xref: /freebsd/sys/vm/vm_fault.c (revision d3d381b2b194b4d24853e92eecef55f262688d1a)
1 /*-
2  * SPDX-License-Identifier: (BSD-4-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * Copyright (c) 1994 John S. Dyson
7  * All rights reserved.
8  * Copyright (c) 1994 David Greenman
9  * All rights reserved.
10  *
11  *
12  * This code is derived from software contributed to Berkeley by
13  * The Mach Operating System project at Carnegie-Mellon University.
14  *
15  * Redistribution and use in source and binary forms, with or without
16  * modification, are permitted provided that the following conditions
17  * are met:
18  * 1. Redistributions of source code must retain the above copyright
19  *    notice, this list of conditions and the following disclaimer.
20  * 2. Redistributions in binary form must reproduce the above copyright
21  *    notice, this list of conditions and the following disclaimer in the
22  *    documentation and/or other materials provided with the distribution.
23  * 3. All advertising materials mentioning features or use of this software
24  *    must display the following acknowledgement:
25  *	This product includes software developed by the University of
26  *	California, Berkeley and its contributors.
27  * 4. Neither the name of the University nor the names of its contributors
28  *    may be used to endorse or promote products derived from this software
29  *    without specific prior written permission.
30  *
31  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41  * SUCH DAMAGE.
42  *
43  *	from: @(#)vm_fault.c	8.4 (Berkeley) 1/12/94
44  *
45  *
46  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
47  * All rights reserved.
48  *
49  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
50  *
51  * Permission to use, copy, modify and distribute this software and
52  * its documentation is hereby granted, provided that both the copyright
53  * notice and this permission notice appear in all copies of the
54  * software, derivative works or modified versions, and any portions
55  * thereof, and that both notices appear in supporting documentation.
56  *
57  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
58  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
59  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
60  *
61  * Carnegie Mellon requests users of this software to return to
62  *
63  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
64  *  School of Computer Science
65  *  Carnegie Mellon University
66  *  Pittsburgh PA 15213-3890
67  *
68  * any improvements or extensions that they make and grant Carnegie the
69  * rights to redistribute these changes.
70  */
71 
72 /*
73  *	Page fault handling module.
74  */
75 
76 #include <sys/cdefs.h>
77 __FBSDID("$FreeBSD$");
78 
79 #include "opt_ktrace.h"
80 #include "opt_vm.h"
81 
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/kernel.h>
85 #include <sys/lock.h>
86 #include <sys/mman.h>
87 #include <sys/proc.h>
88 #include <sys/racct.h>
89 #include <sys/resourcevar.h>
90 #include <sys/rwlock.h>
91 #include <sys/sysctl.h>
92 #include <sys/vmmeter.h>
93 #include <sys/vnode.h>
94 #ifdef KTRACE
95 #include <sys/ktrace.h>
96 #endif
97 
98 #include <vm/vm.h>
99 #include <vm/vm_param.h>
100 #include <vm/pmap.h>
101 #include <vm/vm_map.h>
102 #include <vm/vm_object.h>
103 #include <vm/vm_page.h>
104 #include <vm/vm_pageout.h>
105 #include <vm/vm_kern.h>
106 #include <vm/vm_pager.h>
107 #include <vm/vm_extern.h>
108 #include <vm/vm_reserv.h>
109 
110 #define PFBAK 4
111 #define PFFOR 4
112 
113 #define	VM_FAULT_READ_DEFAULT	(1 + VM_FAULT_READ_AHEAD_INIT)
114 #define	VM_FAULT_READ_MAX	(1 + VM_FAULT_READ_AHEAD_MAX)
115 
116 #define	VM_FAULT_DONTNEED_MIN	1048576
117 
118 struct faultstate {
119 	vm_page_t m;
120 	vm_object_t object;
121 	vm_pindex_t pindex;
122 	vm_page_t first_m;
123 	vm_object_t	first_object;
124 	vm_pindex_t first_pindex;
125 	vm_map_t map;
126 	vm_map_entry_t entry;
127 	int map_generation;
128 	bool lookup_still_valid;
129 	struct vnode *vp;
130 };
131 
132 static void vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr,
133 	    int ahead);
134 static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
135 	    int backward, int forward, bool obj_locked);
136 
137 static inline void
138 release_page(struct faultstate *fs)
139 {
140 
141 	vm_page_xunbusy(fs->m);
142 	vm_page_lock(fs->m);
143 	vm_page_deactivate(fs->m);
144 	vm_page_unlock(fs->m);
145 	fs->m = NULL;
146 }
147 
148 static inline void
149 unlock_map(struct faultstate *fs)
150 {
151 
152 	if (fs->lookup_still_valid) {
153 		vm_map_lookup_done(fs->map, fs->entry);
154 		fs->lookup_still_valid = false;
155 	}
156 }
157 
158 static void
159 unlock_vp(struct faultstate *fs)
160 {
161 
162 	if (fs->vp != NULL) {
163 		vput(fs->vp);
164 		fs->vp = NULL;
165 	}
166 }
167 
168 static void
169 unlock_and_deallocate(struct faultstate *fs)
170 {
171 
172 	vm_object_pip_wakeup(fs->object);
173 	VM_OBJECT_WUNLOCK(fs->object);
174 	if (fs->object != fs->first_object) {
175 		VM_OBJECT_WLOCK(fs->first_object);
176 		vm_page_lock(fs->first_m);
177 		vm_page_free(fs->first_m);
178 		vm_page_unlock(fs->first_m);
179 		vm_object_pip_wakeup(fs->first_object);
180 		VM_OBJECT_WUNLOCK(fs->first_object);
181 		fs->first_m = NULL;
182 	}
183 	vm_object_deallocate(fs->first_object);
184 	unlock_map(fs);
185 	unlock_vp(fs);
186 }
187 
188 static void
189 vm_fault_dirty(vm_map_entry_t entry, vm_page_t m, vm_prot_t prot,
190     vm_prot_t fault_type, int fault_flags, bool set_wd)
191 {
192 	bool need_dirty;
193 
194 	if (((prot & VM_PROT_WRITE) == 0 &&
195 	    (fault_flags & VM_FAULT_DIRTY) == 0) ||
196 	    (m->oflags & VPO_UNMANAGED) != 0)
197 		return;
198 
199 	VM_OBJECT_ASSERT_LOCKED(m->object);
200 
201 	need_dirty = ((fault_type & VM_PROT_WRITE) != 0 &&
202 	    (fault_flags & VM_FAULT_WIRE) == 0) ||
203 	    (fault_flags & VM_FAULT_DIRTY) != 0;
204 
205 	if (set_wd)
206 		vm_object_set_writeable_dirty(m->object);
207 	else
208 		/*
209 		 * If two callers of vm_fault_dirty() with set_wd ==
210 		 * FALSE, one for the map entry with MAP_ENTRY_NOSYNC
211 		 * flag set, other with flag clear, race, it is
212 		 * possible for the no-NOSYNC thread to see m->dirty
213 		 * != 0 and not clear VPO_NOSYNC.  Take vm_page lock
214 		 * around manipulation of VPO_NOSYNC and
215 		 * vm_page_dirty() call, to avoid the race and keep
216 		 * m->oflags consistent.
217 		 */
218 		vm_page_lock(m);
219 
220 	/*
221 	 * If this is a NOSYNC mmap we do not want to set VPO_NOSYNC
222 	 * if the page is already dirty to prevent data written with
223 	 * the expectation of being synced from not being synced.
224 	 * Likewise if this entry does not request NOSYNC then make
225 	 * sure the page isn't marked NOSYNC.  Applications sharing
226 	 * data should use the same flags to avoid ping ponging.
227 	 */
228 	if ((entry->eflags & MAP_ENTRY_NOSYNC) != 0) {
229 		if (m->dirty == 0) {
230 			m->oflags |= VPO_NOSYNC;
231 		}
232 	} else {
233 		m->oflags &= ~VPO_NOSYNC;
234 	}
235 
236 	/*
237 	 * If the fault is a write, we know that this page is being
238 	 * written NOW so dirty it explicitly to save on
239 	 * pmap_is_modified() calls later.
240 	 *
241 	 * Also, since the page is now dirty, we can possibly tell
242 	 * the pager to release any swap backing the page.  Calling
243 	 * the pager requires a write lock on the object.
244 	 */
245 	if (need_dirty)
246 		vm_page_dirty(m);
247 	if (!set_wd)
248 		vm_page_unlock(m);
249 	else if (need_dirty)
250 		vm_pager_page_unswapped(m);
251 }
252 
253 static void
254 vm_fault_fill_hold(vm_page_t *m_hold, vm_page_t m)
255 {
256 
257 	if (m_hold != NULL) {
258 		*m_hold = m;
259 		vm_page_lock(m);
260 		vm_page_hold(m);
261 		vm_page_unlock(m);
262 	}
263 }
264 
265 /*
266  * Unlocks fs.first_object and fs.map on success.
267  */
268 static int
269 vm_fault_soft_fast(struct faultstate *fs, vm_offset_t vaddr, vm_prot_t prot,
270     int fault_type, int fault_flags, boolean_t wired, vm_page_t *m_hold)
271 {
272 	vm_page_t m, m_map;
273 #if (defined(__aarch64__) || defined(__amd64__) || (defined(__arm__) && \
274     __ARM_ARCH >= 6) || defined(__i386__)) && VM_NRESERVLEVEL > 0
275 	vm_page_t m_super;
276 	int flags;
277 #endif
278 	int psind, rv;
279 
280 	MPASS(fs->vp == NULL);
281 	m = vm_page_lookup(fs->first_object, fs->first_pindex);
282 	/* A busy page can be mapped for read|execute access. */
283 	if (m == NULL || ((prot & VM_PROT_WRITE) != 0 &&
284 	    vm_page_busied(m)) || m->valid != VM_PAGE_BITS_ALL)
285 		return (KERN_FAILURE);
286 	m_map = m;
287 	psind = 0;
288 #if (defined(__aarch64__) || defined(__amd64__) || (defined(__arm__) && \
289     __ARM_ARCH >= 6) || defined(__i386__)) && VM_NRESERVLEVEL > 0
290 	if ((m->flags & PG_FICTITIOUS) == 0 &&
291 	    (m_super = vm_reserv_to_superpage(m)) != NULL &&
292 	    rounddown2(vaddr, pagesizes[m_super->psind]) >= fs->entry->start &&
293 	    roundup2(vaddr + 1, pagesizes[m_super->psind]) <= fs->entry->end &&
294 	    (vaddr & (pagesizes[m_super->psind] - 1)) == (VM_PAGE_TO_PHYS(m) &
295 	    (pagesizes[m_super->psind] - 1)) &&
296 	    pmap_ps_enabled(fs->map->pmap)) {
297 		flags = PS_ALL_VALID;
298 		if ((prot & VM_PROT_WRITE) != 0) {
299 			/*
300 			 * Create a superpage mapping allowing write access
301 			 * only if none of the constituent pages are busy and
302 			 * all of them are already dirty (except possibly for
303 			 * the page that was faulted on).
304 			 */
305 			flags |= PS_NONE_BUSY;
306 			if ((fs->first_object->flags & OBJ_UNMANAGED) == 0)
307 				flags |= PS_ALL_DIRTY;
308 		}
309 		if (vm_page_ps_test(m_super, flags, m)) {
310 			m_map = m_super;
311 			psind = m_super->psind;
312 			vaddr = rounddown2(vaddr, pagesizes[psind]);
313 			/* Preset the modified bit for dirty superpages. */
314 			if ((flags & PS_ALL_DIRTY) != 0)
315 				fault_type |= VM_PROT_WRITE;
316 		}
317 	}
318 #endif
319 	rv = pmap_enter(fs->map->pmap, vaddr, m_map, prot, fault_type |
320 	    PMAP_ENTER_NOSLEEP | (wired ? PMAP_ENTER_WIRED : 0), psind);
321 	if (rv != KERN_SUCCESS)
322 		return (rv);
323 	vm_fault_fill_hold(m_hold, m);
324 	vm_fault_dirty(fs->entry, m, prot, fault_type, fault_flags, false);
325 	if (psind == 0 && !wired)
326 		vm_fault_prefault(fs, vaddr, PFBAK, PFFOR, true);
327 	VM_OBJECT_RUNLOCK(fs->first_object);
328 	vm_map_lookup_done(fs->map, fs->entry);
329 	curthread->td_ru.ru_minflt++;
330 	return (KERN_SUCCESS);
331 }
332 
333 static void
334 vm_fault_restore_map_lock(struct faultstate *fs)
335 {
336 
337 	VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
338 	MPASS(fs->first_object->paging_in_progress > 0);
339 
340 	if (!vm_map_trylock_read(fs->map)) {
341 		VM_OBJECT_WUNLOCK(fs->first_object);
342 		vm_map_lock_read(fs->map);
343 		VM_OBJECT_WLOCK(fs->first_object);
344 	}
345 	fs->lookup_still_valid = true;
346 }
347 
348 static void
349 vm_fault_populate_check_page(vm_page_t m)
350 {
351 
352 	/*
353 	 * Check each page to ensure that the pager is obeying the
354 	 * interface: the page must be installed in the object, fully
355 	 * valid, and exclusively busied.
356 	 */
357 	MPASS(m != NULL);
358 	MPASS(m->valid == VM_PAGE_BITS_ALL);
359 	MPASS(vm_page_xbusied(m));
360 }
361 
362 static void
363 vm_fault_populate_cleanup(vm_object_t object, vm_pindex_t first,
364     vm_pindex_t last)
365 {
366 	vm_page_t m;
367 	vm_pindex_t pidx;
368 
369 	VM_OBJECT_ASSERT_WLOCKED(object);
370 	MPASS(first <= last);
371 	for (pidx = first, m = vm_page_lookup(object, pidx);
372 	    pidx <= last; pidx++, m = vm_page_next(m)) {
373 		vm_fault_populate_check_page(m);
374 		vm_page_lock(m);
375 		vm_page_deactivate(m);
376 		vm_page_unlock(m);
377 		vm_page_xunbusy(m);
378 	}
379 }
380 
381 static int
382 vm_fault_populate(struct faultstate *fs, vm_prot_t prot, int fault_type,
383     int fault_flags, boolean_t wired, vm_page_t *m_hold)
384 {
385 	struct mtx *m_mtx;
386 	vm_offset_t vaddr;
387 	vm_page_t m;
388 	vm_pindex_t map_first, map_last, pager_first, pager_last, pidx;
389 	int i, npages, psind, rv;
390 
391 	MPASS(fs->object == fs->first_object);
392 	VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
393 	MPASS(fs->first_object->paging_in_progress > 0);
394 	MPASS(fs->first_object->backing_object == NULL);
395 	MPASS(fs->lookup_still_valid);
396 
397 	pager_first = OFF_TO_IDX(fs->entry->offset);
398 	pager_last = pager_first + atop(fs->entry->end - fs->entry->start) - 1;
399 	unlock_map(fs);
400 	unlock_vp(fs);
401 
402 	/*
403 	 * Call the pager (driver) populate() method.
404 	 *
405 	 * There is no guarantee that the method will be called again
406 	 * if the current fault is for read, and a future fault is
407 	 * for write.  Report the entry's maximum allowed protection
408 	 * to the driver.
409 	 */
410 	rv = vm_pager_populate(fs->first_object, fs->first_pindex,
411 	    fault_type, fs->entry->max_protection, &pager_first, &pager_last);
412 
413 	VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
414 	if (rv == VM_PAGER_BAD) {
415 		/*
416 		 * VM_PAGER_BAD is the backdoor for a pager to request
417 		 * normal fault handling.
418 		 */
419 		vm_fault_restore_map_lock(fs);
420 		if (fs->map->timestamp != fs->map_generation)
421 			return (KERN_RESOURCE_SHORTAGE); /* RetryFault */
422 		return (KERN_NOT_RECEIVER);
423 	}
424 	if (rv != VM_PAGER_OK)
425 		return (KERN_FAILURE); /* AKA SIGSEGV */
426 
427 	/* Ensure that the driver is obeying the interface. */
428 	MPASS(pager_first <= pager_last);
429 	MPASS(fs->first_pindex <= pager_last);
430 	MPASS(fs->first_pindex >= pager_first);
431 	MPASS(pager_last < fs->first_object->size);
432 
433 	vm_fault_restore_map_lock(fs);
434 	if (fs->map->timestamp != fs->map_generation) {
435 		vm_fault_populate_cleanup(fs->first_object, pager_first,
436 		    pager_last);
437 		return (KERN_RESOURCE_SHORTAGE); /* RetryFault */
438 	}
439 
440 	/*
441 	 * The map is unchanged after our last unlock.  Process the fault.
442 	 *
443 	 * The range [pager_first, pager_last] that is given to the
444 	 * pager is only a hint.  The pager may populate any range
445 	 * within the object that includes the requested page index.
446 	 * In case the pager expanded the range, clip it to fit into
447 	 * the map entry.
448 	 */
449 	map_first = OFF_TO_IDX(fs->entry->offset);
450 	if (map_first > pager_first) {
451 		vm_fault_populate_cleanup(fs->first_object, pager_first,
452 		    map_first - 1);
453 		pager_first = map_first;
454 	}
455 	map_last = map_first + atop(fs->entry->end - fs->entry->start) - 1;
456 	if (map_last < pager_last) {
457 		vm_fault_populate_cleanup(fs->first_object, map_last + 1,
458 		    pager_last);
459 		pager_last = map_last;
460 	}
461 	for (pidx = pager_first, m = vm_page_lookup(fs->first_object, pidx);
462 	    pidx <= pager_last;
463 	    pidx += npages, m = vm_page_next(&m[npages - 1])) {
464 		vaddr = fs->entry->start + IDX_TO_OFF(pidx) - fs->entry->offset;
465 #if defined(__aarch64__) || defined(__amd64__) || (defined(__arm__) && \
466     __ARM_ARCH >= 6) || defined(__i386__)
467 		psind = m->psind;
468 		if (psind > 0 && ((vaddr & (pagesizes[psind] - 1)) != 0 ||
469 		    pidx + OFF_TO_IDX(pagesizes[psind]) - 1 > pager_last ||
470 		    !pmap_ps_enabled(fs->map->pmap)))
471 			psind = 0;
472 #else
473 		psind = 0;
474 #endif
475 		npages = atop(pagesizes[psind]);
476 		for (i = 0; i < npages; i++) {
477 			vm_fault_populate_check_page(&m[i]);
478 			vm_fault_dirty(fs->entry, &m[i], prot, fault_type,
479 			    fault_flags, true);
480 		}
481 		VM_OBJECT_WUNLOCK(fs->first_object);
482 		pmap_enter(fs->map->pmap, vaddr, m, prot, fault_type | (wired ?
483 		    PMAP_ENTER_WIRED : 0), psind);
484 		VM_OBJECT_WLOCK(fs->first_object);
485 		m_mtx = NULL;
486 		for (i = 0; i < npages; i++) {
487 			vm_page_change_lock(&m[i], &m_mtx);
488 			if ((fault_flags & VM_FAULT_WIRE) != 0)
489 				vm_page_wire(&m[i]);
490 			else
491 				vm_page_activate(&m[i]);
492 			if (m_hold != NULL && m[i].pindex == fs->first_pindex) {
493 				*m_hold = &m[i];
494 				vm_page_hold(&m[i]);
495 			}
496 			vm_page_xunbusy_maybelocked(&m[i]);
497 		}
498 		if (m_mtx != NULL)
499 			mtx_unlock(m_mtx);
500 	}
501 	curthread->td_ru.ru_majflt++;
502 	return (KERN_SUCCESS);
503 }
504 
505 /*
506  *	vm_fault:
507  *
508  *	Handle a page fault occurring at the given address,
509  *	requiring the given permissions, in the map specified.
510  *	If successful, the page is inserted into the
511  *	associated physical map.
512  *
513  *	NOTE: the given address should be truncated to the
514  *	proper page address.
515  *
516  *	KERN_SUCCESS is returned if the page fault is handled; otherwise,
517  *	a standard error specifying why the fault is fatal is returned.
518  *
519  *	The map in question must be referenced, and remains so.
520  *	Caller may hold no locks.
521  */
522 int
523 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
524     int fault_flags)
525 {
526 	struct thread *td;
527 	int result;
528 
529 	td = curthread;
530 	if ((td->td_pflags & TDP_NOFAULTING) != 0)
531 		return (KERN_PROTECTION_FAILURE);
532 #ifdef KTRACE
533 	if (map != kernel_map && KTRPOINT(td, KTR_FAULT))
534 		ktrfault(vaddr, fault_type);
535 #endif
536 	result = vm_fault_hold(map, trunc_page(vaddr), fault_type, fault_flags,
537 	    NULL);
538 #ifdef KTRACE
539 	if (map != kernel_map && KTRPOINT(td, KTR_FAULTEND))
540 		ktrfaultend(result);
541 #endif
542 	return (result);
543 }
544 
545 int
546 vm_fault_hold(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
547     int fault_flags, vm_page_t *m_hold)
548 {
549 	struct faultstate fs;
550 	struct vnode *vp;
551 	vm_object_t next_object, retry_object;
552 	vm_offset_t e_end, e_start;
553 	vm_pindex_t retry_pindex;
554 	vm_prot_t prot, retry_prot;
555 	int ahead, alloc_req, behind, cluster_offset, error, era, faultcount;
556 	int locked, nera, result, rv;
557 	u_char behavior;
558 	boolean_t wired;	/* Passed by reference. */
559 	bool dead, hardfault, is_first_object_locked;
560 
561 	VM_CNT_INC(v_vm_faults);
562 	fs.vp = NULL;
563 	faultcount = 0;
564 	nera = -1;
565 	hardfault = false;
566 
567 RetryFault:;
568 
569 	/*
570 	 * Find the backing store object and offset into it to begin the
571 	 * search.
572 	 */
573 	fs.map = map;
574 	result = vm_map_lookup(&fs.map, vaddr, fault_type |
575 	    VM_PROT_FAULT_LOOKUP, &fs.entry, &fs.first_object,
576 	    &fs.first_pindex, &prot, &wired);
577 	if (result != KERN_SUCCESS) {
578 		unlock_vp(&fs);
579 		return (result);
580 	}
581 
582 	fs.map_generation = fs.map->timestamp;
583 
584 	if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
585 		panic("%s: fault on nofault entry, addr: %#lx",
586 		    __func__, (u_long)vaddr);
587 	}
588 
589 	if (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION &&
590 	    fs.entry->wiring_thread != curthread) {
591 		vm_map_unlock_read(fs.map);
592 		vm_map_lock(fs.map);
593 		if (vm_map_lookup_entry(fs.map, vaddr, &fs.entry) &&
594 		    (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION)) {
595 			unlock_vp(&fs);
596 			fs.entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
597 			vm_map_unlock_and_wait(fs.map, 0);
598 		} else
599 			vm_map_unlock(fs.map);
600 		goto RetryFault;
601 	}
602 
603 	MPASS((fs.entry->eflags & MAP_ENTRY_GUARD) == 0);
604 
605 	if (wired)
606 		fault_type = prot | (fault_type & VM_PROT_COPY);
607 	else
608 		KASSERT((fault_flags & VM_FAULT_WIRE) == 0,
609 		    ("!wired && VM_FAULT_WIRE"));
610 
611 	/*
612 	 * Try to avoid lock contention on the top-level object through
613 	 * special-case handling of some types of page faults, specifically,
614 	 * those that are both (1) mapping an existing page from the top-
615 	 * level object and (2) not having to mark that object as containing
616 	 * dirty pages.  Under these conditions, a read lock on the top-level
617 	 * object suffices, allowing multiple page faults of a similar type to
618 	 * run in parallel on the same top-level object.
619 	 */
620 	if (fs.vp == NULL /* avoid locked vnode leak */ &&
621 	    (fault_flags & (VM_FAULT_WIRE | VM_FAULT_DIRTY)) == 0 &&
622 	    /* avoid calling vm_object_set_writeable_dirty() */
623 	    ((prot & VM_PROT_WRITE) == 0 ||
624 	    (fs.first_object->type != OBJT_VNODE &&
625 	    (fs.first_object->flags & OBJ_TMPFS_NODE) == 0) ||
626 	    (fs.first_object->flags & OBJ_MIGHTBEDIRTY) != 0)) {
627 		VM_OBJECT_RLOCK(fs.first_object);
628 		if ((prot & VM_PROT_WRITE) == 0 ||
629 		    (fs.first_object->type != OBJT_VNODE &&
630 		    (fs.first_object->flags & OBJ_TMPFS_NODE) == 0) ||
631 		    (fs.first_object->flags & OBJ_MIGHTBEDIRTY) != 0) {
632 			rv = vm_fault_soft_fast(&fs, vaddr, prot, fault_type,
633 			    fault_flags, wired, m_hold);
634 			if (rv == KERN_SUCCESS)
635 				return (rv);
636 		}
637 		if (!VM_OBJECT_TRYUPGRADE(fs.first_object)) {
638 			VM_OBJECT_RUNLOCK(fs.first_object);
639 			VM_OBJECT_WLOCK(fs.first_object);
640 		}
641 	} else {
642 		VM_OBJECT_WLOCK(fs.first_object);
643 	}
644 
645 	/*
646 	 * Make a reference to this object to prevent its disposal while we
647 	 * are messing with it.  Once we have the reference, the map is free
648 	 * to be diddled.  Since objects reference their shadows (and copies),
649 	 * they will stay around as well.
650 	 *
651 	 * Bump the paging-in-progress count to prevent size changes (e.g.
652 	 * truncation operations) during I/O.
653 	 */
654 	vm_object_reference_locked(fs.first_object);
655 	vm_object_pip_add(fs.first_object, 1);
656 
657 	fs.lookup_still_valid = true;
658 
659 	fs.first_m = NULL;
660 
661 	/*
662 	 * Search for the page at object/offset.
663 	 */
664 	fs.object = fs.first_object;
665 	fs.pindex = fs.first_pindex;
666 	while (TRUE) {
667 		/*
668 		 * If the object is marked for imminent termination,
669 		 * we retry here, since the collapse pass has raced
670 		 * with us.  Otherwise, if we see terminally dead
671 		 * object, return fail.
672 		 */
673 		if ((fs.object->flags & OBJ_DEAD) != 0) {
674 			dead = fs.object->type == OBJT_DEAD;
675 			unlock_and_deallocate(&fs);
676 			if (dead)
677 				return (KERN_PROTECTION_FAILURE);
678 			pause("vmf_de", 1);
679 			goto RetryFault;
680 		}
681 
682 		/*
683 		 * See if page is resident
684 		 */
685 		fs.m = vm_page_lookup(fs.object, fs.pindex);
686 		if (fs.m != NULL) {
687 			/*
688 			 * Wait/Retry if the page is busy.  We have to do this
689 			 * if the page is either exclusive or shared busy
690 			 * because the vm_pager may be using read busy for
691 			 * pageouts (and even pageins if it is the vnode
692 			 * pager), and we could end up trying to pagein and
693 			 * pageout the same page simultaneously.
694 			 *
695 			 * We can theoretically allow the busy case on a read
696 			 * fault if the page is marked valid, but since such
697 			 * pages are typically already pmap'd, putting that
698 			 * special case in might be more effort then it is
699 			 * worth.  We cannot under any circumstances mess
700 			 * around with a shared busied page except, perhaps,
701 			 * to pmap it.
702 			 */
703 			if (vm_page_busied(fs.m)) {
704 				/*
705 				 * Reference the page before unlocking and
706 				 * sleeping so that the page daemon is less
707 				 * likely to reclaim it.
708 				 */
709 				vm_page_aflag_set(fs.m, PGA_REFERENCED);
710 				if (fs.object != fs.first_object) {
711 					if (!VM_OBJECT_TRYWLOCK(
712 					    fs.first_object)) {
713 						VM_OBJECT_WUNLOCK(fs.object);
714 						VM_OBJECT_WLOCK(fs.first_object);
715 						VM_OBJECT_WLOCK(fs.object);
716 					}
717 					vm_page_lock(fs.first_m);
718 					vm_page_free(fs.first_m);
719 					vm_page_unlock(fs.first_m);
720 					vm_object_pip_wakeup(fs.first_object);
721 					VM_OBJECT_WUNLOCK(fs.first_object);
722 					fs.first_m = NULL;
723 				}
724 				unlock_map(&fs);
725 				if (fs.m == vm_page_lookup(fs.object,
726 				    fs.pindex)) {
727 					vm_page_sleep_if_busy(fs.m, "vmpfw");
728 				}
729 				vm_object_pip_wakeup(fs.object);
730 				VM_OBJECT_WUNLOCK(fs.object);
731 				VM_CNT_INC(v_intrans);
732 				vm_object_deallocate(fs.first_object);
733 				goto RetryFault;
734 			}
735 
736 			/*
737 			 * Mark page busy for other processes, and the
738 			 * pagedaemon.  If it still isn't completely valid
739 			 * (readable), jump to readrest, else break-out ( we
740 			 * found the page ).
741 			 */
742 			vm_page_xbusy(fs.m);
743 			if (fs.m->valid != VM_PAGE_BITS_ALL)
744 				goto readrest;
745 			break; /* break to PAGE HAS BEEN FOUND */
746 		}
747 		KASSERT(fs.m == NULL, ("fs.m should be NULL, not %p", fs.m));
748 
749 		/*
750 		 * Page is not resident.  If the pager might contain the page
751 		 * or this is the beginning of the search, allocate a new
752 		 * page.  (Default objects are zero-fill, so there is no real
753 		 * pager for them.)
754 		 */
755 		if (fs.object->type != OBJT_DEFAULT ||
756 		    fs.object == fs.first_object) {
757 			if (fs.pindex >= fs.object->size) {
758 				unlock_and_deallocate(&fs);
759 				return (KERN_PROTECTION_FAILURE);
760 			}
761 
762 			if (fs.object == fs.first_object &&
763 			    (fs.first_object->flags & OBJ_POPULATE) != 0 &&
764 			    fs.first_object->shadow_count == 0) {
765 				rv = vm_fault_populate(&fs, prot, fault_type,
766 				    fault_flags, wired, m_hold);
767 				switch (rv) {
768 				case KERN_SUCCESS:
769 				case KERN_FAILURE:
770 					unlock_and_deallocate(&fs);
771 					return (rv);
772 				case KERN_RESOURCE_SHORTAGE:
773 					unlock_and_deallocate(&fs);
774 					goto RetryFault;
775 				case KERN_NOT_RECEIVER:
776 					/*
777 					 * Pager's populate() method
778 					 * returned VM_PAGER_BAD.
779 					 */
780 					break;
781 				default:
782 					panic("inconsistent return codes");
783 				}
784 			}
785 
786 			/*
787 			 * Allocate a new page for this object/offset pair.
788 			 *
789 			 * Unlocked read of the p_flag is harmless. At
790 			 * worst, the P_KILLED might be not observed
791 			 * there, and allocation can fail, causing
792 			 * restart and new reading of the p_flag.
793 			 */
794 			if (!vm_page_count_severe() || P_KILLED(curproc)) {
795 #if VM_NRESERVLEVEL > 0
796 				vm_object_color(fs.object, atop(vaddr) -
797 				    fs.pindex);
798 #endif
799 				alloc_req = P_KILLED(curproc) ?
800 				    VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL;
801 				if (fs.object->type != OBJT_VNODE &&
802 				    fs.object->backing_object == NULL)
803 					alloc_req |= VM_ALLOC_ZERO;
804 				fs.m = vm_page_alloc(fs.object, fs.pindex,
805 				    alloc_req);
806 			}
807 			if (fs.m == NULL) {
808 				unlock_and_deallocate(&fs);
809 				vm_waitpfault();
810 				goto RetryFault;
811 			}
812 		}
813 
814 readrest:
815 		/*
816 		 * At this point, we have either allocated a new page or found
817 		 * an existing page that is only partially valid.
818 		 *
819 		 * We hold a reference on the current object and the page is
820 		 * exclusive busied.
821 		 */
822 
823 		/*
824 		 * If the pager for the current object might have the page,
825 		 * then determine the number of additional pages to read and
826 		 * potentially reprioritize previously read pages for earlier
827 		 * reclamation.  These operations should only be performed
828 		 * once per page fault.  Even if the current pager doesn't
829 		 * have the page, the number of additional pages to read will
830 		 * apply to subsequent objects in the shadow chain.
831 		 */
832 		if (fs.object->type != OBJT_DEFAULT && nera == -1 &&
833 		    !P_KILLED(curproc)) {
834 			KASSERT(fs.lookup_still_valid, ("map unlocked"));
835 			era = fs.entry->read_ahead;
836 			behavior = vm_map_entry_behavior(fs.entry);
837 			if (behavior == MAP_ENTRY_BEHAV_RANDOM) {
838 				nera = 0;
839 			} else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) {
840 				nera = VM_FAULT_READ_AHEAD_MAX;
841 				if (vaddr == fs.entry->next_read)
842 					vm_fault_dontneed(&fs, vaddr, nera);
843 			} else if (vaddr == fs.entry->next_read) {
844 				/*
845 				 * This is a sequential fault.  Arithmetically
846 				 * increase the requested number of pages in
847 				 * the read-ahead window.  The requested
848 				 * number of pages is "# of sequential faults
849 				 * x (read ahead min + 1) + read ahead min"
850 				 */
851 				nera = VM_FAULT_READ_AHEAD_MIN;
852 				if (era > 0) {
853 					nera += era + 1;
854 					if (nera > VM_FAULT_READ_AHEAD_MAX)
855 						nera = VM_FAULT_READ_AHEAD_MAX;
856 				}
857 				if (era == VM_FAULT_READ_AHEAD_MAX)
858 					vm_fault_dontneed(&fs, vaddr, nera);
859 			} else {
860 				/*
861 				 * This is a non-sequential fault.
862 				 */
863 				nera = 0;
864 			}
865 			if (era != nera) {
866 				/*
867 				 * A read lock on the map suffices to update
868 				 * the read ahead count safely.
869 				 */
870 				fs.entry->read_ahead = nera;
871 			}
872 
873 			/*
874 			 * Prepare for unlocking the map.  Save the map
875 			 * entry's start and end addresses, which are used to
876 			 * optimize the size of the pager operation below.
877 			 * Even if the map entry's addresses change after
878 			 * unlocking the map, using the saved addresses is
879 			 * safe.
880 			 */
881 			e_start = fs.entry->start;
882 			e_end = fs.entry->end;
883 		}
884 
885 		/*
886 		 * Call the pager to retrieve the page if there is a chance
887 		 * that the pager has it, and potentially retrieve additional
888 		 * pages at the same time.
889 		 */
890 		if (fs.object->type != OBJT_DEFAULT) {
891 			/*
892 			 * Release the map lock before locking the vnode or
893 			 * sleeping in the pager.  (If the current object has
894 			 * a shadow, then an earlier iteration of this loop
895 			 * may have already unlocked the map.)
896 			 */
897 			unlock_map(&fs);
898 
899 			if (fs.object->type == OBJT_VNODE &&
900 			    (vp = fs.object->handle) != fs.vp) {
901 				/*
902 				 * Perform an unlock in case the desired vnode
903 				 * changed while the map was unlocked during a
904 				 * retry.
905 				 */
906 				unlock_vp(&fs);
907 
908 				locked = VOP_ISLOCKED(vp);
909 				if (locked != LK_EXCLUSIVE)
910 					locked = LK_SHARED;
911 
912 				/*
913 				 * We must not sleep acquiring the vnode lock
914 				 * while we have the page exclusive busied or
915 				 * the object's paging-in-progress count
916 				 * incremented.  Otherwise, we could deadlock.
917 				 */
918 				error = vget(vp, locked | LK_CANRECURSE |
919 				    LK_NOWAIT, curthread);
920 				if (error != 0) {
921 					vhold(vp);
922 					release_page(&fs);
923 					unlock_and_deallocate(&fs);
924 					error = vget(vp, locked | LK_RETRY |
925 					    LK_CANRECURSE, curthread);
926 					vdrop(vp);
927 					fs.vp = vp;
928 					KASSERT(error == 0,
929 					    ("vm_fault: vget failed"));
930 					goto RetryFault;
931 				}
932 				fs.vp = vp;
933 			}
934 			KASSERT(fs.vp == NULL || !fs.map->system_map,
935 			    ("vm_fault: vnode-backed object mapped by system map"));
936 
937 			/*
938 			 * Page in the requested page and hint the pager,
939 			 * that it may bring up surrounding pages.
940 			 */
941 			if (nera == -1 || behavior == MAP_ENTRY_BEHAV_RANDOM ||
942 			    P_KILLED(curproc)) {
943 				behind = 0;
944 				ahead = 0;
945 			} else {
946 				/* Is this a sequential fault? */
947 				if (nera > 0) {
948 					behind = 0;
949 					ahead = nera;
950 				} else {
951 					/*
952 					 * Request a cluster of pages that is
953 					 * aligned to a VM_FAULT_READ_DEFAULT
954 					 * page offset boundary within the
955 					 * object.  Alignment to a page offset
956 					 * boundary is more likely to coincide
957 					 * with the underlying file system
958 					 * block than alignment to a virtual
959 					 * address boundary.
960 					 */
961 					cluster_offset = fs.pindex %
962 					    VM_FAULT_READ_DEFAULT;
963 					behind = ulmin(cluster_offset,
964 					    atop(vaddr - e_start));
965 					ahead = VM_FAULT_READ_DEFAULT - 1 -
966 					    cluster_offset;
967 				}
968 				ahead = ulmin(ahead, atop(e_end - vaddr) - 1);
969 			}
970 			rv = vm_pager_get_pages(fs.object, &fs.m, 1,
971 			    &behind, &ahead);
972 			if (rv == VM_PAGER_OK) {
973 				faultcount = behind + 1 + ahead;
974 				hardfault = true;
975 				break; /* break to PAGE HAS BEEN FOUND */
976 			}
977 			if (rv == VM_PAGER_ERROR)
978 				printf("vm_fault: pager read error, pid %d (%s)\n",
979 				    curproc->p_pid, curproc->p_comm);
980 
981 			/*
982 			 * If an I/O error occurred or the requested page was
983 			 * outside the range of the pager, clean up and return
984 			 * an error.
985 			 */
986 			if (rv == VM_PAGER_ERROR || rv == VM_PAGER_BAD) {
987 				vm_page_lock(fs.m);
988 				if (fs.m->wire_count == 0)
989 					vm_page_free(fs.m);
990 				else
991 					vm_page_xunbusy_maybelocked(fs.m);
992 				vm_page_unlock(fs.m);
993 				fs.m = NULL;
994 				unlock_and_deallocate(&fs);
995 				return (rv == VM_PAGER_ERROR ? KERN_FAILURE :
996 				    KERN_PROTECTION_FAILURE);
997 			}
998 
999 			/*
1000 			 * The requested page does not exist at this object/
1001 			 * offset.  Remove the invalid page from the object,
1002 			 * waking up anyone waiting for it, and continue on to
1003 			 * the next object.  However, if this is the top-level
1004 			 * object, we must leave the busy page in place to
1005 			 * prevent another process from rushing past us, and
1006 			 * inserting the page in that object at the same time
1007 			 * that we are.
1008 			 */
1009 			if (fs.object != fs.first_object) {
1010 				vm_page_lock(fs.m);
1011 				if (fs.m->wire_count == 0)
1012 					vm_page_free(fs.m);
1013 				else
1014 					vm_page_xunbusy_maybelocked(fs.m);
1015 				vm_page_unlock(fs.m);
1016 				fs.m = NULL;
1017 			}
1018 		}
1019 
1020 		/*
1021 		 * We get here if the object has default pager (or unwiring)
1022 		 * or the pager doesn't have the page.
1023 		 */
1024 		if (fs.object == fs.first_object)
1025 			fs.first_m = fs.m;
1026 
1027 		/*
1028 		 * Move on to the next object.  Lock the next object before
1029 		 * unlocking the current one.
1030 		 */
1031 		next_object = fs.object->backing_object;
1032 		if (next_object == NULL) {
1033 			/*
1034 			 * If there's no object left, fill the page in the top
1035 			 * object with zeros.
1036 			 */
1037 			if (fs.object != fs.first_object) {
1038 				vm_object_pip_wakeup(fs.object);
1039 				VM_OBJECT_WUNLOCK(fs.object);
1040 
1041 				fs.object = fs.first_object;
1042 				fs.pindex = fs.first_pindex;
1043 				fs.m = fs.first_m;
1044 				VM_OBJECT_WLOCK(fs.object);
1045 			}
1046 			fs.first_m = NULL;
1047 
1048 			/*
1049 			 * Zero the page if necessary and mark it valid.
1050 			 */
1051 			if ((fs.m->flags & PG_ZERO) == 0) {
1052 				pmap_zero_page(fs.m);
1053 			} else {
1054 				VM_CNT_INC(v_ozfod);
1055 			}
1056 			VM_CNT_INC(v_zfod);
1057 			fs.m->valid = VM_PAGE_BITS_ALL;
1058 			/* Don't try to prefault neighboring pages. */
1059 			faultcount = 1;
1060 			break;	/* break to PAGE HAS BEEN FOUND */
1061 		} else {
1062 			KASSERT(fs.object != next_object,
1063 			    ("object loop %p", next_object));
1064 			VM_OBJECT_WLOCK(next_object);
1065 			vm_object_pip_add(next_object, 1);
1066 			if (fs.object != fs.first_object)
1067 				vm_object_pip_wakeup(fs.object);
1068 			fs.pindex +=
1069 			    OFF_TO_IDX(fs.object->backing_object_offset);
1070 			VM_OBJECT_WUNLOCK(fs.object);
1071 			fs.object = next_object;
1072 		}
1073 	}
1074 
1075 	vm_page_assert_xbusied(fs.m);
1076 
1077 	/*
1078 	 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
1079 	 * is held.]
1080 	 */
1081 
1082 	/*
1083 	 * If the page is being written, but isn't already owned by the
1084 	 * top-level object, we have to copy it into a new page owned by the
1085 	 * top-level object.
1086 	 */
1087 	if (fs.object != fs.first_object) {
1088 		/*
1089 		 * We only really need to copy if we want to write it.
1090 		 */
1091 		if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
1092 			/*
1093 			 * This allows pages to be virtually copied from a
1094 			 * backing_object into the first_object, where the
1095 			 * backing object has no other refs to it, and cannot
1096 			 * gain any more refs.  Instead of a bcopy, we just
1097 			 * move the page from the backing object to the
1098 			 * first object.  Note that we must mark the page
1099 			 * dirty in the first object so that it will go out
1100 			 * to swap when needed.
1101 			 */
1102 			is_first_object_locked = false;
1103 			if (
1104 				/*
1105 				 * Only one shadow object
1106 				 */
1107 				(fs.object->shadow_count == 1) &&
1108 				/*
1109 				 * No COW refs, except us
1110 				 */
1111 				(fs.object->ref_count == 1) &&
1112 				/*
1113 				 * No one else can look this object up
1114 				 */
1115 				(fs.object->handle == NULL) &&
1116 				/*
1117 				 * No other ways to look the object up
1118 				 */
1119 				((fs.object->type == OBJT_DEFAULT) ||
1120 				 (fs.object->type == OBJT_SWAP)) &&
1121 			    (is_first_object_locked = VM_OBJECT_TRYWLOCK(fs.first_object)) &&
1122 				/*
1123 				 * We don't chase down the shadow chain
1124 				 */
1125 			    fs.object == fs.first_object->backing_object) {
1126 				vm_page_lock(fs.m);
1127 				vm_page_remque(fs.m);
1128 				vm_page_remove(fs.m);
1129 				vm_page_unlock(fs.m);
1130 				vm_page_lock(fs.first_m);
1131 				vm_page_replace_checked(fs.m, fs.first_object,
1132 				    fs.first_pindex, fs.first_m);
1133 				vm_page_free(fs.first_m);
1134 				vm_page_unlock(fs.first_m);
1135 				vm_page_dirty(fs.m);
1136 #if VM_NRESERVLEVEL > 0
1137 				/*
1138 				 * Rename the reservation.
1139 				 */
1140 				vm_reserv_rename(fs.m, fs.first_object,
1141 				    fs.object, OFF_TO_IDX(
1142 				    fs.first_object->backing_object_offset));
1143 #endif
1144 				/*
1145 				 * Removing the page from the backing object
1146 				 * unbusied it.
1147 				 */
1148 				vm_page_xbusy(fs.m);
1149 				fs.first_m = fs.m;
1150 				fs.m = NULL;
1151 				VM_CNT_INC(v_cow_optim);
1152 			} else {
1153 				/*
1154 				 * Oh, well, lets copy it.
1155 				 */
1156 				pmap_copy_page(fs.m, fs.first_m);
1157 				fs.first_m->valid = VM_PAGE_BITS_ALL;
1158 				if (wired && (fault_flags &
1159 				    VM_FAULT_WIRE) == 0) {
1160 					vm_page_lock(fs.first_m);
1161 					vm_page_wire(fs.first_m);
1162 					vm_page_unlock(fs.first_m);
1163 
1164 					vm_page_lock(fs.m);
1165 					vm_page_unwire(fs.m, PQ_INACTIVE);
1166 					vm_page_unlock(fs.m);
1167 				}
1168 				/*
1169 				 * We no longer need the old page or object.
1170 				 */
1171 				release_page(&fs);
1172 			}
1173 			/*
1174 			 * fs.object != fs.first_object due to above
1175 			 * conditional
1176 			 */
1177 			vm_object_pip_wakeup(fs.object);
1178 			VM_OBJECT_WUNLOCK(fs.object);
1179 			/*
1180 			 * Only use the new page below...
1181 			 */
1182 			fs.object = fs.first_object;
1183 			fs.pindex = fs.first_pindex;
1184 			fs.m = fs.first_m;
1185 			if (!is_first_object_locked)
1186 				VM_OBJECT_WLOCK(fs.object);
1187 			VM_CNT_INC(v_cow_faults);
1188 			curthread->td_cow++;
1189 		} else {
1190 			prot &= ~VM_PROT_WRITE;
1191 		}
1192 	}
1193 
1194 	/*
1195 	 * We must verify that the maps have not changed since our last
1196 	 * lookup.
1197 	 */
1198 	if (!fs.lookup_still_valid) {
1199 		if (!vm_map_trylock_read(fs.map)) {
1200 			release_page(&fs);
1201 			unlock_and_deallocate(&fs);
1202 			goto RetryFault;
1203 		}
1204 		fs.lookup_still_valid = true;
1205 		if (fs.map->timestamp != fs.map_generation) {
1206 			result = vm_map_lookup_locked(&fs.map, vaddr, fault_type,
1207 			    &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
1208 
1209 			/*
1210 			 * If we don't need the page any longer, put it on the inactive
1211 			 * list (the easiest thing to do here).  If no one needs it,
1212 			 * pageout will grab it eventually.
1213 			 */
1214 			if (result != KERN_SUCCESS) {
1215 				release_page(&fs);
1216 				unlock_and_deallocate(&fs);
1217 
1218 				/*
1219 				 * If retry of map lookup would have blocked then
1220 				 * retry fault from start.
1221 				 */
1222 				if (result == KERN_FAILURE)
1223 					goto RetryFault;
1224 				return (result);
1225 			}
1226 			if ((retry_object != fs.first_object) ||
1227 			    (retry_pindex != fs.first_pindex)) {
1228 				release_page(&fs);
1229 				unlock_and_deallocate(&fs);
1230 				goto RetryFault;
1231 			}
1232 
1233 			/*
1234 			 * Check whether the protection has changed or the object has
1235 			 * been copied while we left the map unlocked. Changing from
1236 			 * read to write permission is OK - we leave the page
1237 			 * write-protected, and catch the write fault. Changing from
1238 			 * write to read permission means that we can't mark the page
1239 			 * write-enabled after all.
1240 			 */
1241 			prot &= retry_prot;
1242 			fault_type &= retry_prot;
1243 			if (prot == 0) {
1244 				release_page(&fs);
1245 				unlock_and_deallocate(&fs);
1246 				goto RetryFault;
1247 			}
1248 
1249 			/* Reassert because wired may have changed. */
1250 			KASSERT(wired || (fault_flags & VM_FAULT_WIRE) == 0,
1251 			    ("!wired && VM_FAULT_WIRE"));
1252 		}
1253 	}
1254 
1255 	/*
1256 	 * If the page was filled by a pager, save the virtual address that
1257 	 * should be faulted on next under a sequential access pattern to the
1258 	 * map entry.  A read lock on the map suffices to update this address
1259 	 * safely.
1260 	 */
1261 	if (hardfault)
1262 		fs.entry->next_read = vaddr + ptoa(ahead) + PAGE_SIZE;
1263 
1264 	vm_fault_dirty(fs.entry, fs.m, prot, fault_type, fault_flags, true);
1265 	vm_page_assert_xbusied(fs.m);
1266 
1267 	/*
1268 	 * Page must be completely valid or it is not fit to
1269 	 * map into user space.  vm_pager_get_pages() ensures this.
1270 	 */
1271 	KASSERT(fs.m->valid == VM_PAGE_BITS_ALL,
1272 	    ("vm_fault: page %p partially invalid", fs.m));
1273 	VM_OBJECT_WUNLOCK(fs.object);
1274 
1275 	/*
1276 	 * Put this page into the physical map.  We had to do the unlock above
1277 	 * because pmap_enter() may sleep.  We don't put the page
1278 	 * back on the active queue until later so that the pageout daemon
1279 	 * won't find it (yet).
1280 	 */
1281 	pmap_enter(fs.map->pmap, vaddr, fs.m, prot,
1282 	    fault_type | (wired ? PMAP_ENTER_WIRED : 0), 0);
1283 	if (faultcount != 1 && (fault_flags & VM_FAULT_WIRE) == 0 &&
1284 	    wired == 0)
1285 		vm_fault_prefault(&fs, vaddr,
1286 		    faultcount > 0 ? behind : PFBAK,
1287 		    faultcount > 0 ? ahead : PFFOR, false);
1288 	VM_OBJECT_WLOCK(fs.object);
1289 	vm_page_lock(fs.m);
1290 
1291 	/*
1292 	 * If the page is not wired down, then put it where the pageout daemon
1293 	 * can find it.
1294 	 */
1295 	if ((fault_flags & VM_FAULT_WIRE) != 0)
1296 		vm_page_wire(fs.m);
1297 	else
1298 		vm_page_activate(fs.m);
1299 	if (m_hold != NULL) {
1300 		*m_hold = fs.m;
1301 		vm_page_hold(fs.m);
1302 	}
1303 	vm_page_unlock(fs.m);
1304 	vm_page_xunbusy(fs.m);
1305 
1306 	/*
1307 	 * Unlock everything, and return
1308 	 */
1309 	unlock_and_deallocate(&fs);
1310 	if (hardfault) {
1311 		VM_CNT_INC(v_io_faults);
1312 		curthread->td_ru.ru_majflt++;
1313 #ifdef RACCT
1314 		if (racct_enable && fs.object->type == OBJT_VNODE) {
1315 			PROC_LOCK(curproc);
1316 			if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
1317 				racct_add_force(curproc, RACCT_WRITEBPS,
1318 				    PAGE_SIZE + behind * PAGE_SIZE);
1319 				racct_add_force(curproc, RACCT_WRITEIOPS, 1);
1320 			} else {
1321 				racct_add_force(curproc, RACCT_READBPS,
1322 				    PAGE_SIZE + ahead * PAGE_SIZE);
1323 				racct_add_force(curproc, RACCT_READIOPS, 1);
1324 			}
1325 			PROC_UNLOCK(curproc);
1326 		}
1327 #endif
1328 	} else
1329 		curthread->td_ru.ru_minflt++;
1330 
1331 	return (KERN_SUCCESS);
1332 }
1333 
1334 /*
1335  * Speed up the reclamation of pages that precede the faulting pindex within
1336  * the first object of the shadow chain.  Essentially, perform the equivalent
1337  * to madvise(..., MADV_DONTNEED) on a large cluster of pages that precedes
1338  * the faulting pindex by the cluster size when the pages read by vm_fault()
1339  * cross a cluster-size boundary.  The cluster size is the greater of the
1340  * smallest superpage size and VM_FAULT_DONTNEED_MIN.
1341  *
1342  * When "fs->first_object" is a shadow object, the pages in the backing object
1343  * that precede the faulting pindex are deactivated by vm_fault().  So, this
1344  * function must only be concerned with pages in the first object.
1345  */
1346 static void
1347 vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, int ahead)
1348 {
1349 	vm_map_entry_t entry;
1350 	vm_object_t first_object, object;
1351 	vm_offset_t end, start;
1352 	vm_page_t m, m_next;
1353 	vm_pindex_t pend, pstart;
1354 	vm_size_t size;
1355 
1356 	object = fs->object;
1357 	VM_OBJECT_ASSERT_WLOCKED(object);
1358 	first_object = fs->first_object;
1359 	if (first_object != object) {
1360 		if (!VM_OBJECT_TRYWLOCK(first_object)) {
1361 			VM_OBJECT_WUNLOCK(object);
1362 			VM_OBJECT_WLOCK(first_object);
1363 			VM_OBJECT_WLOCK(object);
1364 		}
1365 	}
1366 	/* Neither fictitious nor unmanaged pages can be reclaimed. */
1367 	if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) {
1368 		size = VM_FAULT_DONTNEED_MIN;
1369 		if (MAXPAGESIZES > 1 && size < pagesizes[1])
1370 			size = pagesizes[1];
1371 		end = rounddown2(vaddr, size);
1372 		if (vaddr - end >= size - PAGE_SIZE - ptoa(ahead) &&
1373 		    (entry = fs->entry)->start < end) {
1374 			if (end - entry->start < size)
1375 				start = entry->start;
1376 			else
1377 				start = end - size;
1378 			pmap_advise(fs->map->pmap, start, end, MADV_DONTNEED);
1379 			pstart = OFF_TO_IDX(entry->offset) + atop(start -
1380 			    entry->start);
1381 			m_next = vm_page_find_least(first_object, pstart);
1382 			pend = OFF_TO_IDX(entry->offset) + atop(end -
1383 			    entry->start);
1384 			while ((m = m_next) != NULL && m->pindex < pend) {
1385 				m_next = TAILQ_NEXT(m, listq);
1386 				if (m->valid != VM_PAGE_BITS_ALL ||
1387 				    vm_page_busied(m))
1388 					continue;
1389 
1390 				/*
1391 				 * Don't clear PGA_REFERENCED, since it would
1392 				 * likely represent a reference by a different
1393 				 * process.
1394 				 *
1395 				 * Typically, at this point, prefetched pages
1396 				 * are still in the inactive queue.  Only
1397 				 * pages that triggered page faults are in the
1398 				 * active queue.
1399 				 */
1400 				vm_page_lock(m);
1401 				if (!vm_page_inactive(m))
1402 					vm_page_deactivate(m);
1403 				vm_page_unlock(m);
1404 			}
1405 		}
1406 	}
1407 	if (first_object != object)
1408 		VM_OBJECT_WUNLOCK(first_object);
1409 }
1410 
1411 /*
1412  * vm_fault_prefault provides a quick way of clustering
1413  * pagefaults into a processes address space.  It is a "cousin"
1414  * of vm_map_pmap_enter, except it runs at page fault time instead
1415  * of mmap time.
1416  */
1417 static void
1418 vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
1419     int backward, int forward, bool obj_locked)
1420 {
1421 	pmap_t pmap;
1422 	vm_map_entry_t entry;
1423 	vm_object_t backing_object, lobject;
1424 	vm_offset_t addr, starta;
1425 	vm_pindex_t pindex;
1426 	vm_page_t m;
1427 	int i;
1428 
1429 	pmap = fs->map->pmap;
1430 	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
1431 		return;
1432 
1433 	entry = fs->entry;
1434 
1435 	if (addra < backward * PAGE_SIZE) {
1436 		starta = entry->start;
1437 	} else {
1438 		starta = addra - backward * PAGE_SIZE;
1439 		if (starta < entry->start)
1440 			starta = entry->start;
1441 	}
1442 
1443 	/*
1444 	 * Generate the sequence of virtual addresses that are candidates for
1445 	 * prefaulting in an outward spiral from the faulting virtual address,
1446 	 * "addra".  Specifically, the sequence is "addra - PAGE_SIZE", "addra
1447 	 * + PAGE_SIZE", "addra - 2 * PAGE_SIZE", "addra + 2 * PAGE_SIZE", ...
1448 	 * If the candidate address doesn't have a backing physical page, then
1449 	 * the loop immediately terminates.
1450 	 */
1451 	for (i = 0; i < 2 * imax(backward, forward); i++) {
1452 		addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE :
1453 		    PAGE_SIZE);
1454 		if (addr > addra + forward * PAGE_SIZE)
1455 			addr = 0;
1456 
1457 		if (addr < starta || addr >= entry->end)
1458 			continue;
1459 
1460 		if (!pmap_is_prefaultable(pmap, addr))
1461 			continue;
1462 
1463 		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
1464 		lobject = entry->object.vm_object;
1465 		if (!obj_locked)
1466 			VM_OBJECT_RLOCK(lobject);
1467 		while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
1468 		    lobject->type == OBJT_DEFAULT &&
1469 		    (backing_object = lobject->backing_object) != NULL) {
1470 			KASSERT((lobject->backing_object_offset & PAGE_MASK) ==
1471 			    0, ("vm_fault_prefault: unaligned object offset"));
1472 			pindex += lobject->backing_object_offset >> PAGE_SHIFT;
1473 			VM_OBJECT_RLOCK(backing_object);
1474 			if (!obj_locked || lobject != entry->object.vm_object)
1475 				VM_OBJECT_RUNLOCK(lobject);
1476 			lobject = backing_object;
1477 		}
1478 		if (m == NULL) {
1479 			if (!obj_locked || lobject != entry->object.vm_object)
1480 				VM_OBJECT_RUNLOCK(lobject);
1481 			break;
1482 		}
1483 		if (m->valid == VM_PAGE_BITS_ALL &&
1484 		    (m->flags & PG_FICTITIOUS) == 0)
1485 			pmap_enter_quick(pmap, addr, m, entry->protection);
1486 		if (!obj_locked || lobject != entry->object.vm_object)
1487 			VM_OBJECT_RUNLOCK(lobject);
1488 	}
1489 }
1490 
1491 /*
1492  * Hold each of the physical pages that are mapped by the specified range of
1493  * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid
1494  * and allow the specified types of access, "prot".  If all of the implied
1495  * pages are successfully held, then the number of held pages is returned
1496  * together with pointers to those pages in the array "ma".  However, if any
1497  * of the pages cannot be held, -1 is returned.
1498  */
1499 int
1500 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
1501     vm_prot_t prot, vm_page_t *ma, int max_count)
1502 {
1503 	vm_offset_t end, va;
1504 	vm_page_t *mp;
1505 	int count;
1506 	boolean_t pmap_failed;
1507 
1508 	if (len == 0)
1509 		return (0);
1510 	end = round_page(addr + len);
1511 	addr = trunc_page(addr);
1512 
1513 	/*
1514 	 * Check for illegal addresses.
1515 	 */
1516 	if (addr < vm_map_min(map) || addr > end || end > vm_map_max(map))
1517 		return (-1);
1518 
1519 	if (atop(end - addr) > max_count)
1520 		panic("vm_fault_quick_hold_pages: count > max_count");
1521 	count = atop(end - addr);
1522 
1523 	/*
1524 	 * Most likely, the physical pages are resident in the pmap, so it is
1525 	 * faster to try pmap_extract_and_hold() first.
1526 	 */
1527 	pmap_failed = FALSE;
1528 	for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) {
1529 		*mp = pmap_extract_and_hold(map->pmap, va, prot);
1530 		if (*mp == NULL)
1531 			pmap_failed = TRUE;
1532 		else if ((prot & VM_PROT_WRITE) != 0 &&
1533 		    (*mp)->dirty != VM_PAGE_BITS_ALL) {
1534 			/*
1535 			 * Explicitly dirty the physical page.  Otherwise, the
1536 			 * caller's changes may go unnoticed because they are
1537 			 * performed through an unmanaged mapping or by a DMA
1538 			 * operation.
1539 			 *
1540 			 * The object lock is not held here.
1541 			 * See vm_page_clear_dirty_mask().
1542 			 */
1543 			vm_page_dirty(*mp);
1544 		}
1545 	}
1546 	if (pmap_failed) {
1547 		/*
1548 		 * One or more pages could not be held by the pmap.  Either no
1549 		 * page was mapped at the specified virtual address or that
1550 		 * mapping had insufficient permissions.  Attempt to fault in
1551 		 * and hold these pages.
1552 		 *
1553 		 * If vm_fault_disable_pagefaults() was called,
1554 		 * i.e., TDP_NOFAULTING is set, we must not sleep nor
1555 		 * acquire MD VM locks, which means we must not call
1556 		 * vm_fault_hold().  Some (out of tree) callers mark
1557 		 * too wide a code area with vm_fault_disable_pagefaults()
1558 		 * already, use the VM_PROT_QUICK_NOFAULT flag to request
1559 		 * the proper behaviour explicitly.
1560 		 */
1561 		if ((prot & VM_PROT_QUICK_NOFAULT) != 0 &&
1562 		    (curthread->td_pflags & TDP_NOFAULTING) != 0)
1563 			goto error;
1564 		for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE)
1565 			if (*mp == NULL && vm_fault_hold(map, va, prot,
1566 			    VM_FAULT_NORMAL, mp) != KERN_SUCCESS)
1567 				goto error;
1568 	}
1569 	return (count);
1570 error:
1571 	for (mp = ma; mp < ma + count; mp++)
1572 		if (*mp != NULL) {
1573 			vm_page_lock(*mp);
1574 			vm_page_unhold(*mp);
1575 			vm_page_unlock(*mp);
1576 		}
1577 	return (-1);
1578 }
1579 
1580 /*
1581  *	Routine:
1582  *		vm_fault_copy_entry
1583  *	Function:
1584  *		Create new shadow object backing dst_entry with private copy of
1585  *		all underlying pages. When src_entry is equal to dst_entry,
1586  *		function implements COW for wired-down map entry. Otherwise,
1587  *		it forks wired entry into dst_map.
1588  *
1589  *	In/out conditions:
1590  *		The source and destination maps must be locked for write.
1591  *		The source map entry must be wired down (or be a sharing map
1592  *		entry corresponding to a main map entry that is wired down).
1593  */
1594 void
1595 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1596     vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
1597     vm_ooffset_t *fork_charge)
1598 {
1599 	vm_object_t backing_object, dst_object, object, src_object;
1600 	vm_pindex_t dst_pindex, pindex, src_pindex;
1601 	vm_prot_t access, prot;
1602 	vm_offset_t vaddr;
1603 	vm_page_t dst_m;
1604 	vm_page_t src_m;
1605 	boolean_t upgrade;
1606 
1607 #ifdef	lint
1608 	src_map++;
1609 #endif	/* lint */
1610 
1611 	upgrade = src_entry == dst_entry;
1612 	access = prot = dst_entry->protection;
1613 
1614 	src_object = src_entry->object.vm_object;
1615 	src_pindex = OFF_TO_IDX(src_entry->offset);
1616 
1617 	if (upgrade && (dst_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
1618 		dst_object = src_object;
1619 		vm_object_reference(dst_object);
1620 	} else {
1621 		/*
1622 		 * Create the top-level object for the destination entry. (Doesn't
1623 		 * actually shadow anything - we copy the pages directly.)
1624 		 */
1625 		dst_object = vm_object_allocate(OBJT_DEFAULT,
1626 		    atop(dst_entry->end - dst_entry->start));
1627 #if VM_NRESERVLEVEL > 0
1628 		dst_object->flags |= OBJ_COLORED;
1629 		dst_object->pg_color = atop(dst_entry->start);
1630 #endif
1631 	}
1632 
1633 	VM_OBJECT_WLOCK(dst_object);
1634 	KASSERT(upgrade || dst_entry->object.vm_object == NULL,
1635 	    ("vm_fault_copy_entry: vm_object not NULL"));
1636 	if (src_object != dst_object) {
1637 		dst_object->domain = src_object->domain;
1638 		dst_entry->object.vm_object = dst_object;
1639 		dst_entry->offset = 0;
1640 		dst_object->charge = dst_entry->end - dst_entry->start;
1641 	}
1642 	if (fork_charge != NULL) {
1643 		KASSERT(dst_entry->cred == NULL,
1644 		    ("vm_fault_copy_entry: leaked swp charge"));
1645 		dst_object->cred = curthread->td_ucred;
1646 		crhold(dst_object->cred);
1647 		*fork_charge += dst_object->charge;
1648 	} else if (dst_object->cred == NULL) {
1649 		KASSERT(dst_entry->cred != NULL, ("no cred for entry %p",
1650 		    dst_entry));
1651 		dst_object->cred = dst_entry->cred;
1652 		dst_entry->cred = NULL;
1653 	}
1654 
1655 	/*
1656 	 * If not an upgrade, then enter the mappings in the pmap as
1657 	 * read and/or execute accesses.  Otherwise, enter them as
1658 	 * write accesses.
1659 	 *
1660 	 * A writeable large page mapping is only created if all of
1661 	 * the constituent small page mappings are modified. Marking
1662 	 * PTEs as modified on inception allows promotion to happen
1663 	 * without taking potentially large number of soft faults.
1664 	 */
1665 	if (!upgrade)
1666 		access &= ~VM_PROT_WRITE;
1667 
1668 	/*
1669 	 * Loop through all of the virtual pages within the entry's
1670 	 * range, copying each page from the source object to the
1671 	 * destination object.  Since the source is wired, those pages
1672 	 * must exist.  In contrast, the destination is pageable.
1673 	 * Since the destination object doesn't share any backing storage
1674 	 * with the source object, all of its pages must be dirtied,
1675 	 * regardless of whether they can be written.
1676 	 */
1677 	for (vaddr = dst_entry->start, dst_pindex = 0;
1678 	    vaddr < dst_entry->end;
1679 	    vaddr += PAGE_SIZE, dst_pindex++) {
1680 again:
1681 		/*
1682 		 * Find the page in the source object, and copy it in.
1683 		 * Because the source is wired down, the page will be
1684 		 * in memory.
1685 		 */
1686 		if (src_object != dst_object)
1687 			VM_OBJECT_RLOCK(src_object);
1688 		object = src_object;
1689 		pindex = src_pindex + dst_pindex;
1690 		while ((src_m = vm_page_lookup(object, pindex)) == NULL &&
1691 		    (backing_object = object->backing_object) != NULL) {
1692 			/*
1693 			 * Unless the source mapping is read-only or
1694 			 * it is presently being upgraded from
1695 			 * read-only, the first object in the shadow
1696 			 * chain should provide all of the pages.  In
1697 			 * other words, this loop body should never be
1698 			 * executed when the source mapping is already
1699 			 * read/write.
1700 			 */
1701 			KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 ||
1702 			    upgrade,
1703 			    ("vm_fault_copy_entry: main object missing page"));
1704 
1705 			VM_OBJECT_RLOCK(backing_object);
1706 			pindex += OFF_TO_IDX(object->backing_object_offset);
1707 			if (object != dst_object)
1708 				VM_OBJECT_RUNLOCK(object);
1709 			object = backing_object;
1710 		}
1711 		KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing"));
1712 
1713 		if (object != dst_object) {
1714 			/*
1715 			 * Allocate a page in the destination object.
1716 			 */
1717 			dst_m = vm_page_alloc(dst_object, (src_object ==
1718 			    dst_object ? src_pindex : 0) + dst_pindex,
1719 			    VM_ALLOC_NORMAL);
1720 			if (dst_m == NULL) {
1721 				VM_OBJECT_WUNLOCK(dst_object);
1722 				VM_OBJECT_RUNLOCK(object);
1723 				vm_wait(dst_object);
1724 				VM_OBJECT_WLOCK(dst_object);
1725 				goto again;
1726 			}
1727 			pmap_copy_page(src_m, dst_m);
1728 			VM_OBJECT_RUNLOCK(object);
1729 			dst_m->valid = VM_PAGE_BITS_ALL;
1730 			dst_m->dirty = VM_PAGE_BITS_ALL;
1731 		} else {
1732 			dst_m = src_m;
1733 			if (vm_page_sleep_if_busy(dst_m, "fltupg"))
1734 				goto again;
1735 			vm_page_xbusy(dst_m);
1736 			KASSERT(dst_m->valid == VM_PAGE_BITS_ALL,
1737 			    ("invalid dst page %p", dst_m));
1738 		}
1739 		VM_OBJECT_WUNLOCK(dst_object);
1740 
1741 		/*
1742 		 * Enter it in the pmap. If a wired, copy-on-write
1743 		 * mapping is being replaced by a write-enabled
1744 		 * mapping, then wire that new mapping.
1745 		 */
1746 		pmap_enter(dst_map->pmap, vaddr, dst_m, prot,
1747 		    access | (upgrade ? PMAP_ENTER_WIRED : 0), 0);
1748 
1749 		/*
1750 		 * Mark it no longer busy, and put it on the active list.
1751 		 */
1752 		VM_OBJECT_WLOCK(dst_object);
1753 
1754 		if (upgrade) {
1755 			if (src_m != dst_m) {
1756 				vm_page_lock(src_m);
1757 				vm_page_unwire(src_m, PQ_INACTIVE);
1758 				vm_page_unlock(src_m);
1759 				vm_page_lock(dst_m);
1760 				vm_page_wire(dst_m);
1761 				vm_page_unlock(dst_m);
1762 			} else {
1763 				KASSERT(dst_m->wire_count > 0,
1764 				    ("dst_m %p is not wired", dst_m));
1765 			}
1766 		} else {
1767 			vm_page_lock(dst_m);
1768 			vm_page_activate(dst_m);
1769 			vm_page_unlock(dst_m);
1770 		}
1771 		vm_page_xunbusy(dst_m);
1772 	}
1773 	VM_OBJECT_WUNLOCK(dst_object);
1774 	if (upgrade) {
1775 		dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY);
1776 		vm_object_deallocate(src_object);
1777 	}
1778 }
1779 
1780 /*
1781  * Block entry into the machine-independent layer's page fault handler by
1782  * the calling thread.  Subsequent calls to vm_fault() by that thread will
1783  * return KERN_PROTECTION_FAILURE.  Enable machine-dependent handling of
1784  * spurious page faults.
1785  */
1786 int
1787 vm_fault_disable_pagefaults(void)
1788 {
1789 
1790 	return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR));
1791 }
1792 
1793 void
1794 vm_fault_enable_pagefaults(int save)
1795 {
1796 
1797 	curthread_pflags_restore(save);
1798 }
1799