear(fs.m, PG_ZERO); 894 vm_page_flag_set(fs.m, PG_REFERENCED); 895 896 /* 897 * If the page is not wired down, then put it where the pageout daemon 898 * can find it. 899 */ 900 if (fault_flags & VM_FAULT_WIRE_MASK) { 901 if (wired) 902 vm_page_wire(fs.m); 903 else 904 vm_page_unwire(fs.m, 1); 905 } else { 906 vm_page_activate(fs.m); 907 } 908 vm_page_wakeup(fs.m); 909 vm_page_unlock_queues(); 910 911 PROC_LOCK(curproc); 912 if ((curproc->p_sflag & PS_INMEM) && curproc->p_stats) { 913 if (hardfault) { 914 curproc->p_stats->p_ru.ru_majflt++; 915 } else { 916 curproc->p_stats->p_ru.ru_minflt++; 917 } 918 } 919 PROC_UNLOCK(curproc); 920 921 /* 922 * Unlock everything, and return 923 */ 924 vm_object_deallocate(fs.first_object); 925 mtx_unlock(&Giant); 926 return (KERN_SUCCESS); 927 } 928 929 /* 930 * vm_fault_quick: 931 * 932 * Ensure that the requested virtual address, which may be in userland, 933 * is valid. Fault-in the page if necessary. Return -1 on failure. 934 */ 935 int 936 vm_fault_quick(caddr_t v, int prot) 937 { 938 int r; 939 940 if (prot & VM_PROT_WRITE) 941 r = subyte(v, fubyte(v)); 942 else 943 r = fubyte(v); 944 return(r); 945 } 946 947 /* 948 * vm_fault_wire: 949 * 950 * Wire down a range of virtual addresses in a map. 951 */ 952 int 953 vm_fault_wire(map, start, end, user_wire) 954 vm_map_t map; 955 vm_offset_t start, end; 956 boolean_t user_wire; 957 { 958 vm_offset_t va; 959 int rv; 960 961 /* 962 * We simulate a fault to get the page and enter it in the physical 963 * map. For user wiring, we only ask for read access on currently 964 * read-only sections. 965 */ 966 for (va = start; va < end; va += PAGE_SIZE) { 967 rv = vm_fault(map, va, 968 user_wire ? VM_PROT_READ : VM_PROT_READ | VM_PROT_WRITE, 969 user_wire ? VM_FAULT_USER_WIRE : VM_FAULT_CHANGE_WIRING); 970 if (rv) { 971 if (va != start) 972 vm_fault_unwire(map, start, va); 973 return (rv); 974 } 975 } 976 return (KERN_SUCCESS); 977 } 978 979 /* 980 * vm_fault_unwire: 981 * 982 * Unwire a range of virtual addresses in a map. 983 */ 984 void 985 vm_fault_unwire(map, start, end) 986 vm_map_t map; 987 vm_offset_t start, end; 988 { 989 vm_paddr_t pa; 990 vm_offset_t va; 991 pmap_t pmap; 992 993 pmap = vm_map_pmap(map); 994 995 mtx_lock(&Giant); 996 /* 997 * Since the pages are wired down, we must be able to get their 998 * mappings from the physical map system. 999 */ 1000 for (va = start; va < end; va += PAGE_SIZE) { 1001 pa = pmap_extract(pmap, va); 1002 if (pa != 0) { 1003 pmap_change_wiring(pmap, va, FALSE); 1004 vm_page_lock_queues(); 1005 vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1); 1006 vm_page_unlock_queues(); 1007 } 1008 } 1009 mtx_unlock(&Giant); 1010 } 1011 1012 /* 1013 * Routine: 1014 * vm_fault_copy_entry 1015 * Function: 1016 * Copy all of the pages from a wired-down map entry to another. 1017 * 1018 * In/out conditions: 1019 * The source and destination maps must be locked for write. 1020 * The source map entry must be wired down (or be a sharing map 1021 * entry corresponding to a main map entry that is wired down). 1022 */ 1023 void 1024 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry) 1025 vm_map_t dst_map; 1026 vm_map_t src_map; 1027 vm_map_entry_t dst_entry; 1028 vm_map_entry_t src_entry; 1029 { 1030 vm_object_t dst_object; 1031 vm_object_t src_object; 1032 vm_ooffset_t dst_offset; 1033 vm_ooffset_t src_offset; 1034 vm_prot_t prot; 1035 vm_offset_t vaddr; 1036 vm_page_t dst_m; 1037 vm_page_t src_m; 1038 1039 #ifdef lint 1040 src_map++; 1041 #endif /* lint */ 1042 1043 src_object = src_entry->object.vm_object; 1044 src_offset = src_entry->offset; 1045 1046 /* 1047 * Create the top-level object for the destination entry. (Doesn't 1048 * actually shadow anything - we copy the pages directly.) 1049 */ 1050 dst_object = vm_object_allocate(OBJT_DEFAULT, 1051 (vm_size_t) OFF_TO_IDX(dst_entry->end - dst_entry->start)); 1052 1053 dst_entry->object.vm_object = dst_object; 1054 dst_entry->offset = 0; 1055 1056 prot = dst_entry->max_protection; 1057 1058 /* 1059 * Loop through all of the pages in the entry's range, copying each 1060 * one from the source object (it should be there) to the destination 1061 * object. 1062 */ 1063 for (vaddr = dst_entry->start, dst_offset = 0; 1064 vaddr < dst_entry->end; 1065 vaddr += PAGE_SIZE, dst_offset += PAGE_SIZE) { 1066 1067 /* 1068 * Allocate a page in the destination object 1069 */ 1070 do { 1071 dst_m = vm_page_alloc(dst_object, 1072 OFF_TO_IDX(dst_offset), VM_ALLOC_NORMAL); 1073 if (dst_m == NULL) { 1074 VM_WAIT; 1075 } 1076 } while (dst_m == NULL); 1077 1078 /* 1079 * Find the page in the source object, and copy it in. 1080 * (Because the source is wired down, the page will be in 1081 * memory.) 1082 */ 1083 VM_OBJECT_LOCK(src_object); 1084 src_m = vm_page_lookup(src_object, 1085 OFF_TO_IDX(dst_offset + src_offset)); 1086 VM_OBJECT_UNLOCK(src_object); 1087 if (src_m == NULL) 1088 panic("vm_fault_copy_wired: page missing"); 1089 1090 vm_page_copy(src_m, dst_m); 1091 1092 /* 1093 * Enter it in the pmap... 1094 */ 1095 pmap_enter(dst_map->pmap, vaddr, dst_m, prot, FALSE); 1096 vm_page_lock_queues(); 1097 vm_page_flag_set(dst_m, PG_WRITEABLE); 1098 1099 /* 1100 * Mark it no longer busy, and put it on the active list. 1101 */ 1102 vm_page_activate(dst_m); 1103 vm_page_wakeup(dst_m); 1104 vm_page_unlock_queues(); 1105 } 1106 } 1107 1108 1109 /* 1110 * This routine checks around the requested page for other pages that 1111 * might be able to be faulted in. This routine brackets the viable 1112 * pages for the pages to be paged in. 1113 * 1114 * Inputs: 1115 * m, rbehind, rahead 1116 * 1117 * Outputs: 1118 * marray (array of vm_page_t), reqpage (index of requested page) 1119 * 1120 * Return value: 1121 * number of pages in marray 1122 * 1123 * This routine can't block. 1124 */ 1125 static int 1126 vm_fault_additional_pages(m, rbehind, rahead, marray, reqpage) 1127 vm_page_t m; 1128 int rbehind; 1129 int rahead; 1130 vm_page_t *marray; 1131 int *reqpage; 1132 { 1133 int i,j; 1134 vm_object_t object; 1135 vm_pindex_t pindex, startpindex, endpindex, tpindex; 1136 vm_page_t rtm; 1137 int cbehind, cahead; 1138 1139 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1140 1141 object = m->object; 1142 pindex = m->pindex; 1143 1144 /* 1145 * we don't fault-ahead for device pager 1146 */ 1147 if (object->type == OBJT_DEVICE) { 1148 *reqpage = 0; 1149 marray[0] = m; 1150 return 1; 1151 } 1152 1153 /* 1154 * if the requested page is not available, then give up now 1155 */ 1156 if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) { 1157 return 0; 1158 } 1159 1160 if ((cbehind == 0) && (cahead == 0)) { 1161 *reqpage = 0; 1162 marray[0] = m; 1163 return 1; 1164 } 1165 1166 if (rahead > cahead) { 1167 rahead = cahead; 1168 } 1169 1170 if (rbehind > cbehind) { 1171 rbehind = cbehind; 1172 } 1173 1174 /* 1175 * try to do any readahead that we might have free pages for. 1176 */ 1177 if ((rahead + rbehind) > 1178 ((cnt.v_free_count + cnt.v_cache_count) - cnt.v_free_reserved)) { 1179 pagedaemon_wakeup(); 1180 marray[0] = m; 1181 *reqpage = 0; 1182 return 1; 1183 } 1184 1185 /* 1186 * scan backward for the read behind pages -- in memory 1187 */ 1188 if (pindex > 0) { 1189 if (rbehind > pindex) { 1190 rbehind = pindex; 1191 startpindex = 0; 1192 } else { 1193 startpindex = pindex - rbehind; 1194 } 1195 1196 for (tpindex = pindex - 1; tpindex >= startpindex; tpindex -= 1) { 1197 if (vm_page_lookup(object, tpindex)) { 1198 startpindex = tpindex + 1; 1199 break; 1200 } 1201 if (tpindex == 0) 1202 break; 1203 } 1204 1205 for (i = 0, tpindex = startpindex; tpindex < pindex; i++, tpindex++) { 1206 1207 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL); 1208 if (rtm == NULL) { 1209 vm_page_lock_queues(); 1210 for (j = 0; j < i; j++) { 1211 vm_page_free(marray[j]); 1212 } 1213 vm_page_unlock_queues(); 1214 marray[0] = m; 1215 *reqpage = 0; 1216 return 1; 1217 } 1218 1219 marray[i] = rtm; 1220 } 1221 } else { 1222 startpindex = 0; 1223 i = 0; 1224 } 1225 1226 marray[i] = m; 1227 /* page offset of the required page */ 1228 *reqpage = i; 1229 1230 tpindex = pindex + 1; 1231 i++; 1232 1233 /* 1234 * scan forward for the read ahead pages 1235 */ 1236 endpindex = tpindex + rahead; 1237 if (endpindex > object->size) 1238 endpindex = object->size; 1239 1240 for (; tpindex < endpindex; i++, tpindex++) { 1241 1242 if (vm_page_lookup(object, tpindex)) { 1243 break; 1244 } 1245 1246 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL); 1247 if (rtm == NULL) { 1248 break; 1249 } 1250 1251 marray[i] = rtm; 1252 } 1253 1254 /* return number of bytes of pages */ 1255 return i; 1256 } 1257