xref: /freebsd/sys/vm/vm_fault.c (revision cd0c3137f8a21968ce147251633b8dbdde8829e7)
1 /*-
2  * SPDX-License-Identifier: (BSD-4-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * Copyright (c) 1994 John S. Dyson
7  * All rights reserved.
8  * Copyright (c) 1994 David Greenman
9  * All rights reserved.
10  *
11  *
12  * This code is derived from software contributed to Berkeley by
13  * The Mach Operating System project at Carnegie-Mellon University.
14  *
15  * Redistribution and use in source and binary forms, with or without
16  * modification, are permitted provided that the following conditions
17  * are met:
18  * 1. Redistributions of source code must retain the above copyright
19  *    notice, this list of conditions and the following disclaimer.
20  * 2. Redistributions in binary form must reproduce the above copyright
21  *    notice, this list of conditions and the following disclaimer in the
22  *    documentation and/or other materials provided with the distribution.
23  * 3. All advertising materials mentioning features or use of this software
24  *    must display the following acknowledgement:
25  *	This product includes software developed by the University of
26  *	California, Berkeley and its contributors.
27  * 4. Neither the name of the University nor the names of its contributors
28  *    may be used to endorse or promote products derived from this software
29  *    without specific prior written permission.
30  *
31  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41  * SUCH DAMAGE.
42  *
43  *	from: @(#)vm_fault.c	8.4 (Berkeley) 1/12/94
44  *
45  *
46  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
47  * All rights reserved.
48  *
49  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
50  *
51  * Permission to use, copy, modify and distribute this software and
52  * its documentation is hereby granted, provided that both the copyright
53  * notice and this permission notice appear in all copies of the
54  * software, derivative works or modified versions, and any portions
55  * thereof, and that both notices appear in supporting documentation.
56  *
57  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
58  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
59  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
60  *
61  * Carnegie Mellon requests users of this software to return to
62  *
63  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
64  *  School of Computer Science
65  *  Carnegie Mellon University
66  *  Pittsburgh PA 15213-3890
67  *
68  * any improvements or extensions that they make and grant Carnegie the
69  * rights to redistribute these changes.
70  */
71 
72 /*
73  *	Page fault handling module.
74  */
75 
76 #include <sys/cdefs.h>
77 __FBSDID("$FreeBSD$");
78 
79 #include "opt_ktrace.h"
80 #include "opt_vm.h"
81 
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/kernel.h>
85 #include <sys/lock.h>
86 #include <sys/mman.h>
87 #include <sys/mutex.h>
88 #include <sys/proc.h>
89 #include <sys/racct.h>
90 #include <sys/refcount.h>
91 #include <sys/resourcevar.h>
92 #include <sys/rwlock.h>
93 #include <sys/signalvar.h>
94 #include <sys/sysctl.h>
95 #include <sys/sysent.h>
96 #include <sys/vmmeter.h>
97 #include <sys/vnode.h>
98 #ifdef KTRACE
99 #include <sys/ktrace.h>
100 #endif
101 
102 #include <vm/vm.h>
103 #include <vm/vm_param.h>
104 #include <vm/pmap.h>
105 #include <vm/vm_map.h>
106 #include <vm/vm_object.h>
107 #include <vm/vm_page.h>
108 #include <vm/vm_pageout.h>
109 #include <vm/vm_kern.h>
110 #include <vm/vm_pager.h>
111 #include <vm/vm_extern.h>
112 #include <vm/vm_reserv.h>
113 
114 #define PFBAK 4
115 #define PFFOR 4
116 
117 #define	VM_FAULT_READ_DEFAULT	(1 + VM_FAULT_READ_AHEAD_INIT)
118 #define	VM_FAULT_READ_MAX	(1 + VM_FAULT_READ_AHEAD_MAX)
119 
120 #define	VM_FAULT_DONTNEED_MIN	1048576
121 
122 struct faultstate {
123 	vm_page_t m;
124 	vm_object_t object;
125 	vm_pindex_t pindex;
126 	vm_page_t first_m;
127 	vm_object_t	first_object;
128 	vm_pindex_t first_pindex;
129 	vm_map_t map;
130 	vm_map_entry_t entry;
131 	int map_generation;
132 	bool lookup_still_valid;
133 	struct vnode *vp;
134 };
135 
136 static void vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr,
137 	    int ahead);
138 static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
139 	    int backward, int forward, bool obj_locked);
140 
141 static int vm_pfault_oom_attempts = 3;
142 SYSCTL_INT(_vm, OID_AUTO, pfault_oom_attempts, CTLFLAG_RWTUN,
143     &vm_pfault_oom_attempts, 0,
144     "Number of page allocation attempts in page fault handler before it "
145     "triggers OOM handling");
146 
147 static int vm_pfault_oom_wait = 10;
148 SYSCTL_INT(_vm, OID_AUTO, pfault_oom_wait, CTLFLAG_RWTUN,
149     &vm_pfault_oom_wait, 0,
150     "Number of seconds to wait for free pages before retrying "
151     "the page fault handler");
152 
153 static inline void
154 fault_page_release(vm_page_t *mp)
155 {
156 	vm_page_t m;
157 
158 	m = *mp;
159 	if (m != NULL) {
160 		/*
161 		 * We are likely to loop around again and attempt to busy
162 		 * this page.  Deactivating it leaves it available for
163 		 * pageout while optimizing fault restarts.
164 		 */
165 		vm_page_lock(m);
166 		vm_page_deactivate(m);
167 		vm_page_unlock(m);
168 		vm_page_xunbusy(m);
169 		*mp = NULL;
170 	}
171 }
172 
173 static inline void
174 fault_page_free(vm_page_t *mp)
175 {
176 	vm_page_t m;
177 
178 	m = *mp;
179 	if (m != NULL) {
180 		VM_OBJECT_ASSERT_WLOCKED(m->object);
181 		if (!vm_page_wired(m))
182 			vm_page_free(m);
183 		*mp = NULL;
184 	}
185 }
186 
187 static inline void
188 unlock_map(struct faultstate *fs)
189 {
190 
191 	if (fs->lookup_still_valid) {
192 		vm_map_lookup_done(fs->map, fs->entry);
193 		fs->lookup_still_valid = false;
194 	}
195 }
196 
197 static void
198 unlock_vp(struct faultstate *fs)
199 {
200 
201 	if (fs->vp != NULL) {
202 		vput(fs->vp);
203 		fs->vp = NULL;
204 	}
205 }
206 
207 static void
208 fault_deallocate(struct faultstate *fs)
209 {
210 
211 	fault_page_release(&fs->m);
212 	vm_object_pip_wakeup(fs->object);
213 	if (fs->object != fs->first_object) {
214 		VM_OBJECT_WLOCK(fs->first_object);
215 		fault_page_free(&fs->first_m);
216 		VM_OBJECT_WUNLOCK(fs->first_object);
217 		vm_object_pip_wakeup(fs->first_object);
218 	}
219 	vm_object_deallocate(fs->first_object);
220 	unlock_map(fs);
221 	unlock_vp(fs);
222 }
223 
224 static void
225 unlock_and_deallocate(struct faultstate *fs)
226 {
227 
228 	VM_OBJECT_WUNLOCK(fs->object);
229 	fault_deallocate(fs);
230 }
231 
232 static void
233 vm_fault_dirty(vm_map_entry_t entry, vm_page_t m, vm_prot_t prot,
234     vm_prot_t fault_type, int fault_flags)
235 {
236 	bool need_dirty;
237 
238 	if (((prot & VM_PROT_WRITE) == 0 &&
239 	    (fault_flags & VM_FAULT_DIRTY) == 0) ||
240 	    (m->oflags & VPO_UNMANAGED) != 0)
241 		return;
242 
243 	VM_PAGE_OBJECT_BUSY_ASSERT(m);
244 
245 	need_dirty = ((fault_type & VM_PROT_WRITE) != 0 &&
246 	    (fault_flags & VM_FAULT_WIRE) == 0) ||
247 	    (fault_flags & VM_FAULT_DIRTY) != 0;
248 
249 	vm_object_set_writeable_dirty(m->object);
250 
251 	/*
252 	 * If the fault is a write, we know that this page is being
253 	 * written NOW so dirty it explicitly to save on
254 	 * pmap_is_modified() calls later.
255 	 *
256 	 * Also, since the page is now dirty, we can possibly tell
257 	 * the pager to release any swap backing the page.
258 	 */
259 	if (need_dirty && vm_page_set_dirty(m) == 0) {
260 		/*
261 		 * If this is a NOSYNC mmap we do not want to set PGA_NOSYNC
262 		 * if the page is already dirty to prevent data written with
263 		 * the expectation of being synced from not being synced.
264 		 * Likewise if this entry does not request NOSYNC then make
265 		 * sure the page isn't marked NOSYNC.  Applications sharing
266 		 * data should use the same flags to avoid ping ponging.
267 		 */
268 		if ((entry->eflags & MAP_ENTRY_NOSYNC) != 0)
269 			vm_page_aflag_set(m, PGA_NOSYNC);
270 		else
271 			vm_page_aflag_clear(m, PGA_NOSYNC);
272 	}
273 
274 }
275 
276 /*
277  * Unlocks fs.first_object and fs.map on success.
278  */
279 static int
280 vm_fault_soft_fast(struct faultstate *fs, vm_offset_t vaddr, vm_prot_t prot,
281     int fault_type, int fault_flags, boolean_t wired, vm_page_t *m_hold)
282 {
283 	vm_page_t m, m_map;
284 #if (defined(__aarch64__) || defined(__amd64__) || (defined(__arm__) && \
285     __ARM_ARCH >= 6) || defined(__i386__) || defined(__riscv)) && \
286     VM_NRESERVLEVEL > 0
287 	vm_page_t m_super;
288 	int flags;
289 #endif
290 	int psind, rv;
291 
292 	MPASS(fs->vp == NULL);
293 	vm_object_busy(fs->first_object);
294 	m = vm_page_lookup(fs->first_object, fs->first_pindex);
295 	/* A busy page can be mapped for read|execute access. */
296 	if (m == NULL || ((prot & VM_PROT_WRITE) != 0 &&
297 	    vm_page_busied(m)) || !vm_page_all_valid(m)) {
298 		rv = KERN_FAILURE;
299 		goto out;
300 	}
301 	m_map = m;
302 	psind = 0;
303 #if (defined(__aarch64__) || defined(__amd64__) || (defined(__arm__) && \
304     __ARM_ARCH >= 6) || defined(__i386__) || defined(__riscv)) && \
305     VM_NRESERVLEVEL > 0
306 	if ((m->flags & PG_FICTITIOUS) == 0 &&
307 	    (m_super = vm_reserv_to_superpage(m)) != NULL &&
308 	    rounddown2(vaddr, pagesizes[m_super->psind]) >= fs->entry->start &&
309 	    roundup2(vaddr + 1, pagesizes[m_super->psind]) <= fs->entry->end &&
310 	    (vaddr & (pagesizes[m_super->psind] - 1)) == (VM_PAGE_TO_PHYS(m) &
311 	    (pagesizes[m_super->psind] - 1)) && !wired &&
312 	    pmap_ps_enabled(fs->map->pmap)) {
313 		flags = PS_ALL_VALID;
314 		if ((prot & VM_PROT_WRITE) != 0) {
315 			/*
316 			 * Create a superpage mapping allowing write access
317 			 * only if none of the constituent pages are busy and
318 			 * all of them are already dirty (except possibly for
319 			 * the page that was faulted on).
320 			 */
321 			flags |= PS_NONE_BUSY;
322 			if ((fs->first_object->flags & OBJ_UNMANAGED) == 0)
323 				flags |= PS_ALL_DIRTY;
324 		}
325 		if (vm_page_ps_test(m_super, flags, m)) {
326 			m_map = m_super;
327 			psind = m_super->psind;
328 			vaddr = rounddown2(vaddr, pagesizes[psind]);
329 			/* Preset the modified bit for dirty superpages. */
330 			if ((flags & PS_ALL_DIRTY) != 0)
331 				fault_type |= VM_PROT_WRITE;
332 		}
333 	}
334 #endif
335 	rv = pmap_enter(fs->map->pmap, vaddr, m_map, prot, fault_type |
336 	    PMAP_ENTER_NOSLEEP | (wired ? PMAP_ENTER_WIRED : 0), psind);
337 	if (rv != KERN_SUCCESS)
338 		goto out;
339 	if (m_hold != NULL) {
340 		*m_hold = m;
341 		vm_page_wire(m);
342 	}
343 	vm_fault_dirty(fs->entry, m, prot, fault_type, fault_flags);
344 	if (psind == 0 && !wired)
345 		vm_fault_prefault(fs, vaddr, PFBAK, PFFOR, true);
346 	VM_OBJECT_RUNLOCK(fs->first_object);
347 	vm_map_lookup_done(fs->map, fs->entry);
348 	curthread->td_ru.ru_minflt++;
349 
350 out:
351 	vm_object_unbusy(fs->first_object);
352 	return (rv);
353 }
354 
355 static void
356 vm_fault_restore_map_lock(struct faultstate *fs)
357 {
358 
359 	VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
360 	MPASS(REFCOUNT_COUNT(fs->first_object->paging_in_progress) > 0);
361 
362 	if (!vm_map_trylock_read(fs->map)) {
363 		VM_OBJECT_WUNLOCK(fs->first_object);
364 		vm_map_lock_read(fs->map);
365 		VM_OBJECT_WLOCK(fs->first_object);
366 	}
367 	fs->lookup_still_valid = true;
368 }
369 
370 static void
371 vm_fault_populate_check_page(vm_page_t m)
372 {
373 
374 	/*
375 	 * Check each page to ensure that the pager is obeying the
376 	 * interface: the page must be installed in the object, fully
377 	 * valid, and exclusively busied.
378 	 */
379 	MPASS(m != NULL);
380 	MPASS(vm_page_all_valid(m));
381 	MPASS(vm_page_xbusied(m));
382 }
383 
384 static void
385 vm_fault_populate_cleanup(vm_object_t object, vm_pindex_t first,
386     vm_pindex_t last)
387 {
388 	vm_page_t m;
389 	vm_pindex_t pidx;
390 
391 	VM_OBJECT_ASSERT_WLOCKED(object);
392 	MPASS(first <= last);
393 	for (pidx = first, m = vm_page_lookup(object, pidx);
394 	    pidx <= last; pidx++, m = vm_page_next(m)) {
395 		vm_fault_populate_check_page(m);
396 		vm_page_lock(m);
397 		vm_page_deactivate(m);
398 		vm_page_unlock(m);
399 		vm_page_xunbusy(m);
400 	}
401 }
402 
403 static int
404 vm_fault_populate(struct faultstate *fs, vm_prot_t prot, int fault_type,
405     int fault_flags, boolean_t wired, vm_page_t *m_hold)
406 {
407 	struct mtx *m_mtx;
408 	vm_offset_t vaddr;
409 	vm_page_t m;
410 	vm_pindex_t map_first, map_last, pager_first, pager_last, pidx;
411 	int i, npages, psind, rv;
412 
413 	MPASS(fs->object == fs->first_object);
414 	VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
415 	MPASS(REFCOUNT_COUNT(fs->first_object->paging_in_progress) > 0);
416 	MPASS(fs->first_object->backing_object == NULL);
417 	MPASS(fs->lookup_still_valid);
418 
419 	pager_first = OFF_TO_IDX(fs->entry->offset);
420 	pager_last = pager_first + atop(fs->entry->end - fs->entry->start) - 1;
421 	unlock_map(fs);
422 	unlock_vp(fs);
423 
424 	/*
425 	 * Call the pager (driver) populate() method.
426 	 *
427 	 * There is no guarantee that the method will be called again
428 	 * if the current fault is for read, and a future fault is
429 	 * for write.  Report the entry's maximum allowed protection
430 	 * to the driver.
431 	 */
432 	rv = vm_pager_populate(fs->first_object, fs->first_pindex,
433 	    fault_type, fs->entry->max_protection, &pager_first, &pager_last);
434 
435 	VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
436 	if (rv == VM_PAGER_BAD) {
437 		/*
438 		 * VM_PAGER_BAD is the backdoor for a pager to request
439 		 * normal fault handling.
440 		 */
441 		vm_fault_restore_map_lock(fs);
442 		if (fs->map->timestamp != fs->map_generation)
443 			return (KERN_RESOURCE_SHORTAGE); /* RetryFault */
444 		return (KERN_NOT_RECEIVER);
445 	}
446 	if (rv != VM_PAGER_OK)
447 		return (KERN_FAILURE); /* AKA SIGSEGV */
448 
449 	/* Ensure that the driver is obeying the interface. */
450 	MPASS(pager_first <= pager_last);
451 	MPASS(fs->first_pindex <= pager_last);
452 	MPASS(fs->first_pindex >= pager_first);
453 	MPASS(pager_last < fs->first_object->size);
454 
455 	vm_fault_restore_map_lock(fs);
456 	if (fs->map->timestamp != fs->map_generation) {
457 		vm_fault_populate_cleanup(fs->first_object, pager_first,
458 		    pager_last);
459 		return (KERN_RESOURCE_SHORTAGE); /* RetryFault */
460 	}
461 
462 	/*
463 	 * The map is unchanged after our last unlock.  Process the fault.
464 	 *
465 	 * The range [pager_first, pager_last] that is given to the
466 	 * pager is only a hint.  The pager may populate any range
467 	 * within the object that includes the requested page index.
468 	 * In case the pager expanded the range, clip it to fit into
469 	 * the map entry.
470 	 */
471 	map_first = OFF_TO_IDX(fs->entry->offset);
472 	if (map_first > pager_first) {
473 		vm_fault_populate_cleanup(fs->first_object, pager_first,
474 		    map_first - 1);
475 		pager_first = map_first;
476 	}
477 	map_last = map_first + atop(fs->entry->end - fs->entry->start) - 1;
478 	if (map_last < pager_last) {
479 		vm_fault_populate_cleanup(fs->first_object, map_last + 1,
480 		    pager_last);
481 		pager_last = map_last;
482 	}
483 	for (pidx = pager_first, m = vm_page_lookup(fs->first_object, pidx);
484 	    pidx <= pager_last;
485 	    pidx += npages, m = vm_page_next(&m[npages - 1])) {
486 		vaddr = fs->entry->start + IDX_TO_OFF(pidx) - fs->entry->offset;
487 #if defined(__aarch64__) || defined(__amd64__) || (defined(__arm__) && \
488     __ARM_ARCH >= 6) || defined(__i386__) || defined(__riscv)
489 		psind = m->psind;
490 		if (psind > 0 && ((vaddr & (pagesizes[psind] - 1)) != 0 ||
491 		    pidx + OFF_TO_IDX(pagesizes[psind]) - 1 > pager_last ||
492 		    !pmap_ps_enabled(fs->map->pmap) || wired))
493 			psind = 0;
494 #else
495 		psind = 0;
496 #endif
497 		npages = atop(pagesizes[psind]);
498 		for (i = 0; i < npages; i++) {
499 			vm_fault_populate_check_page(&m[i]);
500 			vm_fault_dirty(fs->entry, &m[i], prot, fault_type,
501 			    fault_flags);
502 		}
503 		VM_OBJECT_WUNLOCK(fs->first_object);
504 		rv = pmap_enter(fs->map->pmap, vaddr, m, prot, fault_type |
505 		    (wired ? PMAP_ENTER_WIRED : 0), psind);
506 #if defined(__amd64__)
507 		if (psind > 0 && rv == KERN_FAILURE) {
508 			for (i = 0; i < npages; i++) {
509 				rv = pmap_enter(fs->map->pmap, vaddr + ptoa(i),
510 				    &m[i], prot, fault_type |
511 				    (wired ? PMAP_ENTER_WIRED : 0), 0);
512 				MPASS(rv == KERN_SUCCESS);
513 			}
514 		}
515 #else
516 		MPASS(rv == KERN_SUCCESS);
517 #endif
518 		VM_OBJECT_WLOCK(fs->first_object);
519 		m_mtx = NULL;
520 		for (i = 0; i < npages; i++) {
521 			if ((fault_flags & VM_FAULT_WIRE) != 0) {
522 				vm_page_wire(&m[i]);
523 			} else {
524 				vm_page_change_lock(&m[i], &m_mtx);
525 				vm_page_activate(&m[i]);
526 			}
527 			if (m_hold != NULL && m[i].pindex == fs->first_pindex) {
528 				*m_hold = &m[i];
529 				vm_page_wire(&m[i]);
530 			}
531 			vm_page_xunbusy(&m[i]);
532 		}
533 		if (m_mtx != NULL)
534 			mtx_unlock(m_mtx);
535 	}
536 	curthread->td_ru.ru_majflt++;
537 	return (KERN_SUCCESS);
538 }
539 
540 static int prot_fault_translation;
541 SYSCTL_INT(_machdep, OID_AUTO, prot_fault_translation, CTLFLAG_RWTUN,
542     &prot_fault_translation, 0,
543     "Control signal to deliver on protection fault");
544 
545 /* compat definition to keep common code for signal translation */
546 #define	UCODE_PAGEFLT	12
547 #ifdef T_PAGEFLT
548 _Static_assert(UCODE_PAGEFLT == T_PAGEFLT, "T_PAGEFLT");
549 #endif
550 
551 /*
552  *	vm_fault_trap:
553  *
554  *	Handle a page fault occurring at the given address,
555  *	requiring the given permissions, in the map specified.
556  *	If successful, the page is inserted into the
557  *	associated physical map.
558  *
559  *	NOTE: the given address should be truncated to the
560  *	proper page address.
561  *
562  *	KERN_SUCCESS is returned if the page fault is handled; otherwise,
563  *	a standard error specifying why the fault is fatal is returned.
564  *
565  *	The map in question must be referenced, and remains so.
566  *	Caller may hold no locks.
567  */
568 int
569 vm_fault_trap(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
570     int fault_flags, int *signo, int *ucode)
571 {
572 	int result;
573 
574 	MPASS(signo == NULL || ucode != NULL);
575 #ifdef KTRACE
576 	if (map != kernel_map && KTRPOINT(curthread, KTR_FAULT))
577 		ktrfault(vaddr, fault_type);
578 #endif
579 	result = vm_fault(map, trunc_page(vaddr), fault_type, fault_flags,
580 	    NULL);
581 	KASSERT(result == KERN_SUCCESS || result == KERN_FAILURE ||
582 	    result == KERN_INVALID_ADDRESS ||
583 	    result == KERN_RESOURCE_SHORTAGE ||
584 	    result == KERN_PROTECTION_FAILURE ||
585 	    result == KERN_OUT_OF_BOUNDS,
586 	    ("Unexpected Mach error %d from vm_fault()", result));
587 #ifdef KTRACE
588 	if (map != kernel_map && KTRPOINT(curthread, KTR_FAULTEND))
589 		ktrfaultend(result);
590 #endif
591 	if (result != KERN_SUCCESS && signo != NULL) {
592 		switch (result) {
593 		case KERN_FAILURE:
594 		case KERN_INVALID_ADDRESS:
595 			*signo = SIGSEGV;
596 			*ucode = SEGV_MAPERR;
597 			break;
598 		case KERN_RESOURCE_SHORTAGE:
599 			*signo = SIGBUS;
600 			*ucode = BUS_OOMERR;
601 			break;
602 		case KERN_OUT_OF_BOUNDS:
603 			*signo = SIGBUS;
604 			*ucode = BUS_OBJERR;
605 			break;
606 		case KERN_PROTECTION_FAILURE:
607 			if (prot_fault_translation == 0) {
608 				/*
609 				 * Autodetect.  This check also covers
610 				 * the images without the ABI-tag ELF
611 				 * note.
612 				 */
613 				if (SV_CURPROC_ABI() == SV_ABI_FREEBSD &&
614 				    curproc->p_osrel >= P_OSREL_SIGSEGV) {
615 					*signo = SIGSEGV;
616 					*ucode = SEGV_ACCERR;
617 				} else {
618 					*signo = SIGBUS;
619 					*ucode = UCODE_PAGEFLT;
620 				}
621 			} else if (prot_fault_translation == 1) {
622 				/* Always compat mode. */
623 				*signo = SIGBUS;
624 				*ucode = UCODE_PAGEFLT;
625 			} else {
626 				/* Always SIGSEGV mode. */
627 				*signo = SIGSEGV;
628 				*ucode = SEGV_ACCERR;
629 			}
630 			break;
631 		default:
632 			KASSERT(0, ("Unexpected Mach error %d from vm_fault()",
633 			    result));
634 			break;
635 		}
636 	}
637 	return (result);
638 }
639 
640 static int
641 vm_fault_lock_vnode(struct faultstate *fs)
642 {
643 	struct vnode *vp;
644 	int error, locked;
645 
646 	if (fs->object->type != OBJT_VNODE)
647 		return (KERN_SUCCESS);
648 	vp = fs->object->handle;
649 	if (vp == fs->vp) {
650 		ASSERT_VOP_LOCKED(vp, "saved vnode is not locked");
651 		return (KERN_SUCCESS);
652 	}
653 
654 	/*
655 	 * Perform an unlock in case the desired vnode changed while
656 	 * the map was unlocked during a retry.
657 	 */
658 	unlock_vp(fs);
659 
660 	locked = VOP_ISLOCKED(vp);
661 	if (locked != LK_EXCLUSIVE)
662 		locked = LK_SHARED;
663 
664 	/*
665 	 * We must not sleep acquiring the vnode lock while we have
666 	 * the page exclusive busied or the object's
667 	 * paging-in-progress count incremented.  Otherwise, we could
668 	 * deadlock.
669 	 */
670 	error = vget(vp, locked | LK_CANRECURSE | LK_NOWAIT, curthread);
671 	if (error == 0) {
672 		fs->vp = vp;
673 		return (KERN_SUCCESS);
674 	}
675 
676 	vhold(vp);
677 	unlock_and_deallocate(fs);
678 	error = vget(vp, locked | LK_RETRY | LK_CANRECURSE, curthread);
679 	vdrop(vp);
680 	fs->vp = vp;
681 	KASSERT(error == 0, ("vm_fault: vget failed %d", error));
682 	return (KERN_RESOURCE_SHORTAGE);
683 }
684 
685 /*
686  * Wait/Retry if the page is busy.  We have to do this if the page is
687  * either exclusive or shared busy because the vm_pager may be using
688  * read busy for pageouts (and even pageins if it is the vnode pager),
689  * and we could end up trying to pagein and pageout the same page
690  * simultaneously.
691  *
692  * We can theoretically allow the busy case on a read fault if the page
693  * is marked valid, but since such pages are typically already pmap'd,
694  * putting that special case in might be more effort then it is worth.
695  * We cannot under any circumstances mess around with a shared busied
696  * page except, perhaps, to pmap it.
697  */
698 static void
699 vm_fault_busy_sleep(struct faultstate *fs)
700 {
701 	/*
702 	 * Reference the page before unlocking and
703 	 * sleeping so that the page daemon is less
704 	 * likely to reclaim it.
705 	 */
706 	vm_page_aflag_set(fs->m, PGA_REFERENCED);
707 	if (fs->object != fs->first_object) {
708 		fault_page_release(&fs->first_m);
709 		vm_object_pip_wakeup(fs->first_object);
710 	}
711 	vm_object_pip_wakeup(fs->object);
712 	unlock_map(fs);
713 	if (fs->m == vm_page_lookup(fs->object, fs->pindex))
714 		vm_page_sleep_if_busy(fs->m, "vmpfw");
715 	VM_OBJECT_WUNLOCK(fs->object);
716 	VM_CNT_INC(v_intrans);
717 	vm_object_deallocate(fs->first_object);
718 }
719 
720 int
721 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
722     int fault_flags, vm_page_t *m_hold)
723 {
724 	struct faultstate fs;
725 	struct domainset *dset;
726 	vm_object_t next_object, retry_object;
727 	vm_offset_t e_end, e_start;
728 	vm_pindex_t retry_pindex;
729 	vm_prot_t prot, retry_prot;
730 	int ahead, alloc_req, behind, cluster_offset, era, faultcount;
731 	int nera, oom, result, rv;
732 	u_char behavior;
733 	boolean_t wired;	/* Passed by reference. */
734 	bool dead, hardfault, is_first_object_locked;
735 
736 	VM_CNT_INC(v_vm_faults);
737 
738 	if ((curthread->td_pflags & TDP_NOFAULTING) != 0)
739 		return (KERN_PROTECTION_FAILURE);
740 
741 	fs.vp = NULL;
742 	faultcount = 0;
743 	nera = -1;
744 	hardfault = false;
745 
746 RetryFault:
747 	oom = 0;
748 RetryFault_oom:
749 
750 	/*
751 	 * Find the backing store object and offset into it to begin the
752 	 * search.
753 	 */
754 	fs.map = map;
755 	result = vm_map_lookup(&fs.map, vaddr, fault_type |
756 	    VM_PROT_FAULT_LOOKUP, &fs.entry, &fs.first_object,
757 	    &fs.first_pindex, &prot, &wired);
758 	if (result != KERN_SUCCESS) {
759 		unlock_vp(&fs);
760 		return (result);
761 	}
762 
763 	fs.map_generation = fs.map->timestamp;
764 
765 	if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
766 		panic("%s: fault on nofault entry, addr: %#lx",
767 		    __func__, (u_long)vaddr);
768 	}
769 
770 	if (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION &&
771 	    fs.entry->wiring_thread != curthread) {
772 		vm_map_unlock_read(fs.map);
773 		vm_map_lock(fs.map);
774 		if (vm_map_lookup_entry(fs.map, vaddr, &fs.entry) &&
775 		    (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION)) {
776 			unlock_vp(&fs);
777 			fs.entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
778 			vm_map_unlock_and_wait(fs.map, 0);
779 		} else
780 			vm_map_unlock(fs.map);
781 		goto RetryFault;
782 	}
783 
784 	MPASS((fs.entry->eflags & MAP_ENTRY_GUARD) == 0);
785 
786 	if (wired)
787 		fault_type = prot | (fault_type & VM_PROT_COPY);
788 	else
789 		KASSERT((fault_flags & VM_FAULT_WIRE) == 0,
790 		    ("!wired && VM_FAULT_WIRE"));
791 
792 	/*
793 	 * Try to avoid lock contention on the top-level object through
794 	 * special-case handling of some types of page faults, specifically,
795 	 * those that are mapping an existing page from the top-level object.
796 	 * Under this condition, a read lock on the object suffices, allowing
797 	 * multiple page faults of a similar type to run in parallel.
798 	 */
799 	if (fs.vp == NULL /* avoid locked vnode leak */ &&
800 	    (fault_flags & (VM_FAULT_WIRE | VM_FAULT_DIRTY)) == 0) {
801 		VM_OBJECT_RLOCK(fs.first_object);
802 		rv = vm_fault_soft_fast(&fs, vaddr, prot, fault_type,
803 		    fault_flags, wired, m_hold);
804 		if (rv == KERN_SUCCESS)
805 			return (rv);
806 		if (!VM_OBJECT_TRYUPGRADE(fs.first_object)) {
807 			VM_OBJECT_RUNLOCK(fs.first_object);
808 			VM_OBJECT_WLOCK(fs.first_object);
809 		}
810 	} else {
811 		VM_OBJECT_WLOCK(fs.first_object);
812 	}
813 
814 	/*
815 	 * Make a reference to this object to prevent its disposal while we
816 	 * are messing with it.  Once we have the reference, the map is free
817 	 * to be diddled.  Since objects reference their shadows (and copies),
818 	 * they will stay around as well.
819 	 *
820 	 * Bump the paging-in-progress count to prevent size changes (e.g.
821 	 * truncation operations) during I/O.
822 	 */
823 	vm_object_reference_locked(fs.first_object);
824 	vm_object_pip_add(fs.first_object, 1);
825 
826 	fs.lookup_still_valid = true;
827 
828 	fs.m = fs.first_m = NULL;
829 
830 	/*
831 	 * Search for the page at object/offset.
832 	 */
833 	fs.object = fs.first_object;
834 	fs.pindex = fs.first_pindex;
835 	while (TRUE) {
836 		KASSERT(fs.m == NULL,
837 		    ("page still set %p at loop start", fs.m));
838 		/*
839 		 * If the object is marked for imminent termination,
840 		 * we retry here, since the collapse pass has raced
841 		 * with us.  Otherwise, if we see terminally dead
842 		 * object, return fail.
843 		 */
844 		if ((fs.object->flags & OBJ_DEAD) != 0) {
845 			dead = fs.object->type == OBJT_DEAD;
846 			unlock_and_deallocate(&fs);
847 			if (dead)
848 				return (KERN_PROTECTION_FAILURE);
849 			pause("vmf_de", 1);
850 			goto RetryFault;
851 		}
852 
853 		/*
854 		 * See if page is resident
855 		 */
856 		fs.m = vm_page_lookup(fs.object, fs.pindex);
857 		if (fs.m != NULL) {
858 			if (vm_page_tryxbusy(fs.m) == 0) {
859 				vm_fault_busy_sleep(&fs);
860 				goto RetryFault;
861 			}
862 
863 			/*
864 			 * The page is marked busy for other processes and the
865 			 * pagedaemon.  If it still isn't completely valid
866 			 * (readable), jump to readrest, else break-out ( we
867 			 * found the page ).
868 			 */
869 			if (!vm_page_all_valid(fs.m))
870 				goto readrest;
871 			break; /* break to PAGE HAS BEEN FOUND */
872 		}
873 		KASSERT(fs.m == NULL, ("fs.m should be NULL, not %p", fs.m));
874 
875 		/*
876 		 * Page is not resident.  If the pager might contain the page
877 		 * or this is the beginning of the search, allocate a new
878 		 * page.  (Default objects are zero-fill, so there is no real
879 		 * pager for them.)
880 		 */
881 		if (fs.object->type != OBJT_DEFAULT ||
882 		    fs.object == fs.first_object) {
883 			if ((fs.object->flags & OBJ_SIZEVNLOCK) != 0) {
884 				rv = vm_fault_lock_vnode(&fs);
885 				MPASS(rv == KERN_SUCCESS ||
886 				    rv == KERN_RESOURCE_SHORTAGE);
887 				if (rv == KERN_RESOURCE_SHORTAGE)
888 					goto RetryFault;
889 			}
890 			if (fs.pindex >= fs.object->size) {
891 				unlock_and_deallocate(&fs);
892 				return (KERN_OUT_OF_BOUNDS);
893 			}
894 
895 			if (fs.object == fs.first_object &&
896 			    (fs.first_object->flags & OBJ_POPULATE) != 0 &&
897 			    fs.first_object->shadow_count == 0) {
898 				rv = vm_fault_populate(&fs, prot, fault_type,
899 				    fault_flags, wired, m_hold);
900 				switch (rv) {
901 				case KERN_SUCCESS:
902 				case KERN_FAILURE:
903 					unlock_and_deallocate(&fs);
904 					return (rv);
905 				case KERN_RESOURCE_SHORTAGE:
906 					unlock_and_deallocate(&fs);
907 					goto RetryFault;
908 				case KERN_NOT_RECEIVER:
909 					/*
910 					 * Pager's populate() method
911 					 * returned VM_PAGER_BAD.
912 					 */
913 					break;
914 				default:
915 					panic("inconsistent return codes");
916 				}
917 			}
918 
919 			/*
920 			 * Allocate a new page for this object/offset pair.
921 			 *
922 			 * Unlocked read of the p_flag is harmless. At
923 			 * worst, the P_KILLED might be not observed
924 			 * there, and allocation can fail, causing
925 			 * restart and new reading of the p_flag.
926 			 */
927 			dset = fs.object->domain.dr_policy;
928 			if (dset == NULL)
929 				dset = curthread->td_domain.dr_policy;
930 			if (!vm_page_count_severe_set(&dset->ds_mask) ||
931 			    P_KILLED(curproc)) {
932 #if VM_NRESERVLEVEL > 0
933 				vm_object_color(fs.object, atop(vaddr) -
934 				    fs.pindex);
935 #endif
936 				alloc_req = P_KILLED(curproc) ?
937 				    VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL;
938 				if (fs.object->type != OBJT_VNODE &&
939 				    fs.object->backing_object == NULL)
940 					alloc_req |= VM_ALLOC_ZERO;
941 				fs.m = vm_page_alloc(fs.object, fs.pindex,
942 				    alloc_req);
943 			}
944 			if (fs.m == NULL) {
945 				unlock_and_deallocate(&fs);
946 				if (vm_pfault_oom_attempts < 0 ||
947 				    oom < vm_pfault_oom_attempts) {
948 					oom++;
949 					vm_waitpfault(dset,
950 					    vm_pfault_oom_wait * hz);
951 					goto RetryFault_oom;
952 				}
953 				if (bootverbose)
954 					printf(
955 	"proc %d (%s) failed to alloc page on fault, starting OOM\n",
956 					    curproc->p_pid, curproc->p_comm);
957 				vm_pageout_oom(VM_OOM_MEM_PF);
958 				goto RetryFault;
959 			}
960 		}
961 
962 readrest:
963 		/*
964 		 * At this point, we have either allocated a new page or found
965 		 * an existing page that is only partially valid.
966 		 *
967 		 * We hold a reference on the current object and the page is
968 		 * exclusive busied.
969 		 */
970 
971 		/*
972 		 * If the pager for the current object might have the page,
973 		 * then determine the number of additional pages to read and
974 		 * potentially reprioritize previously read pages for earlier
975 		 * reclamation.  These operations should only be performed
976 		 * once per page fault.  Even if the current pager doesn't
977 		 * have the page, the number of additional pages to read will
978 		 * apply to subsequent objects in the shadow chain.
979 		 */
980 		if (fs.object->type != OBJT_DEFAULT && nera == -1 &&
981 		    !P_KILLED(curproc)) {
982 			KASSERT(fs.lookup_still_valid, ("map unlocked"));
983 			era = fs.entry->read_ahead;
984 			behavior = vm_map_entry_behavior(fs.entry);
985 			if (behavior == MAP_ENTRY_BEHAV_RANDOM) {
986 				nera = 0;
987 			} else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) {
988 				nera = VM_FAULT_READ_AHEAD_MAX;
989 				if (vaddr == fs.entry->next_read)
990 					vm_fault_dontneed(&fs, vaddr, nera);
991 			} else if (vaddr == fs.entry->next_read) {
992 				/*
993 				 * This is a sequential fault.  Arithmetically
994 				 * increase the requested number of pages in
995 				 * the read-ahead window.  The requested
996 				 * number of pages is "# of sequential faults
997 				 * x (read ahead min + 1) + read ahead min"
998 				 */
999 				nera = VM_FAULT_READ_AHEAD_MIN;
1000 				if (era > 0) {
1001 					nera += era + 1;
1002 					if (nera > VM_FAULT_READ_AHEAD_MAX)
1003 						nera = VM_FAULT_READ_AHEAD_MAX;
1004 				}
1005 				if (era == VM_FAULT_READ_AHEAD_MAX)
1006 					vm_fault_dontneed(&fs, vaddr, nera);
1007 			} else {
1008 				/*
1009 				 * This is a non-sequential fault.
1010 				 */
1011 				nera = 0;
1012 			}
1013 			if (era != nera) {
1014 				/*
1015 				 * A read lock on the map suffices to update
1016 				 * the read ahead count safely.
1017 				 */
1018 				fs.entry->read_ahead = nera;
1019 			}
1020 
1021 			/*
1022 			 * Prepare for unlocking the map.  Save the map
1023 			 * entry's start and end addresses, which are used to
1024 			 * optimize the size of the pager operation below.
1025 			 * Even if the map entry's addresses change after
1026 			 * unlocking the map, using the saved addresses is
1027 			 * safe.
1028 			 */
1029 			e_start = fs.entry->start;
1030 			e_end = fs.entry->end;
1031 		}
1032 
1033 		/*
1034 		 * Call the pager to retrieve the page if there is a chance
1035 		 * that the pager has it, and potentially retrieve additional
1036 		 * pages at the same time.
1037 		 */
1038 		if (fs.object->type != OBJT_DEFAULT) {
1039 			/*
1040 			 * Release the map lock before locking the vnode or
1041 			 * sleeping in the pager.  (If the current object has
1042 			 * a shadow, then an earlier iteration of this loop
1043 			 * may have already unlocked the map.)
1044 			 */
1045 			unlock_map(&fs);
1046 
1047 			rv = vm_fault_lock_vnode(&fs);
1048 			MPASS(rv == KERN_SUCCESS ||
1049 			    rv == KERN_RESOURCE_SHORTAGE);
1050 			if (rv == KERN_RESOURCE_SHORTAGE)
1051 				goto RetryFault;
1052 			KASSERT(fs.vp == NULL || !fs.map->system_map,
1053 			    ("vm_fault: vnode-backed object mapped by system map"));
1054 
1055 			/*
1056 			 * Page in the requested page and hint the pager,
1057 			 * that it may bring up surrounding pages.
1058 			 */
1059 			if (nera == -1 || behavior == MAP_ENTRY_BEHAV_RANDOM ||
1060 			    P_KILLED(curproc)) {
1061 				behind = 0;
1062 				ahead = 0;
1063 			} else {
1064 				/* Is this a sequential fault? */
1065 				if (nera > 0) {
1066 					behind = 0;
1067 					ahead = nera;
1068 				} else {
1069 					/*
1070 					 * Request a cluster of pages that is
1071 					 * aligned to a VM_FAULT_READ_DEFAULT
1072 					 * page offset boundary within the
1073 					 * object.  Alignment to a page offset
1074 					 * boundary is more likely to coincide
1075 					 * with the underlying file system
1076 					 * block than alignment to a virtual
1077 					 * address boundary.
1078 					 */
1079 					cluster_offset = fs.pindex %
1080 					    VM_FAULT_READ_DEFAULT;
1081 					behind = ulmin(cluster_offset,
1082 					    atop(vaddr - e_start));
1083 					ahead = VM_FAULT_READ_DEFAULT - 1 -
1084 					    cluster_offset;
1085 				}
1086 				ahead = ulmin(ahead, atop(e_end - vaddr) - 1);
1087 			}
1088 			rv = vm_pager_get_pages(fs.object, &fs.m, 1,
1089 			    &behind, &ahead);
1090 			if (rv == VM_PAGER_OK) {
1091 				faultcount = behind + 1 + ahead;
1092 				hardfault = true;
1093 				break; /* break to PAGE HAS BEEN FOUND */
1094 			}
1095 			if (rv == VM_PAGER_ERROR)
1096 				printf("vm_fault: pager read error, pid %d (%s)\n",
1097 				    curproc->p_pid, curproc->p_comm);
1098 
1099 			/*
1100 			 * If an I/O error occurred or the requested page was
1101 			 * outside the range of the pager, clean up and return
1102 			 * an error.
1103 			 */
1104 			if (rv == VM_PAGER_ERROR || rv == VM_PAGER_BAD) {
1105 				fault_page_free(&fs.m);
1106 				unlock_and_deallocate(&fs);
1107 				return (KERN_OUT_OF_BOUNDS);
1108 			}
1109 
1110 		}
1111 
1112 		/*
1113 		 * The requested page does not exist at this object/
1114 		 * offset.  Remove the invalid page from the object,
1115 		 * waking up anyone waiting for it, and continue on to
1116 		 * the next object.  However, if this is the top-level
1117 		 * object, we must leave the busy page in place to
1118 		 * prevent another process from rushing past us, and
1119 		 * inserting the page in that object at the same time
1120 		 * that we are.
1121 		 */
1122 		if (fs.object == fs.first_object) {
1123 			fs.first_m = fs.m;
1124 			fs.m = NULL;
1125 		} else
1126 			fault_page_free(&fs.m);
1127 
1128 		/*
1129 		 * Move on to the next object.  Lock the next object before
1130 		 * unlocking the current one.
1131 		 */
1132 		next_object = fs.object->backing_object;
1133 		if (next_object == NULL) {
1134 			/*
1135 			 * If there's no object left, fill the page in the top
1136 			 * object with zeros.
1137 			 */
1138 			if (fs.object != fs.first_object) {
1139 				vm_object_pip_wakeup(fs.object);
1140 				VM_OBJECT_WUNLOCK(fs.object);
1141 
1142 				fs.object = fs.first_object;
1143 				fs.pindex = fs.first_pindex;
1144 				VM_OBJECT_WLOCK(fs.object);
1145 			}
1146 			MPASS(fs.first_m != NULL);
1147 			MPASS(fs.m == NULL);
1148 			fs.m = fs.first_m;
1149 			fs.first_m = NULL;
1150 
1151 			/*
1152 			 * Zero the page if necessary and mark it valid.
1153 			 */
1154 			if ((fs.m->flags & PG_ZERO) == 0) {
1155 				pmap_zero_page(fs.m);
1156 			} else {
1157 				VM_CNT_INC(v_ozfod);
1158 			}
1159 			VM_CNT_INC(v_zfod);
1160 			vm_page_valid(fs.m);
1161 			/* Don't try to prefault neighboring pages. */
1162 			faultcount = 1;
1163 			break;	/* break to PAGE HAS BEEN FOUND */
1164 		} else {
1165 			MPASS(fs.first_m != NULL);
1166 			KASSERT(fs.object != next_object,
1167 			    ("object loop %p", next_object));
1168 			VM_OBJECT_WLOCK(next_object);
1169 			vm_object_pip_add(next_object, 1);
1170 			if (fs.object != fs.first_object)
1171 				vm_object_pip_wakeup(fs.object);
1172 			fs.pindex +=
1173 			    OFF_TO_IDX(fs.object->backing_object_offset);
1174 			VM_OBJECT_WUNLOCK(fs.object);
1175 			fs.object = next_object;
1176 		}
1177 	}
1178 
1179 	vm_page_assert_xbusied(fs.m);
1180 
1181 	/*
1182 	 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
1183 	 * is held.]
1184 	 */
1185 
1186 	/*
1187 	 * If the page is being written, but isn't already owned by the
1188 	 * top-level object, we have to copy it into a new page owned by the
1189 	 * top-level object.
1190 	 */
1191 	if (fs.object != fs.first_object) {
1192 		/*
1193 		 * We only really need to copy if we want to write it.
1194 		 */
1195 		if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
1196 			/*
1197 			 * This allows pages to be virtually copied from a
1198 			 * backing_object into the first_object, where the
1199 			 * backing object has no other refs to it, and cannot
1200 			 * gain any more refs.  Instead of a bcopy, we just
1201 			 * move the page from the backing object to the
1202 			 * first object.  Note that we must mark the page
1203 			 * dirty in the first object so that it will go out
1204 			 * to swap when needed.
1205 			 */
1206 			is_first_object_locked = false;
1207 			if (
1208 				/*
1209 				 * Only one shadow object
1210 				 */
1211 				(fs.object->shadow_count == 1) &&
1212 				/*
1213 				 * No COW refs, except us
1214 				 */
1215 				(fs.object->ref_count == 1) &&
1216 				/*
1217 				 * No one else can look this object up
1218 				 */
1219 				(fs.object->handle == NULL) &&
1220 				/*
1221 				 * No other ways to look the object up
1222 				 */
1223 				((fs.object->flags & OBJ_ANON) != 0) &&
1224 			    (is_first_object_locked = VM_OBJECT_TRYWLOCK(fs.first_object)) &&
1225 				/*
1226 				 * We don't chase down the shadow chain
1227 				 */
1228 			    fs.object == fs.first_object->backing_object) {
1229 
1230 				/*
1231 				 * Remove but keep xbusy for replace.  fs.m is
1232 				 * moved into fs.first_object and left busy
1233 				 * while fs.first_m is conditionally freed.
1234 				 */
1235 				vm_page_remove_xbusy(fs.m);
1236 				vm_page_replace(fs.m, fs.first_object,
1237 				    fs.first_pindex, fs.first_m);
1238 				vm_page_dirty(fs.m);
1239 #if VM_NRESERVLEVEL > 0
1240 				/*
1241 				 * Rename the reservation.
1242 				 */
1243 				vm_reserv_rename(fs.m, fs.first_object,
1244 				    fs.object, OFF_TO_IDX(
1245 				    fs.first_object->backing_object_offset));
1246 #endif
1247 				VM_OBJECT_WUNLOCK(fs.object);
1248 				fs.first_m = fs.m;
1249 				fs.m = NULL;
1250 				VM_CNT_INC(v_cow_optim);
1251 			} else {
1252 				VM_OBJECT_WUNLOCK(fs.object);
1253 				/*
1254 				 * Oh, well, lets copy it.
1255 				 */
1256 				pmap_copy_page(fs.m, fs.first_m);
1257 				vm_page_valid(fs.first_m);
1258 				if (wired && (fault_flags &
1259 				    VM_FAULT_WIRE) == 0) {
1260 					vm_page_wire(fs.first_m);
1261 					vm_page_unwire(fs.m, PQ_INACTIVE);
1262 				}
1263 				/*
1264 				 * We no longer need the old page or object.
1265 				 */
1266 				fault_page_release(&fs.m);
1267 			}
1268 			/*
1269 			 * fs.object != fs.first_object due to above
1270 			 * conditional
1271 			 */
1272 			vm_object_pip_wakeup(fs.object);
1273 
1274 			/*
1275 			 * We only try to prefault read-only mappings to the
1276 			 * neighboring pages when this copy-on-write fault is
1277 			 * a hard fault.  In other cases, trying to prefault
1278 			 * is typically wasted effort.
1279 			 */
1280 			if (faultcount == 0)
1281 				faultcount = 1;
1282 
1283 			/*
1284 			 * Only use the new page below...
1285 			 */
1286 			fs.object = fs.first_object;
1287 			fs.pindex = fs.first_pindex;
1288 			fs.m = fs.first_m;
1289 			if (!is_first_object_locked)
1290 				VM_OBJECT_WLOCK(fs.object);
1291 			VM_CNT_INC(v_cow_faults);
1292 			curthread->td_cow++;
1293 		} else {
1294 			prot &= ~VM_PROT_WRITE;
1295 		}
1296 	}
1297 
1298 	/*
1299 	 * We must verify that the maps have not changed since our last
1300 	 * lookup.
1301 	 */
1302 	if (!fs.lookup_still_valid) {
1303 		if (!vm_map_trylock_read(fs.map)) {
1304 			unlock_and_deallocate(&fs);
1305 			goto RetryFault;
1306 		}
1307 		fs.lookup_still_valid = true;
1308 		if (fs.map->timestamp != fs.map_generation) {
1309 			result = vm_map_lookup_locked(&fs.map, vaddr, fault_type,
1310 			    &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
1311 
1312 			/*
1313 			 * If we don't need the page any longer, put it on the inactive
1314 			 * list (the easiest thing to do here).  If no one needs it,
1315 			 * pageout will grab it eventually.
1316 			 */
1317 			if (result != KERN_SUCCESS) {
1318 				unlock_and_deallocate(&fs);
1319 
1320 				/*
1321 				 * If retry of map lookup would have blocked then
1322 				 * retry fault from start.
1323 				 */
1324 				if (result == KERN_FAILURE)
1325 					goto RetryFault;
1326 				return (result);
1327 			}
1328 			if ((retry_object != fs.first_object) ||
1329 			    (retry_pindex != fs.first_pindex)) {
1330 				unlock_and_deallocate(&fs);
1331 				goto RetryFault;
1332 			}
1333 
1334 			/*
1335 			 * Check whether the protection has changed or the object has
1336 			 * been copied while we left the map unlocked. Changing from
1337 			 * read to write permission is OK - we leave the page
1338 			 * write-protected, and catch the write fault. Changing from
1339 			 * write to read permission means that we can't mark the page
1340 			 * write-enabled after all.
1341 			 */
1342 			prot &= retry_prot;
1343 			fault_type &= retry_prot;
1344 			if (prot == 0) {
1345 				unlock_and_deallocate(&fs);
1346 				goto RetryFault;
1347 			}
1348 
1349 			/* Reassert because wired may have changed. */
1350 			KASSERT(wired || (fault_flags & VM_FAULT_WIRE) == 0,
1351 			    ("!wired && VM_FAULT_WIRE"));
1352 		}
1353 	}
1354 
1355 	/*
1356 	 * If the page was filled by a pager, save the virtual address that
1357 	 * should be faulted on next under a sequential access pattern to the
1358 	 * map entry.  A read lock on the map suffices to update this address
1359 	 * safely.
1360 	 */
1361 	if (hardfault)
1362 		fs.entry->next_read = vaddr + ptoa(ahead) + PAGE_SIZE;
1363 
1364 	vm_page_assert_xbusied(fs.m);
1365 	vm_fault_dirty(fs.entry, fs.m, prot, fault_type, fault_flags);
1366 
1367 	/*
1368 	 * Page must be completely valid or it is not fit to
1369 	 * map into user space.  vm_pager_get_pages() ensures this.
1370 	 */
1371 	KASSERT(vm_page_all_valid(fs.m),
1372 	    ("vm_fault: page %p partially invalid", fs.m));
1373 	VM_OBJECT_WUNLOCK(fs.object);
1374 
1375 	/*
1376 	 * Put this page into the physical map.  We had to do the unlock above
1377 	 * because pmap_enter() may sleep.  We don't put the page
1378 	 * back on the active queue until later so that the pageout daemon
1379 	 * won't find it (yet).
1380 	 */
1381 	pmap_enter(fs.map->pmap, vaddr, fs.m, prot,
1382 	    fault_type | (wired ? PMAP_ENTER_WIRED : 0), 0);
1383 	if (faultcount != 1 && (fault_flags & VM_FAULT_WIRE) == 0 &&
1384 	    wired == 0)
1385 		vm_fault_prefault(&fs, vaddr,
1386 		    faultcount > 0 ? behind : PFBAK,
1387 		    faultcount > 0 ? ahead : PFFOR, false);
1388 
1389 	/*
1390 	 * If the page is not wired down, then put it where the pageout daemon
1391 	 * can find it.
1392 	 */
1393 	if ((fault_flags & VM_FAULT_WIRE) != 0) {
1394 		vm_page_wire(fs.m);
1395 	} else {
1396 		vm_page_lock(fs.m);
1397 		vm_page_activate(fs.m);
1398 		vm_page_unlock(fs.m);
1399 	}
1400 	if (m_hold != NULL) {
1401 		*m_hold = fs.m;
1402 		vm_page_wire(fs.m);
1403 	}
1404 	vm_page_xunbusy(fs.m);
1405 	fs.m = NULL;
1406 
1407 	/*
1408 	 * Unlock everything, and return
1409 	 */
1410 	fault_deallocate(&fs);
1411 	if (hardfault) {
1412 		VM_CNT_INC(v_io_faults);
1413 		curthread->td_ru.ru_majflt++;
1414 #ifdef RACCT
1415 		if (racct_enable && fs.object->type == OBJT_VNODE) {
1416 			PROC_LOCK(curproc);
1417 			if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
1418 				racct_add_force(curproc, RACCT_WRITEBPS,
1419 				    PAGE_SIZE + behind * PAGE_SIZE);
1420 				racct_add_force(curproc, RACCT_WRITEIOPS, 1);
1421 			} else {
1422 				racct_add_force(curproc, RACCT_READBPS,
1423 				    PAGE_SIZE + ahead * PAGE_SIZE);
1424 				racct_add_force(curproc, RACCT_READIOPS, 1);
1425 			}
1426 			PROC_UNLOCK(curproc);
1427 		}
1428 #endif
1429 	} else
1430 		curthread->td_ru.ru_minflt++;
1431 
1432 	return (KERN_SUCCESS);
1433 }
1434 
1435 /*
1436  * Speed up the reclamation of pages that precede the faulting pindex within
1437  * the first object of the shadow chain.  Essentially, perform the equivalent
1438  * to madvise(..., MADV_DONTNEED) on a large cluster of pages that precedes
1439  * the faulting pindex by the cluster size when the pages read by vm_fault()
1440  * cross a cluster-size boundary.  The cluster size is the greater of the
1441  * smallest superpage size and VM_FAULT_DONTNEED_MIN.
1442  *
1443  * When "fs->first_object" is a shadow object, the pages in the backing object
1444  * that precede the faulting pindex are deactivated by vm_fault().  So, this
1445  * function must only be concerned with pages in the first object.
1446  */
1447 static void
1448 vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, int ahead)
1449 {
1450 	vm_map_entry_t entry;
1451 	vm_object_t first_object, object;
1452 	vm_offset_t end, start;
1453 	vm_page_t m, m_next;
1454 	vm_pindex_t pend, pstart;
1455 	vm_size_t size;
1456 
1457 	object = fs->object;
1458 	VM_OBJECT_ASSERT_WLOCKED(object);
1459 	first_object = fs->first_object;
1460 	if (first_object != object) {
1461 		if (!VM_OBJECT_TRYWLOCK(first_object)) {
1462 			VM_OBJECT_WUNLOCK(object);
1463 			VM_OBJECT_WLOCK(first_object);
1464 			VM_OBJECT_WLOCK(object);
1465 		}
1466 	}
1467 	/* Neither fictitious nor unmanaged pages can be reclaimed. */
1468 	if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) {
1469 		size = VM_FAULT_DONTNEED_MIN;
1470 		if (MAXPAGESIZES > 1 && size < pagesizes[1])
1471 			size = pagesizes[1];
1472 		end = rounddown2(vaddr, size);
1473 		if (vaddr - end >= size - PAGE_SIZE - ptoa(ahead) &&
1474 		    (entry = fs->entry)->start < end) {
1475 			if (end - entry->start < size)
1476 				start = entry->start;
1477 			else
1478 				start = end - size;
1479 			pmap_advise(fs->map->pmap, start, end, MADV_DONTNEED);
1480 			pstart = OFF_TO_IDX(entry->offset) + atop(start -
1481 			    entry->start);
1482 			m_next = vm_page_find_least(first_object, pstart);
1483 			pend = OFF_TO_IDX(entry->offset) + atop(end -
1484 			    entry->start);
1485 			while ((m = m_next) != NULL && m->pindex < pend) {
1486 				m_next = TAILQ_NEXT(m, listq);
1487 				if (!vm_page_all_valid(m) ||
1488 				    vm_page_busied(m))
1489 					continue;
1490 
1491 				/*
1492 				 * Don't clear PGA_REFERENCED, since it would
1493 				 * likely represent a reference by a different
1494 				 * process.
1495 				 *
1496 				 * Typically, at this point, prefetched pages
1497 				 * are still in the inactive queue.  Only
1498 				 * pages that triggered page faults are in the
1499 				 * active queue.
1500 				 */
1501 				vm_page_lock(m);
1502 				if (!vm_page_inactive(m))
1503 					vm_page_deactivate(m);
1504 				vm_page_unlock(m);
1505 			}
1506 		}
1507 	}
1508 	if (first_object != object)
1509 		VM_OBJECT_WUNLOCK(first_object);
1510 }
1511 
1512 /*
1513  * vm_fault_prefault provides a quick way of clustering
1514  * pagefaults into a processes address space.  It is a "cousin"
1515  * of vm_map_pmap_enter, except it runs at page fault time instead
1516  * of mmap time.
1517  */
1518 static void
1519 vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
1520     int backward, int forward, bool obj_locked)
1521 {
1522 	pmap_t pmap;
1523 	vm_map_entry_t entry;
1524 	vm_object_t backing_object, lobject;
1525 	vm_offset_t addr, starta;
1526 	vm_pindex_t pindex;
1527 	vm_page_t m;
1528 	int i;
1529 
1530 	pmap = fs->map->pmap;
1531 	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
1532 		return;
1533 
1534 	entry = fs->entry;
1535 
1536 	if (addra < backward * PAGE_SIZE) {
1537 		starta = entry->start;
1538 	} else {
1539 		starta = addra - backward * PAGE_SIZE;
1540 		if (starta < entry->start)
1541 			starta = entry->start;
1542 	}
1543 
1544 	/*
1545 	 * Generate the sequence of virtual addresses that are candidates for
1546 	 * prefaulting in an outward spiral from the faulting virtual address,
1547 	 * "addra".  Specifically, the sequence is "addra - PAGE_SIZE", "addra
1548 	 * + PAGE_SIZE", "addra - 2 * PAGE_SIZE", "addra + 2 * PAGE_SIZE", ...
1549 	 * If the candidate address doesn't have a backing physical page, then
1550 	 * the loop immediately terminates.
1551 	 */
1552 	for (i = 0; i < 2 * imax(backward, forward); i++) {
1553 		addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE :
1554 		    PAGE_SIZE);
1555 		if (addr > addra + forward * PAGE_SIZE)
1556 			addr = 0;
1557 
1558 		if (addr < starta || addr >= entry->end)
1559 			continue;
1560 
1561 		if (!pmap_is_prefaultable(pmap, addr))
1562 			continue;
1563 
1564 		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
1565 		lobject = entry->object.vm_object;
1566 		if (!obj_locked)
1567 			VM_OBJECT_RLOCK(lobject);
1568 		while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
1569 		    lobject->type == OBJT_DEFAULT &&
1570 		    (backing_object = lobject->backing_object) != NULL) {
1571 			KASSERT((lobject->backing_object_offset & PAGE_MASK) ==
1572 			    0, ("vm_fault_prefault: unaligned object offset"));
1573 			pindex += lobject->backing_object_offset >> PAGE_SHIFT;
1574 			VM_OBJECT_RLOCK(backing_object);
1575 			if (!obj_locked || lobject != entry->object.vm_object)
1576 				VM_OBJECT_RUNLOCK(lobject);
1577 			lobject = backing_object;
1578 		}
1579 		if (m == NULL) {
1580 			if (!obj_locked || lobject != entry->object.vm_object)
1581 				VM_OBJECT_RUNLOCK(lobject);
1582 			break;
1583 		}
1584 		if (vm_page_all_valid(m) &&
1585 		    (m->flags & PG_FICTITIOUS) == 0)
1586 			pmap_enter_quick(pmap, addr, m, entry->protection);
1587 		if (!obj_locked || lobject != entry->object.vm_object)
1588 			VM_OBJECT_RUNLOCK(lobject);
1589 	}
1590 }
1591 
1592 /*
1593  * Hold each of the physical pages that are mapped by the specified range of
1594  * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid
1595  * and allow the specified types of access, "prot".  If all of the implied
1596  * pages are successfully held, then the number of held pages is returned
1597  * together with pointers to those pages in the array "ma".  However, if any
1598  * of the pages cannot be held, -1 is returned.
1599  */
1600 int
1601 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
1602     vm_prot_t prot, vm_page_t *ma, int max_count)
1603 {
1604 	vm_offset_t end, va;
1605 	vm_page_t *mp;
1606 	int count;
1607 	boolean_t pmap_failed;
1608 
1609 	if (len == 0)
1610 		return (0);
1611 	end = round_page(addr + len);
1612 	addr = trunc_page(addr);
1613 
1614 	/*
1615 	 * Check for illegal addresses.
1616 	 */
1617 	if (addr < vm_map_min(map) || addr > end || end > vm_map_max(map))
1618 		return (-1);
1619 
1620 	if (atop(end - addr) > max_count)
1621 		panic("vm_fault_quick_hold_pages: count > max_count");
1622 	count = atop(end - addr);
1623 
1624 	/*
1625 	 * Most likely, the physical pages are resident in the pmap, so it is
1626 	 * faster to try pmap_extract_and_hold() first.
1627 	 */
1628 	pmap_failed = FALSE;
1629 	for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) {
1630 		*mp = pmap_extract_and_hold(map->pmap, va, prot);
1631 		if (*mp == NULL)
1632 			pmap_failed = TRUE;
1633 		else if ((prot & VM_PROT_WRITE) != 0 &&
1634 		    (*mp)->dirty != VM_PAGE_BITS_ALL) {
1635 			/*
1636 			 * Explicitly dirty the physical page.  Otherwise, the
1637 			 * caller's changes may go unnoticed because they are
1638 			 * performed through an unmanaged mapping or by a DMA
1639 			 * operation.
1640 			 *
1641 			 * The object lock is not held here.
1642 			 * See vm_page_clear_dirty_mask().
1643 			 */
1644 			vm_page_dirty(*mp);
1645 		}
1646 	}
1647 	if (pmap_failed) {
1648 		/*
1649 		 * One or more pages could not be held by the pmap.  Either no
1650 		 * page was mapped at the specified virtual address or that
1651 		 * mapping had insufficient permissions.  Attempt to fault in
1652 		 * and hold these pages.
1653 		 *
1654 		 * If vm_fault_disable_pagefaults() was called,
1655 		 * i.e., TDP_NOFAULTING is set, we must not sleep nor
1656 		 * acquire MD VM locks, which means we must not call
1657 		 * vm_fault().  Some (out of tree) callers mark
1658 		 * too wide a code area with vm_fault_disable_pagefaults()
1659 		 * already, use the VM_PROT_QUICK_NOFAULT flag to request
1660 		 * the proper behaviour explicitly.
1661 		 */
1662 		if ((prot & VM_PROT_QUICK_NOFAULT) != 0 &&
1663 		    (curthread->td_pflags & TDP_NOFAULTING) != 0)
1664 			goto error;
1665 		for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE)
1666 			if (*mp == NULL && vm_fault(map, va, prot,
1667 			    VM_FAULT_NORMAL, mp) != KERN_SUCCESS)
1668 				goto error;
1669 	}
1670 	return (count);
1671 error:
1672 	for (mp = ma; mp < ma + count; mp++)
1673 		if (*mp != NULL)
1674 			vm_page_unwire(*mp, PQ_INACTIVE);
1675 	return (-1);
1676 }
1677 
1678 /*
1679  *	Routine:
1680  *		vm_fault_copy_entry
1681  *	Function:
1682  *		Create new shadow object backing dst_entry with private copy of
1683  *		all underlying pages. When src_entry is equal to dst_entry,
1684  *		function implements COW for wired-down map entry. Otherwise,
1685  *		it forks wired entry into dst_map.
1686  *
1687  *	In/out conditions:
1688  *		The source and destination maps must be locked for write.
1689  *		The source map entry must be wired down (or be a sharing map
1690  *		entry corresponding to a main map entry that is wired down).
1691  */
1692 void
1693 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1694     vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
1695     vm_ooffset_t *fork_charge)
1696 {
1697 	vm_object_t backing_object, dst_object, object, src_object;
1698 	vm_pindex_t dst_pindex, pindex, src_pindex;
1699 	vm_prot_t access, prot;
1700 	vm_offset_t vaddr;
1701 	vm_page_t dst_m;
1702 	vm_page_t src_m;
1703 	boolean_t upgrade;
1704 
1705 #ifdef	lint
1706 	src_map++;
1707 #endif	/* lint */
1708 
1709 	upgrade = src_entry == dst_entry;
1710 	access = prot = dst_entry->protection;
1711 
1712 	src_object = src_entry->object.vm_object;
1713 	src_pindex = OFF_TO_IDX(src_entry->offset);
1714 
1715 	if (upgrade && (dst_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
1716 		dst_object = src_object;
1717 		vm_object_reference(dst_object);
1718 	} else {
1719 		/*
1720 		 * Create the top-level object for the destination entry.
1721 		 * Doesn't actually shadow anything - we copy the pages
1722 		 * directly.
1723 		 */
1724 		dst_object = vm_object_allocate_anon(atop(dst_entry->end -
1725 		    dst_entry->start), NULL, NULL, 0);
1726 #if VM_NRESERVLEVEL > 0
1727 		dst_object->flags |= OBJ_COLORED;
1728 		dst_object->pg_color = atop(dst_entry->start);
1729 #endif
1730 		dst_object->domain = src_object->domain;
1731 		dst_object->charge = dst_entry->end - dst_entry->start;
1732 	}
1733 
1734 	VM_OBJECT_WLOCK(dst_object);
1735 	KASSERT(upgrade || dst_entry->object.vm_object == NULL,
1736 	    ("vm_fault_copy_entry: vm_object not NULL"));
1737 	if (src_object != dst_object) {
1738 		dst_entry->object.vm_object = dst_object;
1739 		dst_entry->offset = 0;
1740 		dst_entry->eflags &= ~MAP_ENTRY_VN_EXEC;
1741 	}
1742 	if (fork_charge != NULL) {
1743 		KASSERT(dst_entry->cred == NULL,
1744 		    ("vm_fault_copy_entry: leaked swp charge"));
1745 		dst_object->cred = curthread->td_ucred;
1746 		crhold(dst_object->cred);
1747 		*fork_charge += dst_object->charge;
1748 	} else if ((dst_object->type == OBJT_DEFAULT ||
1749 	    dst_object->type == OBJT_SWAP) &&
1750 	    dst_object->cred == NULL) {
1751 		KASSERT(dst_entry->cred != NULL, ("no cred for entry %p",
1752 		    dst_entry));
1753 		dst_object->cred = dst_entry->cred;
1754 		dst_entry->cred = NULL;
1755 	}
1756 
1757 	/*
1758 	 * If not an upgrade, then enter the mappings in the pmap as
1759 	 * read and/or execute accesses.  Otherwise, enter them as
1760 	 * write accesses.
1761 	 *
1762 	 * A writeable large page mapping is only created if all of
1763 	 * the constituent small page mappings are modified. Marking
1764 	 * PTEs as modified on inception allows promotion to happen
1765 	 * without taking potentially large number of soft faults.
1766 	 */
1767 	if (!upgrade)
1768 		access &= ~VM_PROT_WRITE;
1769 
1770 	/*
1771 	 * Loop through all of the virtual pages within the entry's
1772 	 * range, copying each page from the source object to the
1773 	 * destination object.  Since the source is wired, those pages
1774 	 * must exist.  In contrast, the destination is pageable.
1775 	 * Since the destination object doesn't share any backing storage
1776 	 * with the source object, all of its pages must be dirtied,
1777 	 * regardless of whether they can be written.
1778 	 */
1779 	for (vaddr = dst_entry->start, dst_pindex = 0;
1780 	    vaddr < dst_entry->end;
1781 	    vaddr += PAGE_SIZE, dst_pindex++) {
1782 again:
1783 		/*
1784 		 * Find the page in the source object, and copy it in.
1785 		 * Because the source is wired down, the page will be
1786 		 * in memory.
1787 		 */
1788 		if (src_object != dst_object)
1789 			VM_OBJECT_RLOCK(src_object);
1790 		object = src_object;
1791 		pindex = src_pindex + dst_pindex;
1792 		while ((src_m = vm_page_lookup(object, pindex)) == NULL &&
1793 		    (backing_object = object->backing_object) != NULL) {
1794 			/*
1795 			 * Unless the source mapping is read-only or
1796 			 * it is presently being upgraded from
1797 			 * read-only, the first object in the shadow
1798 			 * chain should provide all of the pages.  In
1799 			 * other words, this loop body should never be
1800 			 * executed when the source mapping is already
1801 			 * read/write.
1802 			 */
1803 			KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 ||
1804 			    upgrade,
1805 			    ("vm_fault_copy_entry: main object missing page"));
1806 
1807 			VM_OBJECT_RLOCK(backing_object);
1808 			pindex += OFF_TO_IDX(object->backing_object_offset);
1809 			if (object != dst_object)
1810 				VM_OBJECT_RUNLOCK(object);
1811 			object = backing_object;
1812 		}
1813 		KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing"));
1814 
1815 		if (object != dst_object) {
1816 			/*
1817 			 * Allocate a page in the destination object.
1818 			 */
1819 			dst_m = vm_page_alloc(dst_object, (src_object ==
1820 			    dst_object ? src_pindex : 0) + dst_pindex,
1821 			    VM_ALLOC_NORMAL);
1822 			if (dst_m == NULL) {
1823 				VM_OBJECT_WUNLOCK(dst_object);
1824 				VM_OBJECT_RUNLOCK(object);
1825 				vm_wait(dst_object);
1826 				VM_OBJECT_WLOCK(dst_object);
1827 				goto again;
1828 			}
1829 			pmap_copy_page(src_m, dst_m);
1830 			VM_OBJECT_RUNLOCK(object);
1831 			dst_m->dirty = dst_m->valid = src_m->valid;
1832 		} else {
1833 			dst_m = src_m;
1834 			if (vm_page_busy_acquire(dst_m, VM_ALLOC_WAITFAIL) == 0)
1835 				goto again;
1836 			if (dst_m->pindex >= dst_object->size) {
1837 				/*
1838 				 * We are upgrading.  Index can occur
1839 				 * out of bounds if the object type is
1840 				 * vnode and the file was truncated.
1841 				 */
1842 				vm_page_xunbusy(dst_m);
1843 				break;
1844 			}
1845 		}
1846 		VM_OBJECT_WUNLOCK(dst_object);
1847 
1848 		/*
1849 		 * Enter it in the pmap. If a wired, copy-on-write
1850 		 * mapping is being replaced by a write-enabled
1851 		 * mapping, then wire that new mapping.
1852 		 *
1853 		 * The page can be invalid if the user called
1854 		 * msync(MS_INVALIDATE) or truncated the backing vnode
1855 		 * or shared memory object.  In this case, do not
1856 		 * insert it into pmap, but still do the copy so that
1857 		 * all copies of the wired map entry have similar
1858 		 * backing pages.
1859 		 */
1860 		if (vm_page_all_valid(dst_m)) {
1861 			pmap_enter(dst_map->pmap, vaddr, dst_m, prot,
1862 			    access | (upgrade ? PMAP_ENTER_WIRED : 0), 0);
1863 		}
1864 
1865 		/*
1866 		 * Mark it no longer busy, and put it on the active list.
1867 		 */
1868 		VM_OBJECT_WLOCK(dst_object);
1869 
1870 		if (upgrade) {
1871 			if (src_m != dst_m) {
1872 				vm_page_unwire(src_m, PQ_INACTIVE);
1873 				vm_page_wire(dst_m);
1874 			} else {
1875 				KASSERT(vm_page_wired(dst_m),
1876 				    ("dst_m %p is not wired", dst_m));
1877 			}
1878 		} else {
1879 			vm_page_lock(dst_m);
1880 			vm_page_activate(dst_m);
1881 			vm_page_unlock(dst_m);
1882 		}
1883 		vm_page_xunbusy(dst_m);
1884 	}
1885 	VM_OBJECT_WUNLOCK(dst_object);
1886 	if (upgrade) {
1887 		dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY);
1888 		vm_object_deallocate(src_object);
1889 	}
1890 }
1891 
1892 /*
1893  * Block entry into the machine-independent layer's page fault handler by
1894  * the calling thread.  Subsequent calls to vm_fault() by that thread will
1895  * return KERN_PROTECTION_FAILURE.  Enable machine-dependent handling of
1896  * spurious page faults.
1897  */
1898 int
1899 vm_fault_disable_pagefaults(void)
1900 {
1901 
1902 	return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR));
1903 }
1904 
1905 void
1906 vm_fault_enable_pagefaults(int save)
1907 {
1908 
1909 	curthread_pflags_restore(save);
1910 }
1911