xref: /freebsd/sys/vm/vm_fault.c (revision dc88573ff1e6670d828a1412cde16941579a2f7c)
1 /*-
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  *
10  * This code is derived from software contributed to Berkeley by
11  * The Mach Operating System project at Carnegie-Mellon University.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. All advertising materials mentioning features or use of this software
22  *    must display the following acknowledgement:
23  *	This product includes software developed by the University of
24  *	California, Berkeley and its contributors.
25  * 4. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *	from: @(#)vm_fault.c	8.4 (Berkeley) 1/12/94
42  *
43  *
44  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45  * All rights reserved.
46  *
47  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48  *
49  * Permission to use, copy, modify and distribute this software and
50  * its documentation is hereby granted, provided that both the copyright
51  * notice and this permission notice appear in all copies of the
52  * software, derivative works or modified versions, and any portions
53  * thereof, and that both notices appear in supporting documentation.
54  *
55  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58  *
59  * Carnegie Mellon requests users of this software to return to
60  *
61  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62  *  School of Computer Science
63  *  Carnegie Mellon University
64  *  Pittsburgh PA 15213-3890
65  *
66  * any improvements or extensions that they make and grant Carnegie the
67  * rights to redistribute these changes.
68  */
69 
70 /*
71  *	Page fault handling module.
72  */
73 
74 #include <sys/cdefs.h>
75 __FBSDID("$FreeBSD$");
76 
77 #include "opt_ktrace.h"
78 #include "opt_vm.h"
79 
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/kernel.h>
83 #include <sys/lock.h>
84 #include <sys/mman.h>
85 #include <sys/proc.h>
86 #include <sys/racct.h>
87 #include <sys/resourcevar.h>
88 #include <sys/rwlock.h>
89 #include <sys/sysctl.h>
90 #include <sys/vmmeter.h>
91 #include <sys/vnode.h>
92 #ifdef KTRACE
93 #include <sys/ktrace.h>
94 #endif
95 
96 #include <vm/vm.h>
97 #include <vm/vm_param.h>
98 #include <vm/pmap.h>
99 #include <vm/vm_map.h>
100 #include <vm/vm_object.h>
101 #include <vm/vm_page.h>
102 #include <vm/vm_pageout.h>
103 #include <vm/vm_kern.h>
104 #include <vm/vm_pager.h>
105 #include <vm/vm_extern.h>
106 #include <vm/vm_reserv.h>
107 
108 #define PFBAK 4
109 #define PFFOR 4
110 
111 #define	VM_FAULT_READ_DEFAULT	(1 + VM_FAULT_READ_AHEAD_INIT)
112 #define	VM_FAULT_READ_MAX	(1 + VM_FAULT_READ_AHEAD_MAX)
113 
114 #define	VM_FAULT_DONTNEED_MIN	1048576
115 
116 struct faultstate {
117 	vm_page_t m;
118 	vm_object_t object;
119 	vm_pindex_t pindex;
120 	vm_page_t first_m;
121 	vm_object_t	first_object;
122 	vm_pindex_t first_pindex;
123 	vm_map_t map;
124 	vm_map_entry_t entry;
125 	bool lookup_still_valid;
126 	struct vnode *vp;
127 };
128 
129 static void vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr,
130 	    int ahead);
131 static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
132 	    int backward, int forward);
133 
134 static inline void
135 release_page(struct faultstate *fs)
136 {
137 
138 	vm_page_xunbusy(fs->m);
139 	vm_page_lock(fs->m);
140 	vm_page_deactivate(fs->m);
141 	vm_page_unlock(fs->m);
142 	fs->m = NULL;
143 }
144 
145 static inline void
146 unlock_map(struct faultstate *fs)
147 {
148 
149 	if (fs->lookup_still_valid) {
150 		vm_map_lookup_done(fs->map, fs->entry);
151 		fs->lookup_still_valid = false;
152 	}
153 }
154 
155 static void
156 unlock_vp(struct faultstate *fs)
157 {
158 
159 	if (fs->vp != NULL) {
160 		vput(fs->vp);
161 		fs->vp = NULL;
162 	}
163 }
164 
165 static void
166 unlock_and_deallocate(struct faultstate *fs)
167 {
168 
169 	vm_object_pip_wakeup(fs->object);
170 	VM_OBJECT_WUNLOCK(fs->object);
171 	if (fs->object != fs->first_object) {
172 		VM_OBJECT_WLOCK(fs->first_object);
173 		vm_page_lock(fs->first_m);
174 		vm_page_free(fs->first_m);
175 		vm_page_unlock(fs->first_m);
176 		vm_object_pip_wakeup(fs->first_object);
177 		VM_OBJECT_WUNLOCK(fs->first_object);
178 		fs->first_m = NULL;
179 	}
180 	vm_object_deallocate(fs->first_object);
181 	unlock_map(fs);
182 	unlock_vp(fs);
183 }
184 
185 static void
186 vm_fault_dirty(vm_map_entry_t entry, vm_page_t m, vm_prot_t prot,
187     vm_prot_t fault_type, int fault_flags, bool set_wd)
188 {
189 	bool need_dirty;
190 
191 	if (((prot & VM_PROT_WRITE) == 0 &&
192 	    (fault_flags & VM_FAULT_DIRTY) == 0) ||
193 	    (m->oflags & VPO_UNMANAGED) != 0)
194 		return;
195 
196 	VM_OBJECT_ASSERT_LOCKED(m->object);
197 
198 	need_dirty = ((fault_type & VM_PROT_WRITE) != 0 &&
199 	    (fault_flags & VM_FAULT_WIRE) == 0) ||
200 	    (fault_flags & VM_FAULT_DIRTY) != 0;
201 
202 	if (set_wd)
203 		vm_object_set_writeable_dirty(m->object);
204 	else
205 		/*
206 		 * If two callers of vm_fault_dirty() with set_wd ==
207 		 * FALSE, one for the map entry with MAP_ENTRY_NOSYNC
208 		 * flag set, other with flag clear, race, it is
209 		 * possible for the no-NOSYNC thread to see m->dirty
210 		 * != 0 and not clear VPO_NOSYNC.  Take vm_page lock
211 		 * around manipulation of VPO_NOSYNC and
212 		 * vm_page_dirty() call, to avoid the race and keep
213 		 * m->oflags consistent.
214 		 */
215 		vm_page_lock(m);
216 
217 	/*
218 	 * If this is a NOSYNC mmap we do not want to set VPO_NOSYNC
219 	 * if the page is already dirty to prevent data written with
220 	 * the expectation of being synced from not being synced.
221 	 * Likewise if this entry does not request NOSYNC then make
222 	 * sure the page isn't marked NOSYNC.  Applications sharing
223 	 * data should use the same flags to avoid ping ponging.
224 	 */
225 	if ((entry->eflags & MAP_ENTRY_NOSYNC) != 0) {
226 		if (m->dirty == 0) {
227 			m->oflags |= VPO_NOSYNC;
228 		}
229 	} else {
230 		m->oflags &= ~VPO_NOSYNC;
231 	}
232 
233 	/*
234 	 * If the fault is a write, we know that this page is being
235 	 * written NOW so dirty it explicitly to save on
236 	 * pmap_is_modified() calls later.
237 	 *
238 	 * Also tell the backing pager, if any, that it should remove
239 	 * any swap backing since the page is now dirty.
240 	 */
241 	if (need_dirty)
242 		vm_page_dirty(m);
243 	if (!set_wd)
244 		vm_page_unlock(m);
245 	if (need_dirty)
246 		vm_pager_page_unswapped(m);
247 }
248 
249 /*
250  *	vm_fault:
251  *
252  *	Handle a page fault occurring at the given address,
253  *	requiring the given permissions, in the map specified.
254  *	If successful, the page is inserted into the
255  *	associated physical map.
256  *
257  *	NOTE: the given address should be truncated to the
258  *	proper page address.
259  *
260  *	KERN_SUCCESS is returned if the page fault is handled; otherwise,
261  *	a standard error specifying why the fault is fatal is returned.
262  *
263  *	The map in question must be referenced, and remains so.
264  *	Caller may hold no locks.
265  */
266 int
267 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
268     int fault_flags)
269 {
270 	struct thread *td;
271 	int result;
272 
273 	td = curthread;
274 	if ((td->td_pflags & TDP_NOFAULTING) != 0)
275 		return (KERN_PROTECTION_FAILURE);
276 #ifdef KTRACE
277 	if (map != kernel_map && KTRPOINT(td, KTR_FAULT))
278 		ktrfault(vaddr, fault_type);
279 #endif
280 	result = vm_fault_hold(map, trunc_page(vaddr), fault_type, fault_flags,
281 	    NULL);
282 #ifdef KTRACE
283 	if (map != kernel_map && KTRPOINT(td, KTR_FAULTEND))
284 		ktrfaultend(result);
285 #endif
286 	return (result);
287 }
288 
289 int
290 vm_fault_hold(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
291     int fault_flags, vm_page_t *m_hold)
292 {
293 	vm_prot_t prot;
294 	vm_object_t next_object;
295 	struct faultstate fs;
296 	struct vnode *vp;
297 	vm_offset_t e_end, e_start;
298 	vm_page_t m;
299 	int ahead, alloc_req, behind, cluster_offset, error, era, faultcount;
300 	int locked, map_generation, nera, result, rv;
301 	u_char behavior;
302 	boolean_t wired;	/* Passed by reference. */
303 	bool dead, growstack, hardfault, is_first_object_locked;
304 
305 	PCPU_INC(cnt.v_vm_faults);
306 	fs.vp = NULL;
307 	faultcount = 0;
308 	nera = -1;
309 	growstack = true;
310 	hardfault = false;
311 
312 RetryFault:;
313 
314 	/*
315 	 * Find the backing store object and offset into it to begin the
316 	 * search.
317 	 */
318 	fs.map = map;
319 	result = vm_map_lookup(&fs.map, vaddr, fault_type, &fs.entry,
320 	    &fs.first_object, &fs.first_pindex, &prot, &wired);
321 	if (result != KERN_SUCCESS) {
322 		if (growstack && result == KERN_INVALID_ADDRESS &&
323 		    map != kernel_map) {
324 			result = vm_map_growstack(curproc, vaddr);
325 			if (result != KERN_SUCCESS)
326 				return (KERN_FAILURE);
327 			growstack = false;
328 			goto RetryFault;
329 		}
330 		unlock_vp(&fs);
331 		return (result);
332 	}
333 
334 	map_generation = fs.map->timestamp;
335 
336 	if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
337 		panic("vm_fault: fault on nofault entry, addr: %lx",
338 		    (u_long)vaddr);
339 	}
340 
341 	if (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION &&
342 	    fs.entry->wiring_thread != curthread) {
343 		vm_map_unlock_read(fs.map);
344 		vm_map_lock(fs.map);
345 		if (vm_map_lookup_entry(fs.map, vaddr, &fs.entry) &&
346 		    (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION)) {
347 			unlock_vp(&fs);
348 			fs.entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
349 			vm_map_unlock_and_wait(fs.map, 0);
350 		} else
351 			vm_map_unlock(fs.map);
352 		goto RetryFault;
353 	}
354 
355 	if (wired)
356 		fault_type = prot | (fault_type & VM_PROT_COPY);
357 	else
358 		KASSERT((fault_flags & VM_FAULT_WIRE) == 0,
359 		    ("!wired && VM_FAULT_WIRE"));
360 
361 	/*
362 	 * Try to avoid lock contention on the top-level object through
363 	 * special-case handling of some types of page faults, specifically,
364 	 * those that are both (1) mapping an existing page from the top-
365 	 * level object and (2) not having to mark that object as containing
366 	 * dirty pages.  Under these conditions, a read lock on the top-level
367 	 * object suffices, allowing multiple page faults of a similar type to
368 	 * run in parallel on the same top-level object.
369 	 */
370 	if (fs.vp == NULL /* avoid locked vnode leak */ &&
371 	    (fault_flags & (VM_FAULT_WIRE | VM_FAULT_DIRTY)) == 0 &&
372 	    /* avoid calling vm_object_set_writeable_dirty() */
373 	    ((prot & VM_PROT_WRITE) == 0 ||
374 	    (fs.first_object->type != OBJT_VNODE &&
375 	    (fs.first_object->flags & OBJ_TMPFS_NODE) == 0) ||
376 	    (fs.first_object->flags & OBJ_MIGHTBEDIRTY) != 0)) {
377 		VM_OBJECT_RLOCK(fs.first_object);
378 		if ((prot & VM_PROT_WRITE) != 0 &&
379 		    (fs.first_object->type == OBJT_VNODE ||
380 		    (fs.first_object->flags & OBJ_TMPFS_NODE) != 0) &&
381 		    (fs.first_object->flags & OBJ_MIGHTBEDIRTY) == 0)
382 			goto fast_failed;
383 		m = vm_page_lookup(fs.first_object, fs.first_pindex);
384 		/* A busy page can be mapped for read|execute access. */
385 		if (m == NULL || ((prot & VM_PROT_WRITE) != 0 &&
386 		    vm_page_busied(m)) || m->valid != VM_PAGE_BITS_ALL)
387 			goto fast_failed;
388 		result = pmap_enter(fs.map->pmap, vaddr, m, prot,
389 		   fault_type | PMAP_ENTER_NOSLEEP | (wired ? PMAP_ENTER_WIRED :
390 		   0), 0);
391 		if (result != KERN_SUCCESS)
392 			goto fast_failed;
393 		if (m_hold != NULL) {
394 			*m_hold = m;
395 			vm_page_lock(m);
396 			vm_page_hold(m);
397 			vm_page_unlock(m);
398 		}
399 		vm_fault_dirty(fs.entry, m, prot, fault_type, fault_flags,
400 		    false);
401 		VM_OBJECT_RUNLOCK(fs.first_object);
402 		if (!wired)
403 			vm_fault_prefault(&fs, vaddr, PFBAK, PFFOR);
404 		vm_map_lookup_done(fs.map, fs.entry);
405 		curthread->td_ru.ru_minflt++;
406 		return (KERN_SUCCESS);
407 fast_failed:
408 		if (!VM_OBJECT_TRYUPGRADE(fs.first_object)) {
409 			VM_OBJECT_RUNLOCK(fs.first_object);
410 			VM_OBJECT_WLOCK(fs.first_object);
411 		}
412 	} else {
413 		VM_OBJECT_WLOCK(fs.first_object);
414 	}
415 
416 	/*
417 	 * Make a reference to this object to prevent its disposal while we
418 	 * are messing with it.  Once we have the reference, the map is free
419 	 * to be diddled.  Since objects reference their shadows (and copies),
420 	 * they will stay around as well.
421 	 *
422 	 * Bump the paging-in-progress count to prevent size changes (e.g.
423 	 * truncation operations) during I/O.  This must be done after
424 	 * obtaining the vnode lock in order to avoid possible deadlocks.
425 	 */
426 	vm_object_reference_locked(fs.first_object);
427 	vm_object_pip_add(fs.first_object, 1);
428 
429 	fs.lookup_still_valid = true;
430 
431 	fs.first_m = NULL;
432 
433 	/*
434 	 * Search for the page at object/offset.
435 	 */
436 	fs.object = fs.first_object;
437 	fs.pindex = fs.first_pindex;
438 	while (TRUE) {
439 		/*
440 		 * If the object is marked for imminent termination,
441 		 * we retry here, since the collapse pass has raced
442 		 * with us.  Otherwise, if we see terminally dead
443 		 * object, return fail.
444 		 */
445 		if ((fs.object->flags & OBJ_DEAD) != 0) {
446 			dead = fs.object->type == OBJT_DEAD;
447 			unlock_and_deallocate(&fs);
448 			if (dead)
449 				return (KERN_PROTECTION_FAILURE);
450 			pause("vmf_de", 1);
451 			goto RetryFault;
452 		}
453 
454 		/*
455 		 * See if page is resident
456 		 */
457 		fs.m = vm_page_lookup(fs.object, fs.pindex);
458 		if (fs.m != NULL) {
459 			/*
460 			 * Wait/Retry if the page is busy.  We have to do this
461 			 * if the page is either exclusive or shared busy
462 			 * because the vm_pager may be using read busy for
463 			 * pageouts (and even pageins if it is the vnode
464 			 * pager), and we could end up trying to pagein and
465 			 * pageout the same page simultaneously.
466 			 *
467 			 * We can theoretically allow the busy case on a read
468 			 * fault if the page is marked valid, but since such
469 			 * pages are typically already pmap'd, putting that
470 			 * special case in might be more effort then it is
471 			 * worth.  We cannot under any circumstances mess
472 			 * around with a shared busied page except, perhaps,
473 			 * to pmap it.
474 			 */
475 			if (vm_page_busied(fs.m)) {
476 				/*
477 				 * Reference the page before unlocking and
478 				 * sleeping so that the page daemon is less
479 				 * likely to reclaim it.
480 				 */
481 				vm_page_aflag_set(fs.m, PGA_REFERENCED);
482 				if (fs.object != fs.first_object) {
483 					if (!VM_OBJECT_TRYWLOCK(
484 					    fs.first_object)) {
485 						VM_OBJECT_WUNLOCK(fs.object);
486 						VM_OBJECT_WLOCK(fs.first_object);
487 						VM_OBJECT_WLOCK(fs.object);
488 					}
489 					vm_page_lock(fs.first_m);
490 					vm_page_free(fs.first_m);
491 					vm_page_unlock(fs.first_m);
492 					vm_object_pip_wakeup(fs.first_object);
493 					VM_OBJECT_WUNLOCK(fs.first_object);
494 					fs.first_m = NULL;
495 				}
496 				unlock_map(&fs);
497 				if (fs.m == vm_page_lookup(fs.object,
498 				    fs.pindex)) {
499 					vm_page_sleep_if_busy(fs.m, "vmpfw");
500 				}
501 				vm_object_pip_wakeup(fs.object);
502 				VM_OBJECT_WUNLOCK(fs.object);
503 				PCPU_INC(cnt.v_intrans);
504 				vm_object_deallocate(fs.first_object);
505 				goto RetryFault;
506 			}
507 			vm_page_lock(fs.m);
508 			vm_page_remque(fs.m);
509 			vm_page_unlock(fs.m);
510 
511 			/*
512 			 * Mark page busy for other processes, and the
513 			 * pagedaemon.  If it still isn't completely valid
514 			 * (readable), jump to readrest, else break-out ( we
515 			 * found the page ).
516 			 */
517 			vm_page_xbusy(fs.m);
518 			if (fs.m->valid != VM_PAGE_BITS_ALL)
519 				goto readrest;
520 			break;
521 		}
522 		KASSERT(fs.m == NULL, ("fs.m should be NULL, not %p", fs.m));
523 
524 		/*
525 		 * Page is not resident.  If the pager might contain the page
526 		 * or this is the beginning of the search, allocate a new
527 		 * page.  (Default objects are zero-fill, so there is no real
528 		 * pager for them.)
529 		 */
530 		if (fs.object->type != OBJT_DEFAULT ||
531 		    fs.object == fs.first_object) {
532 			if (fs.pindex >= fs.object->size) {
533 				unlock_and_deallocate(&fs);
534 				return (KERN_PROTECTION_FAILURE);
535 			}
536 
537 			/*
538 			 * Allocate a new page for this object/offset pair.
539 			 *
540 			 * Unlocked read of the p_flag is harmless. At
541 			 * worst, the P_KILLED might be not observed
542 			 * there, and allocation can fail, causing
543 			 * restart and new reading of the p_flag.
544 			 */
545 			if (!vm_page_count_severe() || P_KILLED(curproc)) {
546 #if VM_NRESERVLEVEL > 0
547 				vm_object_color(fs.object, atop(vaddr) -
548 				    fs.pindex);
549 #endif
550 				alloc_req = P_KILLED(curproc) ?
551 				    VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL;
552 				if (fs.object->type != OBJT_VNODE &&
553 				    fs.object->backing_object == NULL)
554 					alloc_req |= VM_ALLOC_ZERO;
555 				fs.m = vm_page_alloc(fs.object, fs.pindex,
556 				    alloc_req);
557 			}
558 			if (fs.m == NULL) {
559 				unlock_and_deallocate(&fs);
560 				VM_WAITPFAULT;
561 				goto RetryFault;
562 			} else if (fs.m->valid == VM_PAGE_BITS_ALL)
563 				break;
564 		}
565 
566 readrest:
567 		/*
568 		 * If the pager for the current object might have the page,
569 		 * then determine the number of additional pages to read and
570 		 * potentially reprioritize previously read pages for earlier
571 		 * reclamation.  These operations should only be performed
572 		 * once per page fault.  Even if the current pager doesn't
573 		 * have the page, the number of additional pages to read will
574 		 * apply to subsequent objects in the shadow chain.
575 		 */
576 		if (fs.object->type != OBJT_DEFAULT && nera == -1 &&
577 		    !P_KILLED(curproc)) {
578 			KASSERT(fs.lookup_still_valid, ("map unlocked"));
579 			era = fs.entry->read_ahead;
580 			behavior = vm_map_entry_behavior(fs.entry);
581 			if (behavior == MAP_ENTRY_BEHAV_RANDOM) {
582 				nera = 0;
583 			} else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) {
584 				nera = VM_FAULT_READ_AHEAD_MAX;
585 				if (vaddr == fs.entry->next_read)
586 					vm_fault_dontneed(&fs, vaddr, nera);
587 			} else if (vaddr == fs.entry->next_read) {
588 				/*
589 				 * This is a sequential fault.  Arithmetically
590 				 * increase the requested number of pages in
591 				 * the read-ahead window.  The requested
592 				 * number of pages is "# of sequential faults
593 				 * x (read ahead min + 1) + read ahead min"
594 				 */
595 				nera = VM_FAULT_READ_AHEAD_MIN;
596 				if (era > 0) {
597 					nera += era + 1;
598 					if (nera > VM_FAULT_READ_AHEAD_MAX)
599 						nera = VM_FAULT_READ_AHEAD_MAX;
600 				}
601 				if (era == VM_FAULT_READ_AHEAD_MAX)
602 					vm_fault_dontneed(&fs, vaddr, nera);
603 			} else {
604 				/*
605 				 * This is a non-sequential fault.
606 				 */
607 				nera = 0;
608 			}
609 			if (era != nera) {
610 				/*
611 				 * A read lock on the map suffices to update
612 				 * the read ahead count safely.
613 				 */
614 				fs.entry->read_ahead = nera;
615 			}
616 
617 			/*
618 			 * Prepare for unlocking the map.  Save the map
619 			 * entry's start and end addresses, which are used to
620 			 * optimize the size of the pager operation below.
621 			 * Even if the map entry's addresses change after
622 			 * unlocking the map, using the saved addresses is
623 			 * safe.
624 			 */
625 			e_start = fs.entry->start;
626 			e_end = fs.entry->end;
627 		}
628 
629 		/*
630 		 * Call the pager to retrieve the page if there is a chance
631 		 * that the pager has it, and potentially retrieve additional
632 		 * pages at the same time.
633 		 */
634 		if (fs.object->type != OBJT_DEFAULT) {
635 			/*
636 			 * We have either allocated a new page or found an
637 			 * existing page that is only partially valid.  We
638 			 * hold a reference on fs.object and the page is
639 			 * exclusive busied.
640 			 */
641 			unlock_map(&fs);
642 
643 			if (fs.object->type == OBJT_VNODE &&
644 			    (vp = fs.object->handle) != fs.vp) {
645 				unlock_vp(&fs);
646 				locked = VOP_ISLOCKED(vp);
647 
648 				if (locked != LK_EXCLUSIVE)
649 					locked = LK_SHARED;
650 				/* Do not sleep for vnode lock while fs.m is busy */
651 				error = vget(vp, locked | LK_CANRECURSE |
652 				    LK_NOWAIT, curthread);
653 				if (error != 0) {
654 					vhold(vp);
655 					release_page(&fs);
656 					unlock_and_deallocate(&fs);
657 					error = vget(vp, locked | LK_RETRY |
658 					    LK_CANRECURSE, curthread);
659 					vdrop(vp);
660 					fs.vp = vp;
661 					KASSERT(error == 0,
662 					    ("vm_fault: vget failed"));
663 					goto RetryFault;
664 				}
665 				fs.vp = vp;
666 			}
667 			KASSERT(fs.vp == NULL || !fs.map->system_map,
668 			    ("vm_fault: vnode-backed object mapped by system map"));
669 
670 			/*
671 			 * Page in the requested page and hint the pager,
672 			 * that it may bring up surrounding pages.
673 			 */
674 			if (nera == -1 || behavior == MAP_ENTRY_BEHAV_RANDOM ||
675 			    P_KILLED(curproc)) {
676 				behind = 0;
677 				ahead = 0;
678 			} else {
679 				/* Is this a sequential fault? */
680 				if (nera > 0) {
681 					behind = 0;
682 					ahead = nera;
683 				} else {
684 					/*
685 					 * Request a cluster of pages that is
686 					 * aligned to a VM_FAULT_READ_DEFAULT
687 					 * page offset boundary within the
688 					 * object.  Alignment to a page offset
689 					 * boundary is more likely to coincide
690 					 * with the underlying file system
691 					 * block than alignment to a virtual
692 					 * address boundary.
693 					 */
694 					cluster_offset = fs.pindex %
695 					    VM_FAULT_READ_DEFAULT;
696 					behind = ulmin(cluster_offset,
697 					    atop(vaddr - e_start));
698 					ahead = VM_FAULT_READ_DEFAULT - 1 -
699 					    cluster_offset;
700 				}
701 				ahead = ulmin(ahead, atop(e_end - vaddr) - 1);
702 			}
703 			rv = vm_pager_get_pages(fs.object, &fs.m, 1,
704 			    &behind, &ahead);
705 			if (rv == VM_PAGER_OK) {
706 				faultcount = behind + 1 + ahead;
707 				hardfault = true;
708 				break; /* break to PAGE HAS BEEN FOUND */
709 			}
710 			if (rv == VM_PAGER_ERROR)
711 				printf("vm_fault: pager read error, pid %d (%s)\n",
712 				    curproc->p_pid, curproc->p_comm);
713 
714 			/*
715 			 * If an I/O error occurred or the requested page was
716 			 * outside the range of the pager, clean up and return
717 			 * an error.
718 			 */
719 			if (rv == VM_PAGER_ERROR || rv == VM_PAGER_BAD) {
720 				vm_page_lock(fs.m);
721 				if (fs.m->wire_count == 0)
722 					vm_page_free(fs.m);
723 				else
724 					vm_page_xunbusy_maybelocked(fs.m);
725 				vm_page_unlock(fs.m);
726 				fs.m = NULL;
727 				unlock_and_deallocate(&fs);
728 				return (rv == VM_PAGER_ERROR ? KERN_FAILURE :
729 				    KERN_PROTECTION_FAILURE);
730 			}
731 
732 			/*
733 			 * The requested page does not exist at this object/
734 			 * offset.  Remove the invalid page from the object,
735 			 * waking up anyone waiting for it, and continue on to
736 			 * the next object.  However, if this is the top-level
737 			 * object, we must leave the busy page in place to
738 			 * prevent another process from rushing past us, and
739 			 * inserting the page in that object at the same time
740 			 * that we are.
741 			 */
742 			if (fs.object != fs.first_object) {
743 				vm_page_lock(fs.m);
744 				if (fs.m->wire_count == 0)
745 					vm_page_free(fs.m);
746 				else
747 					vm_page_xunbusy_maybelocked(fs.m);
748 				vm_page_unlock(fs.m);
749 				fs.m = NULL;
750 			}
751 		}
752 
753 		/*
754 		 * We get here if the object has default pager (or unwiring)
755 		 * or the pager doesn't have the page.
756 		 */
757 		if (fs.object == fs.first_object)
758 			fs.first_m = fs.m;
759 
760 		/*
761 		 * Move on to the next object.  Lock the next object before
762 		 * unlocking the current one.
763 		 */
764 		next_object = fs.object->backing_object;
765 		if (next_object == NULL) {
766 			/*
767 			 * If there's no object left, fill the page in the top
768 			 * object with zeros.
769 			 */
770 			if (fs.object != fs.first_object) {
771 				vm_object_pip_wakeup(fs.object);
772 				VM_OBJECT_WUNLOCK(fs.object);
773 
774 				fs.object = fs.first_object;
775 				fs.pindex = fs.first_pindex;
776 				fs.m = fs.first_m;
777 				VM_OBJECT_WLOCK(fs.object);
778 			}
779 			fs.first_m = NULL;
780 
781 			/*
782 			 * Zero the page if necessary and mark it valid.
783 			 */
784 			if ((fs.m->flags & PG_ZERO) == 0) {
785 				pmap_zero_page(fs.m);
786 			} else {
787 				PCPU_INC(cnt.v_ozfod);
788 			}
789 			PCPU_INC(cnt.v_zfod);
790 			fs.m->valid = VM_PAGE_BITS_ALL;
791 			/* Don't try to prefault neighboring pages. */
792 			faultcount = 1;
793 			break;	/* break to PAGE HAS BEEN FOUND */
794 		} else {
795 			KASSERT(fs.object != next_object,
796 			    ("object loop %p", next_object));
797 			VM_OBJECT_WLOCK(next_object);
798 			vm_object_pip_add(next_object, 1);
799 			if (fs.object != fs.first_object)
800 				vm_object_pip_wakeup(fs.object);
801 			fs.pindex +=
802 			    OFF_TO_IDX(fs.object->backing_object_offset);
803 			VM_OBJECT_WUNLOCK(fs.object);
804 			fs.object = next_object;
805 		}
806 	}
807 
808 	vm_page_assert_xbusied(fs.m);
809 
810 	/*
811 	 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
812 	 * is held.]
813 	 */
814 
815 	/*
816 	 * If the page is being written, but isn't already owned by the
817 	 * top-level object, we have to copy it into a new page owned by the
818 	 * top-level object.
819 	 */
820 	if (fs.object != fs.first_object) {
821 		/*
822 		 * We only really need to copy if we want to write it.
823 		 */
824 		if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
825 			/*
826 			 * This allows pages to be virtually copied from a
827 			 * backing_object into the first_object, where the
828 			 * backing object has no other refs to it, and cannot
829 			 * gain any more refs.  Instead of a bcopy, we just
830 			 * move the page from the backing object to the
831 			 * first object.  Note that we must mark the page
832 			 * dirty in the first object so that it will go out
833 			 * to swap when needed.
834 			 */
835 			is_first_object_locked = false;
836 			if (
837 				/*
838 				 * Only one shadow object
839 				 */
840 				(fs.object->shadow_count == 1) &&
841 				/*
842 				 * No COW refs, except us
843 				 */
844 				(fs.object->ref_count == 1) &&
845 				/*
846 				 * No one else can look this object up
847 				 */
848 				(fs.object->handle == NULL) &&
849 				/*
850 				 * No other ways to look the object up
851 				 */
852 				((fs.object->type == OBJT_DEFAULT) ||
853 				 (fs.object->type == OBJT_SWAP)) &&
854 			    (is_first_object_locked = VM_OBJECT_TRYWLOCK(fs.first_object)) &&
855 				/*
856 				 * We don't chase down the shadow chain
857 				 */
858 			    fs.object == fs.first_object->backing_object) {
859 				vm_page_lock(fs.m);
860 				vm_page_remove(fs.m);
861 				vm_page_unlock(fs.m);
862 				vm_page_lock(fs.first_m);
863 				vm_page_replace_checked(fs.m, fs.first_object,
864 				    fs.first_pindex, fs.first_m);
865 				vm_page_free(fs.first_m);
866 				vm_page_unlock(fs.first_m);
867 				vm_page_dirty(fs.m);
868 #if VM_NRESERVLEVEL > 0
869 				/*
870 				 * Rename the reservation.
871 				 */
872 				vm_reserv_rename(fs.m, fs.first_object,
873 				    fs.object, OFF_TO_IDX(
874 				    fs.first_object->backing_object_offset));
875 #endif
876 				/*
877 				 * Removing the page from the backing object
878 				 * unbusied it.
879 				 */
880 				vm_page_xbusy(fs.m);
881 				fs.first_m = fs.m;
882 				fs.m = NULL;
883 				PCPU_INC(cnt.v_cow_optim);
884 			} else {
885 				/*
886 				 * Oh, well, lets copy it.
887 				 */
888 				pmap_copy_page(fs.m, fs.first_m);
889 				fs.first_m->valid = VM_PAGE_BITS_ALL;
890 				if (wired && (fault_flags &
891 				    VM_FAULT_WIRE) == 0) {
892 					vm_page_lock(fs.first_m);
893 					vm_page_wire(fs.first_m);
894 					vm_page_unlock(fs.first_m);
895 
896 					vm_page_lock(fs.m);
897 					vm_page_unwire(fs.m, PQ_INACTIVE);
898 					vm_page_unlock(fs.m);
899 				}
900 				/*
901 				 * We no longer need the old page or object.
902 				 */
903 				release_page(&fs);
904 			}
905 			/*
906 			 * fs.object != fs.first_object due to above
907 			 * conditional
908 			 */
909 			vm_object_pip_wakeup(fs.object);
910 			VM_OBJECT_WUNLOCK(fs.object);
911 			/*
912 			 * Only use the new page below...
913 			 */
914 			fs.object = fs.first_object;
915 			fs.pindex = fs.first_pindex;
916 			fs.m = fs.first_m;
917 			if (!is_first_object_locked)
918 				VM_OBJECT_WLOCK(fs.object);
919 			PCPU_INC(cnt.v_cow_faults);
920 			curthread->td_cow++;
921 		} else {
922 			prot &= ~VM_PROT_WRITE;
923 		}
924 	}
925 
926 	/*
927 	 * We must verify that the maps have not changed since our last
928 	 * lookup.
929 	 */
930 	if (!fs.lookup_still_valid) {
931 		vm_object_t retry_object;
932 		vm_pindex_t retry_pindex;
933 		vm_prot_t retry_prot;
934 
935 		if (!vm_map_trylock_read(fs.map)) {
936 			release_page(&fs);
937 			unlock_and_deallocate(&fs);
938 			goto RetryFault;
939 		}
940 		fs.lookup_still_valid = true;
941 		if (fs.map->timestamp != map_generation) {
942 			result = vm_map_lookup_locked(&fs.map, vaddr, fault_type,
943 			    &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
944 
945 			/*
946 			 * If we don't need the page any longer, put it on the inactive
947 			 * list (the easiest thing to do here).  If no one needs it,
948 			 * pageout will grab it eventually.
949 			 */
950 			if (result != KERN_SUCCESS) {
951 				release_page(&fs);
952 				unlock_and_deallocate(&fs);
953 
954 				/*
955 				 * If retry of map lookup would have blocked then
956 				 * retry fault from start.
957 				 */
958 				if (result == KERN_FAILURE)
959 					goto RetryFault;
960 				return (result);
961 			}
962 			if ((retry_object != fs.first_object) ||
963 			    (retry_pindex != fs.first_pindex)) {
964 				release_page(&fs);
965 				unlock_and_deallocate(&fs);
966 				goto RetryFault;
967 			}
968 
969 			/*
970 			 * Check whether the protection has changed or the object has
971 			 * been copied while we left the map unlocked. Changing from
972 			 * read to write permission is OK - we leave the page
973 			 * write-protected, and catch the write fault. Changing from
974 			 * write to read permission means that we can't mark the page
975 			 * write-enabled after all.
976 			 */
977 			prot &= retry_prot;
978 		}
979 	}
980 
981 	/*
982 	 * If the page was filled by a pager, save the virtual address that
983 	 * should be faulted on next under a sequential access pattern to the
984 	 * map entry.  A read lock on the map suffices to update this address
985 	 * safely.
986 	 */
987 	if (hardfault)
988 		fs.entry->next_read = vaddr + ptoa(ahead) + PAGE_SIZE;
989 
990 	vm_fault_dirty(fs.entry, fs.m, prot, fault_type, fault_flags, true);
991 	vm_page_assert_xbusied(fs.m);
992 
993 	/*
994 	 * Page must be completely valid or it is not fit to
995 	 * map into user space.  vm_pager_get_pages() ensures this.
996 	 */
997 	KASSERT(fs.m->valid == VM_PAGE_BITS_ALL,
998 	    ("vm_fault: page %p partially invalid", fs.m));
999 	VM_OBJECT_WUNLOCK(fs.object);
1000 
1001 	/*
1002 	 * Put this page into the physical map.  We had to do the unlock above
1003 	 * because pmap_enter() may sleep.  We don't put the page
1004 	 * back on the active queue until later so that the pageout daemon
1005 	 * won't find it (yet).
1006 	 */
1007 	pmap_enter(fs.map->pmap, vaddr, fs.m, prot,
1008 	    fault_type | (wired ? PMAP_ENTER_WIRED : 0), 0);
1009 	if (faultcount != 1 && (fault_flags & VM_FAULT_WIRE) == 0 &&
1010 	    wired == 0)
1011 		vm_fault_prefault(&fs, vaddr,
1012 		    faultcount > 0 ? behind : PFBAK,
1013 		    faultcount > 0 ? ahead : PFFOR);
1014 	VM_OBJECT_WLOCK(fs.object);
1015 	vm_page_lock(fs.m);
1016 
1017 	/*
1018 	 * If the page is not wired down, then put it where the pageout daemon
1019 	 * can find it.
1020 	 */
1021 	if ((fault_flags & VM_FAULT_WIRE) != 0) {
1022 		KASSERT(wired, ("VM_FAULT_WIRE && !wired"));
1023 		vm_page_wire(fs.m);
1024 	} else
1025 		vm_page_activate(fs.m);
1026 	if (m_hold != NULL) {
1027 		*m_hold = fs.m;
1028 		vm_page_hold(fs.m);
1029 	}
1030 	vm_page_unlock(fs.m);
1031 	vm_page_xunbusy(fs.m);
1032 
1033 	/*
1034 	 * Unlock everything, and return
1035 	 */
1036 	unlock_and_deallocate(&fs);
1037 	if (hardfault) {
1038 		PCPU_INC(cnt.v_io_faults);
1039 		curthread->td_ru.ru_majflt++;
1040 #ifdef RACCT
1041 		if (racct_enable && fs.object->type == OBJT_VNODE) {
1042 			PROC_LOCK(curproc);
1043 			if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
1044 				racct_add_force(curproc, RACCT_WRITEBPS,
1045 				    PAGE_SIZE + behind * PAGE_SIZE);
1046 				racct_add_force(curproc, RACCT_WRITEIOPS, 1);
1047 			} else {
1048 				racct_add_force(curproc, RACCT_READBPS,
1049 				    PAGE_SIZE + ahead * PAGE_SIZE);
1050 				racct_add_force(curproc, RACCT_READIOPS, 1);
1051 			}
1052 			PROC_UNLOCK(curproc);
1053 		}
1054 #endif
1055 	} else
1056 		curthread->td_ru.ru_minflt++;
1057 
1058 	return (KERN_SUCCESS);
1059 }
1060 
1061 /*
1062  * Speed up the reclamation of pages that precede the faulting pindex within
1063  * the first object of the shadow chain.  Essentially, perform the equivalent
1064  * to madvise(..., MADV_DONTNEED) on a large cluster of pages that precedes
1065  * the faulting pindex by the cluster size when the pages read by vm_fault()
1066  * cross a cluster-size boundary.  The cluster size is the greater of the
1067  * smallest superpage size and VM_FAULT_DONTNEED_MIN.
1068  *
1069  * When "fs->first_object" is a shadow object, the pages in the backing object
1070  * that precede the faulting pindex are deactivated by vm_fault().  So, this
1071  * function must only be concerned with pages in the first object.
1072  */
1073 static void
1074 vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, int ahead)
1075 {
1076 	vm_map_entry_t entry;
1077 	vm_object_t first_object, object;
1078 	vm_offset_t end, start;
1079 	vm_page_t m, m_next;
1080 	vm_pindex_t pend, pstart;
1081 	vm_size_t size;
1082 
1083 	object = fs->object;
1084 	VM_OBJECT_ASSERT_WLOCKED(object);
1085 	first_object = fs->first_object;
1086 	if (first_object != object) {
1087 		if (!VM_OBJECT_TRYWLOCK(first_object)) {
1088 			VM_OBJECT_WUNLOCK(object);
1089 			VM_OBJECT_WLOCK(first_object);
1090 			VM_OBJECT_WLOCK(object);
1091 		}
1092 	}
1093 	/* Neither fictitious nor unmanaged pages can be reclaimed. */
1094 	if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) {
1095 		size = VM_FAULT_DONTNEED_MIN;
1096 		if (MAXPAGESIZES > 1 && size < pagesizes[1])
1097 			size = pagesizes[1];
1098 		end = rounddown2(vaddr, size);
1099 		if (vaddr - end >= size - PAGE_SIZE - ptoa(ahead) &&
1100 		    (entry = fs->entry)->start < end) {
1101 			if (end - entry->start < size)
1102 				start = entry->start;
1103 			else
1104 				start = end - size;
1105 			pmap_advise(fs->map->pmap, start, end, MADV_DONTNEED);
1106 			pstart = OFF_TO_IDX(entry->offset) + atop(start -
1107 			    entry->start);
1108 			m_next = vm_page_find_least(first_object, pstart);
1109 			pend = OFF_TO_IDX(entry->offset) + atop(end -
1110 			    entry->start);
1111 			while ((m = m_next) != NULL && m->pindex < pend) {
1112 				m_next = TAILQ_NEXT(m, listq);
1113 				if (m->valid != VM_PAGE_BITS_ALL ||
1114 				    vm_page_busied(m))
1115 					continue;
1116 
1117 				/*
1118 				 * Don't clear PGA_REFERENCED, since it would
1119 				 * likely represent a reference by a different
1120 				 * process.
1121 				 *
1122 				 * Typically, at this point, prefetched pages
1123 				 * are still in the inactive queue.  Only
1124 				 * pages that triggered page faults are in the
1125 				 * active queue.
1126 				 */
1127 				vm_page_lock(m);
1128 				vm_page_deactivate(m);
1129 				vm_page_unlock(m);
1130 			}
1131 		}
1132 	}
1133 	if (first_object != object)
1134 		VM_OBJECT_WUNLOCK(first_object);
1135 }
1136 
1137 /*
1138  * vm_fault_prefault provides a quick way of clustering
1139  * pagefaults into a processes address space.  It is a "cousin"
1140  * of vm_map_pmap_enter, except it runs at page fault time instead
1141  * of mmap time.
1142  */
1143 static void
1144 vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
1145     int backward, int forward)
1146 {
1147 	pmap_t pmap;
1148 	vm_map_entry_t entry;
1149 	vm_object_t backing_object, lobject;
1150 	vm_offset_t addr, starta;
1151 	vm_pindex_t pindex;
1152 	vm_page_t m;
1153 	int i;
1154 
1155 	pmap = fs->map->pmap;
1156 	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
1157 		return;
1158 
1159 	entry = fs->entry;
1160 
1161 	starta = addra - backward * PAGE_SIZE;
1162 	if (starta < entry->start) {
1163 		starta = entry->start;
1164 	} else if (starta > addra) {
1165 		starta = 0;
1166 	}
1167 
1168 	/*
1169 	 * Generate the sequence of virtual addresses that are candidates for
1170 	 * prefaulting in an outward spiral from the faulting virtual address,
1171 	 * "addra".  Specifically, the sequence is "addra - PAGE_SIZE", "addra
1172 	 * + PAGE_SIZE", "addra - 2 * PAGE_SIZE", "addra + 2 * PAGE_SIZE", ...
1173 	 * If the candidate address doesn't have a backing physical page, then
1174 	 * the loop immediately terminates.
1175 	 */
1176 	for (i = 0; i < 2 * imax(backward, forward); i++) {
1177 		addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE :
1178 		    PAGE_SIZE);
1179 		if (addr > addra + forward * PAGE_SIZE)
1180 			addr = 0;
1181 
1182 		if (addr < starta || addr >= entry->end)
1183 			continue;
1184 
1185 		if (!pmap_is_prefaultable(pmap, addr))
1186 			continue;
1187 
1188 		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
1189 		lobject = entry->object.vm_object;
1190 		VM_OBJECT_RLOCK(lobject);
1191 		while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
1192 		    lobject->type == OBJT_DEFAULT &&
1193 		    (backing_object = lobject->backing_object) != NULL) {
1194 			KASSERT((lobject->backing_object_offset & PAGE_MASK) ==
1195 			    0, ("vm_fault_prefault: unaligned object offset"));
1196 			pindex += lobject->backing_object_offset >> PAGE_SHIFT;
1197 			VM_OBJECT_RLOCK(backing_object);
1198 			VM_OBJECT_RUNLOCK(lobject);
1199 			lobject = backing_object;
1200 		}
1201 		if (m == NULL) {
1202 			VM_OBJECT_RUNLOCK(lobject);
1203 			break;
1204 		}
1205 		if (m->valid == VM_PAGE_BITS_ALL &&
1206 		    (m->flags & PG_FICTITIOUS) == 0)
1207 			pmap_enter_quick(pmap, addr, m, entry->protection);
1208 		VM_OBJECT_RUNLOCK(lobject);
1209 	}
1210 }
1211 
1212 /*
1213  * Hold each of the physical pages that are mapped by the specified range of
1214  * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid
1215  * and allow the specified types of access, "prot".  If all of the implied
1216  * pages are successfully held, then the number of held pages is returned
1217  * together with pointers to those pages in the array "ma".  However, if any
1218  * of the pages cannot be held, -1 is returned.
1219  */
1220 int
1221 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
1222     vm_prot_t prot, vm_page_t *ma, int max_count)
1223 {
1224 	vm_offset_t end, va;
1225 	vm_page_t *mp;
1226 	int count;
1227 	boolean_t pmap_failed;
1228 
1229 	if (len == 0)
1230 		return (0);
1231 	end = round_page(addr + len);
1232 	addr = trunc_page(addr);
1233 
1234 	/*
1235 	 * Check for illegal addresses.
1236 	 */
1237 	if (addr < vm_map_min(map) || addr > end || end > vm_map_max(map))
1238 		return (-1);
1239 
1240 	if (atop(end - addr) > max_count)
1241 		panic("vm_fault_quick_hold_pages: count > max_count");
1242 	count = atop(end - addr);
1243 
1244 	/*
1245 	 * Most likely, the physical pages are resident in the pmap, so it is
1246 	 * faster to try pmap_extract_and_hold() first.
1247 	 */
1248 	pmap_failed = FALSE;
1249 	for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) {
1250 		*mp = pmap_extract_and_hold(map->pmap, va, prot);
1251 		if (*mp == NULL)
1252 			pmap_failed = TRUE;
1253 		else if ((prot & VM_PROT_WRITE) != 0 &&
1254 		    (*mp)->dirty != VM_PAGE_BITS_ALL) {
1255 			/*
1256 			 * Explicitly dirty the physical page.  Otherwise, the
1257 			 * caller's changes may go unnoticed because they are
1258 			 * performed through an unmanaged mapping or by a DMA
1259 			 * operation.
1260 			 *
1261 			 * The object lock is not held here.
1262 			 * See vm_page_clear_dirty_mask().
1263 			 */
1264 			vm_page_dirty(*mp);
1265 		}
1266 	}
1267 	if (pmap_failed) {
1268 		/*
1269 		 * One or more pages could not be held by the pmap.  Either no
1270 		 * page was mapped at the specified virtual address or that
1271 		 * mapping had insufficient permissions.  Attempt to fault in
1272 		 * and hold these pages.
1273 		 */
1274 		for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE)
1275 			if (*mp == NULL && vm_fault_hold(map, va, prot,
1276 			    VM_FAULT_NORMAL, mp) != KERN_SUCCESS)
1277 				goto error;
1278 	}
1279 	return (count);
1280 error:
1281 	for (mp = ma; mp < ma + count; mp++)
1282 		if (*mp != NULL) {
1283 			vm_page_lock(*mp);
1284 			vm_page_unhold(*mp);
1285 			vm_page_unlock(*mp);
1286 		}
1287 	return (-1);
1288 }
1289 
1290 /*
1291  *	Routine:
1292  *		vm_fault_copy_entry
1293  *	Function:
1294  *		Create new shadow object backing dst_entry with private copy of
1295  *		all underlying pages. When src_entry is equal to dst_entry,
1296  *		function implements COW for wired-down map entry. Otherwise,
1297  *		it forks wired entry into dst_map.
1298  *
1299  *	In/out conditions:
1300  *		The source and destination maps must be locked for write.
1301  *		The source map entry must be wired down (or be a sharing map
1302  *		entry corresponding to a main map entry that is wired down).
1303  */
1304 void
1305 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1306     vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
1307     vm_ooffset_t *fork_charge)
1308 {
1309 	vm_object_t backing_object, dst_object, object, src_object;
1310 	vm_pindex_t dst_pindex, pindex, src_pindex;
1311 	vm_prot_t access, prot;
1312 	vm_offset_t vaddr;
1313 	vm_page_t dst_m;
1314 	vm_page_t src_m;
1315 	boolean_t upgrade;
1316 
1317 #ifdef	lint
1318 	src_map++;
1319 #endif	/* lint */
1320 
1321 	upgrade = src_entry == dst_entry;
1322 	access = prot = dst_entry->protection;
1323 
1324 	src_object = src_entry->object.vm_object;
1325 	src_pindex = OFF_TO_IDX(src_entry->offset);
1326 
1327 	if (upgrade && (dst_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
1328 		dst_object = src_object;
1329 		vm_object_reference(dst_object);
1330 	} else {
1331 		/*
1332 		 * Create the top-level object for the destination entry. (Doesn't
1333 		 * actually shadow anything - we copy the pages directly.)
1334 		 */
1335 		dst_object = vm_object_allocate(OBJT_DEFAULT,
1336 		    OFF_TO_IDX(dst_entry->end - dst_entry->start));
1337 #if VM_NRESERVLEVEL > 0
1338 		dst_object->flags |= OBJ_COLORED;
1339 		dst_object->pg_color = atop(dst_entry->start);
1340 #endif
1341 	}
1342 
1343 	VM_OBJECT_WLOCK(dst_object);
1344 	KASSERT(upgrade || dst_entry->object.vm_object == NULL,
1345 	    ("vm_fault_copy_entry: vm_object not NULL"));
1346 	if (src_object != dst_object) {
1347 		dst_entry->object.vm_object = dst_object;
1348 		dst_entry->offset = 0;
1349 		dst_object->charge = dst_entry->end - dst_entry->start;
1350 	}
1351 	if (fork_charge != NULL) {
1352 		KASSERT(dst_entry->cred == NULL,
1353 		    ("vm_fault_copy_entry: leaked swp charge"));
1354 		dst_object->cred = curthread->td_ucred;
1355 		crhold(dst_object->cred);
1356 		*fork_charge += dst_object->charge;
1357 	} else if (dst_object->cred == NULL) {
1358 		KASSERT(dst_entry->cred != NULL, ("no cred for entry %p",
1359 		    dst_entry));
1360 		dst_object->cred = dst_entry->cred;
1361 		dst_entry->cred = NULL;
1362 	}
1363 
1364 	/*
1365 	 * If not an upgrade, then enter the mappings in the pmap as
1366 	 * read and/or execute accesses.  Otherwise, enter them as
1367 	 * write accesses.
1368 	 *
1369 	 * A writeable large page mapping is only created if all of
1370 	 * the constituent small page mappings are modified. Marking
1371 	 * PTEs as modified on inception allows promotion to happen
1372 	 * without taking potentially large number of soft faults.
1373 	 */
1374 	if (!upgrade)
1375 		access &= ~VM_PROT_WRITE;
1376 
1377 	/*
1378 	 * Loop through all of the virtual pages within the entry's
1379 	 * range, copying each page from the source object to the
1380 	 * destination object.  Since the source is wired, those pages
1381 	 * must exist.  In contrast, the destination is pageable.
1382 	 * Since the destination object does share any backing storage
1383 	 * with the source object, all of its pages must be dirtied,
1384 	 * regardless of whether they can be written.
1385 	 */
1386 	for (vaddr = dst_entry->start, dst_pindex = 0;
1387 	    vaddr < dst_entry->end;
1388 	    vaddr += PAGE_SIZE, dst_pindex++) {
1389 again:
1390 		/*
1391 		 * Find the page in the source object, and copy it in.
1392 		 * Because the source is wired down, the page will be
1393 		 * in memory.
1394 		 */
1395 		if (src_object != dst_object)
1396 			VM_OBJECT_RLOCK(src_object);
1397 		object = src_object;
1398 		pindex = src_pindex + dst_pindex;
1399 		while ((src_m = vm_page_lookup(object, pindex)) == NULL &&
1400 		    (backing_object = object->backing_object) != NULL) {
1401 			/*
1402 			 * Unless the source mapping is read-only or
1403 			 * it is presently being upgraded from
1404 			 * read-only, the first object in the shadow
1405 			 * chain should provide all of the pages.  In
1406 			 * other words, this loop body should never be
1407 			 * executed when the source mapping is already
1408 			 * read/write.
1409 			 */
1410 			KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 ||
1411 			    upgrade,
1412 			    ("vm_fault_copy_entry: main object missing page"));
1413 
1414 			VM_OBJECT_RLOCK(backing_object);
1415 			pindex += OFF_TO_IDX(object->backing_object_offset);
1416 			if (object != dst_object)
1417 				VM_OBJECT_RUNLOCK(object);
1418 			object = backing_object;
1419 		}
1420 		KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing"));
1421 
1422 		if (object != dst_object) {
1423 			/*
1424 			 * Allocate a page in the destination object.
1425 			 */
1426 			dst_m = vm_page_alloc(dst_object, (src_object ==
1427 			    dst_object ? src_pindex : 0) + dst_pindex,
1428 			    VM_ALLOC_NORMAL);
1429 			if (dst_m == NULL) {
1430 				VM_OBJECT_WUNLOCK(dst_object);
1431 				VM_OBJECT_RUNLOCK(object);
1432 				VM_WAIT;
1433 				VM_OBJECT_WLOCK(dst_object);
1434 				goto again;
1435 			}
1436 			pmap_copy_page(src_m, dst_m);
1437 			VM_OBJECT_RUNLOCK(object);
1438 			dst_m->valid = VM_PAGE_BITS_ALL;
1439 			dst_m->dirty = VM_PAGE_BITS_ALL;
1440 		} else {
1441 			dst_m = src_m;
1442 			if (vm_page_sleep_if_busy(dst_m, "fltupg"))
1443 				goto again;
1444 			vm_page_xbusy(dst_m);
1445 			KASSERT(dst_m->valid == VM_PAGE_BITS_ALL,
1446 			    ("invalid dst page %p", dst_m));
1447 		}
1448 		VM_OBJECT_WUNLOCK(dst_object);
1449 
1450 		/*
1451 		 * Enter it in the pmap. If a wired, copy-on-write
1452 		 * mapping is being replaced by a write-enabled
1453 		 * mapping, then wire that new mapping.
1454 		 */
1455 		pmap_enter(dst_map->pmap, vaddr, dst_m, prot,
1456 		    access | (upgrade ? PMAP_ENTER_WIRED : 0), 0);
1457 
1458 		/*
1459 		 * Mark it no longer busy, and put it on the active list.
1460 		 */
1461 		VM_OBJECT_WLOCK(dst_object);
1462 
1463 		if (upgrade) {
1464 			if (src_m != dst_m) {
1465 				vm_page_lock(src_m);
1466 				vm_page_unwire(src_m, PQ_INACTIVE);
1467 				vm_page_unlock(src_m);
1468 				vm_page_lock(dst_m);
1469 				vm_page_wire(dst_m);
1470 				vm_page_unlock(dst_m);
1471 			} else {
1472 				KASSERT(dst_m->wire_count > 0,
1473 				    ("dst_m %p is not wired", dst_m));
1474 			}
1475 		} else {
1476 			vm_page_lock(dst_m);
1477 			vm_page_activate(dst_m);
1478 			vm_page_unlock(dst_m);
1479 		}
1480 		vm_page_xunbusy(dst_m);
1481 	}
1482 	VM_OBJECT_WUNLOCK(dst_object);
1483 	if (upgrade) {
1484 		dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY);
1485 		vm_object_deallocate(src_object);
1486 	}
1487 }
1488 
1489 /*
1490  * Block entry into the machine-independent layer's page fault handler by
1491  * the calling thread.  Subsequent calls to vm_fault() by that thread will
1492  * return KERN_PROTECTION_FAILURE.  Enable machine-dependent handling of
1493  * spurious page faults.
1494  */
1495 int
1496 vm_fault_disable_pagefaults(void)
1497 {
1498 
1499 	return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR));
1500 }
1501 
1502 void
1503 vm_fault_enable_pagefaults(int save)
1504 {
1505 
1506 	curthread_pflags_restore(save);
1507 }
1508