1 /*- 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * Copyright (c) 1994 John S. Dyson 5 * All rights reserved. 6 * Copyright (c) 1994 David Greenman 7 * All rights reserved. 8 * 9 * 10 * This code is derived from software contributed to Berkeley by 11 * The Mach Operating System project at Carnegie-Mellon University. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 3. All advertising materials mentioning features or use of this software 22 * must display the following acknowledgement: 23 * This product includes software developed by the University of 24 * California, Berkeley and its contributors. 25 * 4. Neither the name of the University nor the names of its contributors 26 * may be used to endorse or promote products derived from this software 27 * without specific prior written permission. 28 * 29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 39 * SUCH DAMAGE. 40 * 41 * from: @(#)vm_fault.c 8.4 (Berkeley) 1/12/94 42 * 43 * 44 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 45 * All rights reserved. 46 * 47 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 48 * 49 * Permission to use, copy, modify and distribute this software and 50 * its documentation is hereby granted, provided that both the copyright 51 * notice and this permission notice appear in all copies of the 52 * software, derivative works or modified versions, and any portions 53 * thereof, and that both notices appear in supporting documentation. 54 * 55 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 56 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 57 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 58 * 59 * Carnegie Mellon requests users of this software to return to 60 * 61 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 62 * School of Computer Science 63 * Carnegie Mellon University 64 * Pittsburgh PA 15213-3890 65 * 66 * any improvements or extensions that they make and grant Carnegie the 67 * rights to redistribute these changes. 68 */ 69 70 /* 71 * Page fault handling module. 72 */ 73 74 #include <sys/cdefs.h> 75 __FBSDID("$FreeBSD$"); 76 77 #include "opt_ktrace.h" 78 #include "opt_vm.h" 79 80 #include <sys/param.h> 81 #include <sys/systm.h> 82 #include <sys/kernel.h> 83 #include <sys/lock.h> 84 #include <sys/mman.h> 85 #include <sys/proc.h> 86 #include <sys/racct.h> 87 #include <sys/resourcevar.h> 88 #include <sys/rwlock.h> 89 #include <sys/sysctl.h> 90 #include <sys/vmmeter.h> 91 #include <sys/vnode.h> 92 #ifdef KTRACE 93 #include <sys/ktrace.h> 94 #endif 95 96 #include <vm/vm.h> 97 #include <vm/vm_param.h> 98 #include <vm/pmap.h> 99 #include <vm/vm_map.h> 100 #include <vm/vm_object.h> 101 #include <vm/vm_page.h> 102 #include <vm/vm_pageout.h> 103 #include <vm/vm_kern.h> 104 #include <vm/vm_pager.h> 105 #include <vm/vm_extern.h> 106 #include <vm/vm_reserv.h> 107 108 #define PFBAK 4 109 #define PFFOR 4 110 111 #define VM_FAULT_READ_DEFAULT (1 + VM_FAULT_READ_AHEAD_INIT) 112 #define VM_FAULT_READ_MAX (1 + VM_FAULT_READ_AHEAD_MAX) 113 114 #define VM_FAULT_DONTNEED_MIN 1048576 115 116 struct faultstate { 117 vm_page_t m; 118 vm_object_t object; 119 vm_pindex_t pindex; 120 vm_page_t first_m; 121 vm_object_t first_object; 122 vm_pindex_t first_pindex; 123 vm_map_t map; 124 vm_map_entry_t entry; 125 int map_generation; 126 bool lookup_still_valid; 127 struct vnode *vp; 128 }; 129 130 static void vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, 131 int ahead); 132 static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra, 133 int backward, int forward); 134 135 static inline void 136 release_page(struct faultstate *fs) 137 { 138 139 vm_page_xunbusy(fs->m); 140 vm_page_lock(fs->m); 141 vm_page_deactivate(fs->m); 142 vm_page_unlock(fs->m); 143 fs->m = NULL; 144 } 145 146 static inline void 147 unlock_map(struct faultstate *fs) 148 { 149 150 if (fs->lookup_still_valid) { 151 vm_map_lookup_done(fs->map, fs->entry); 152 fs->lookup_still_valid = false; 153 } 154 } 155 156 static void 157 unlock_vp(struct faultstate *fs) 158 { 159 160 if (fs->vp != NULL) { 161 vput(fs->vp); 162 fs->vp = NULL; 163 } 164 } 165 166 static void 167 unlock_and_deallocate(struct faultstate *fs) 168 { 169 170 vm_object_pip_wakeup(fs->object); 171 VM_OBJECT_WUNLOCK(fs->object); 172 if (fs->object != fs->first_object) { 173 VM_OBJECT_WLOCK(fs->first_object); 174 vm_page_lock(fs->first_m); 175 vm_page_free(fs->first_m); 176 vm_page_unlock(fs->first_m); 177 vm_object_pip_wakeup(fs->first_object); 178 VM_OBJECT_WUNLOCK(fs->first_object); 179 fs->first_m = NULL; 180 } 181 vm_object_deallocate(fs->first_object); 182 unlock_map(fs); 183 unlock_vp(fs); 184 } 185 186 static void 187 vm_fault_dirty(vm_map_entry_t entry, vm_page_t m, vm_prot_t prot, 188 vm_prot_t fault_type, int fault_flags, bool set_wd) 189 { 190 bool need_dirty; 191 192 if (((prot & VM_PROT_WRITE) == 0 && 193 (fault_flags & VM_FAULT_DIRTY) == 0) || 194 (m->oflags & VPO_UNMANAGED) != 0) 195 return; 196 197 VM_OBJECT_ASSERT_LOCKED(m->object); 198 199 need_dirty = ((fault_type & VM_PROT_WRITE) != 0 && 200 (fault_flags & VM_FAULT_WIRE) == 0) || 201 (fault_flags & VM_FAULT_DIRTY) != 0; 202 203 if (set_wd) 204 vm_object_set_writeable_dirty(m->object); 205 else 206 /* 207 * If two callers of vm_fault_dirty() with set_wd == 208 * FALSE, one for the map entry with MAP_ENTRY_NOSYNC 209 * flag set, other with flag clear, race, it is 210 * possible for the no-NOSYNC thread to see m->dirty 211 * != 0 and not clear VPO_NOSYNC. Take vm_page lock 212 * around manipulation of VPO_NOSYNC and 213 * vm_page_dirty() call, to avoid the race and keep 214 * m->oflags consistent. 215 */ 216 vm_page_lock(m); 217 218 /* 219 * If this is a NOSYNC mmap we do not want to set VPO_NOSYNC 220 * if the page is already dirty to prevent data written with 221 * the expectation of being synced from not being synced. 222 * Likewise if this entry does not request NOSYNC then make 223 * sure the page isn't marked NOSYNC. Applications sharing 224 * data should use the same flags to avoid ping ponging. 225 */ 226 if ((entry->eflags & MAP_ENTRY_NOSYNC) != 0) { 227 if (m->dirty == 0) { 228 m->oflags |= VPO_NOSYNC; 229 } 230 } else { 231 m->oflags &= ~VPO_NOSYNC; 232 } 233 234 /* 235 * If the fault is a write, we know that this page is being 236 * written NOW so dirty it explicitly to save on 237 * pmap_is_modified() calls later. 238 * 239 * Also tell the backing pager, if any, that it should remove 240 * any swap backing since the page is now dirty. 241 */ 242 if (need_dirty) 243 vm_page_dirty(m); 244 if (!set_wd) 245 vm_page_unlock(m); 246 if (need_dirty) 247 vm_pager_page_unswapped(m); 248 } 249 250 static void 251 vm_fault_fill_hold(vm_page_t *m_hold, vm_page_t m) 252 { 253 254 if (m_hold != NULL) { 255 *m_hold = m; 256 vm_page_lock(m); 257 vm_page_hold(m); 258 vm_page_unlock(m); 259 } 260 } 261 262 /* 263 * Unlocks fs.first_object and fs.map on success. 264 */ 265 static int 266 vm_fault_soft_fast(struct faultstate *fs, vm_offset_t vaddr, vm_prot_t prot, 267 int fault_type, int fault_flags, boolean_t wired, vm_page_t *m_hold) 268 { 269 vm_page_t m; 270 int rv; 271 272 MPASS(fs->vp == NULL); 273 m = vm_page_lookup(fs->first_object, fs->first_pindex); 274 /* A busy page can be mapped for read|execute access. */ 275 if (m == NULL || ((prot & VM_PROT_WRITE) != 0 && 276 vm_page_busied(m)) || m->valid != VM_PAGE_BITS_ALL) 277 return (KERN_FAILURE); 278 rv = pmap_enter(fs->map->pmap, vaddr, m, prot, fault_type | 279 PMAP_ENTER_NOSLEEP | (wired ? PMAP_ENTER_WIRED : 0), 0); 280 if (rv != KERN_SUCCESS) 281 return (rv); 282 vm_fault_fill_hold(m_hold, m); 283 vm_fault_dirty(fs->entry, m, prot, fault_type, fault_flags, false); 284 VM_OBJECT_RUNLOCK(fs->first_object); 285 if (!wired) 286 vm_fault_prefault(fs, vaddr, PFBAK, PFFOR); 287 vm_map_lookup_done(fs->map, fs->entry); 288 curthread->td_ru.ru_minflt++; 289 return (KERN_SUCCESS); 290 } 291 292 static void 293 vm_fault_restore_map_lock(struct faultstate *fs) 294 { 295 296 VM_OBJECT_ASSERT_WLOCKED(fs->first_object); 297 MPASS(fs->first_object->paging_in_progress > 0); 298 299 if (!vm_map_trylock_read(fs->map)) { 300 VM_OBJECT_WUNLOCK(fs->first_object); 301 vm_map_lock_read(fs->map); 302 VM_OBJECT_WLOCK(fs->first_object); 303 } 304 fs->lookup_still_valid = true; 305 } 306 307 static void 308 vm_fault_populate_check_page(vm_page_t m) 309 { 310 311 /* 312 * Check each page to ensure that the pager is obeying the 313 * interface: the page must be installed in the object, fully 314 * valid, and exclusively busied. 315 */ 316 MPASS(m != NULL); 317 MPASS(m->valid == VM_PAGE_BITS_ALL); 318 MPASS(vm_page_xbusied(m)); 319 } 320 321 static void 322 vm_fault_populate_cleanup(vm_object_t object, vm_pindex_t first, 323 vm_pindex_t last) 324 { 325 vm_page_t m; 326 vm_pindex_t pidx; 327 328 VM_OBJECT_ASSERT_WLOCKED(object); 329 MPASS(first <= last); 330 for (pidx = first, m = vm_page_lookup(object, pidx); 331 pidx <= last; pidx++, m = vm_page_next(m)) { 332 vm_fault_populate_check_page(m); 333 vm_page_lock(m); 334 vm_page_deactivate(m); 335 vm_page_unlock(m); 336 vm_page_xunbusy(m); 337 } 338 } 339 340 static int 341 vm_fault_populate(struct faultstate *fs, vm_offset_t vaddr, vm_prot_t prot, 342 int fault_type, int fault_flags, boolean_t wired, vm_page_t *m_hold) 343 { 344 vm_page_t m; 345 vm_pindex_t map_first, map_last, pager_first, pager_last, pidx; 346 int rv; 347 348 MPASS(fs->object == fs->first_object); 349 VM_OBJECT_ASSERT_WLOCKED(fs->first_object); 350 MPASS(fs->first_object->paging_in_progress > 0); 351 MPASS(fs->first_object->backing_object == NULL); 352 MPASS(fs->lookup_still_valid); 353 354 pager_first = OFF_TO_IDX(fs->entry->offset); 355 pager_last = OFF_TO_IDX(fs->entry->offset + fs->entry->end - 356 fs->entry->start) - 1; 357 unlock_map(fs); 358 unlock_vp(fs); 359 360 /* 361 * Call the pager (driver) populate() method. 362 * 363 * There is no guarantee that the method will be called again 364 * if the current fault is for read, and a future fault is 365 * for write. Report the entry's maximum allowed protection 366 * to the driver. 367 */ 368 rv = vm_pager_populate(fs->first_object, fs->first_pindex, 369 fault_type, fs->entry->max_protection, &pager_first, &pager_last); 370 371 VM_OBJECT_ASSERT_WLOCKED(fs->first_object); 372 if (rv == VM_PAGER_BAD) { 373 /* 374 * VM_PAGER_BAD is the backdoor for a pager to request 375 * normal fault handling. 376 */ 377 vm_fault_restore_map_lock(fs); 378 if (fs->map->timestamp != fs->map_generation) 379 return (KERN_RESOURCE_SHORTAGE); /* RetryFault */ 380 return (KERN_NOT_RECEIVER); 381 } 382 if (rv != VM_PAGER_OK) 383 return (KERN_FAILURE); /* AKA SIGSEGV */ 384 385 /* Ensure that the driver is obeying the interface. */ 386 MPASS(pager_first <= pager_last); 387 MPASS(fs->first_pindex <= pager_last); 388 MPASS(fs->first_pindex >= pager_first); 389 MPASS(pager_last < fs->first_object->size); 390 391 vm_fault_restore_map_lock(fs); 392 if (fs->map->timestamp != fs->map_generation) { 393 vm_fault_populate_cleanup(fs->first_object, pager_first, 394 pager_last); 395 return (KERN_RESOURCE_SHORTAGE); /* RetryFault */ 396 } 397 398 /* 399 * The map is unchanged after our last unlock. Process the fault. 400 * 401 * The range [pager_first, pager_last] that is given to the 402 * pager is only a hint. The pager may populate any range 403 * within the object that includes the requested page index. 404 * In case the pager expanded the range, clip it to fit into 405 * the map entry. 406 */ 407 map_first = MAX(OFF_TO_IDX(fs->entry->offset), pager_first); 408 if (map_first > pager_first) 409 vm_fault_populate_cleanup(fs->first_object, pager_first, 410 map_first - 1); 411 map_last = MIN(OFF_TO_IDX(fs->entry->end - fs->entry->start + 412 fs->entry->offset), pager_last); 413 if (map_last < pager_last) 414 vm_fault_populate_cleanup(fs->first_object, map_last + 1, 415 pager_last); 416 417 for (pidx = map_first, m = vm_page_lookup(fs->first_object, pidx); 418 pidx <= map_last; pidx++, m = vm_page_next(m)) { 419 vm_fault_populate_check_page(m); 420 vm_fault_dirty(fs->entry, m, prot, fault_type, fault_flags, 421 true); 422 VM_OBJECT_WUNLOCK(fs->first_object); 423 pmap_enter(fs->map->pmap, fs->entry->start + IDX_TO_OFF(pidx) - 424 fs->entry->offset, m, prot, fault_type | (wired ? 425 PMAP_ENTER_WIRED : 0), 0); 426 VM_OBJECT_WLOCK(fs->first_object); 427 if (pidx == fs->first_pindex) 428 vm_fault_fill_hold(m_hold, m); 429 vm_page_lock(m); 430 if ((fault_flags & VM_FAULT_WIRE) != 0) { 431 KASSERT(wired, ("VM_FAULT_WIRE && !wired")); 432 vm_page_wire(m); 433 } else { 434 vm_page_activate(m); 435 } 436 vm_page_unlock(m); 437 vm_page_xunbusy(m); 438 } 439 curthread->td_ru.ru_majflt++; 440 return (KERN_SUCCESS); 441 } 442 443 /* 444 * vm_fault: 445 * 446 * Handle a page fault occurring at the given address, 447 * requiring the given permissions, in the map specified. 448 * If successful, the page is inserted into the 449 * associated physical map. 450 * 451 * NOTE: the given address should be truncated to the 452 * proper page address. 453 * 454 * KERN_SUCCESS is returned if the page fault is handled; otherwise, 455 * a standard error specifying why the fault is fatal is returned. 456 * 457 * The map in question must be referenced, and remains so. 458 * Caller may hold no locks. 459 */ 460 int 461 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, 462 int fault_flags) 463 { 464 struct thread *td; 465 int result; 466 467 td = curthread; 468 if ((td->td_pflags & TDP_NOFAULTING) != 0) 469 return (KERN_PROTECTION_FAILURE); 470 #ifdef KTRACE 471 if (map != kernel_map && KTRPOINT(td, KTR_FAULT)) 472 ktrfault(vaddr, fault_type); 473 #endif 474 result = vm_fault_hold(map, trunc_page(vaddr), fault_type, fault_flags, 475 NULL); 476 #ifdef KTRACE 477 if (map != kernel_map && KTRPOINT(td, KTR_FAULTEND)) 478 ktrfaultend(result); 479 #endif 480 return (result); 481 } 482 483 int 484 vm_fault_hold(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, 485 int fault_flags, vm_page_t *m_hold) 486 { 487 struct faultstate fs; 488 struct vnode *vp; 489 vm_object_t next_object, retry_object; 490 vm_offset_t e_end, e_start; 491 vm_pindex_t retry_pindex; 492 vm_prot_t prot, retry_prot; 493 int ahead, alloc_req, behind, cluster_offset, error, era, faultcount; 494 int locked, nera, result, rv; 495 u_char behavior; 496 boolean_t wired; /* Passed by reference. */ 497 bool dead, growstack, hardfault, is_first_object_locked; 498 499 PCPU_INC(cnt.v_vm_faults); 500 fs.vp = NULL; 501 faultcount = 0; 502 nera = -1; 503 growstack = true; 504 hardfault = false; 505 506 RetryFault:; 507 508 /* 509 * Find the backing store object and offset into it to begin the 510 * search. 511 */ 512 fs.map = map; 513 result = vm_map_lookup(&fs.map, vaddr, fault_type, &fs.entry, 514 &fs.first_object, &fs.first_pindex, &prot, &wired); 515 if (result != KERN_SUCCESS) { 516 if (growstack && result == KERN_INVALID_ADDRESS && 517 map != kernel_map) { 518 result = vm_map_growstack(curproc, vaddr); 519 if (result != KERN_SUCCESS) 520 return (KERN_FAILURE); 521 growstack = false; 522 goto RetryFault; 523 } 524 unlock_vp(&fs); 525 return (result); 526 } 527 528 fs.map_generation = fs.map->timestamp; 529 530 if (fs.entry->eflags & MAP_ENTRY_NOFAULT) { 531 panic("%s: fault on nofault entry, addr: %#lx", 532 __func__, (u_long)vaddr); 533 } 534 535 if (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION && 536 fs.entry->wiring_thread != curthread) { 537 vm_map_unlock_read(fs.map); 538 vm_map_lock(fs.map); 539 if (vm_map_lookup_entry(fs.map, vaddr, &fs.entry) && 540 (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION)) { 541 unlock_vp(&fs); 542 fs.entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 543 vm_map_unlock_and_wait(fs.map, 0); 544 } else 545 vm_map_unlock(fs.map); 546 goto RetryFault; 547 } 548 549 if (wired) 550 fault_type = prot | (fault_type & VM_PROT_COPY); 551 else 552 KASSERT((fault_flags & VM_FAULT_WIRE) == 0, 553 ("!wired && VM_FAULT_WIRE")); 554 555 /* 556 * Try to avoid lock contention on the top-level object through 557 * special-case handling of some types of page faults, specifically, 558 * those that are both (1) mapping an existing page from the top- 559 * level object and (2) not having to mark that object as containing 560 * dirty pages. Under these conditions, a read lock on the top-level 561 * object suffices, allowing multiple page faults of a similar type to 562 * run in parallel on the same top-level object. 563 */ 564 if (fs.vp == NULL /* avoid locked vnode leak */ && 565 (fault_flags & (VM_FAULT_WIRE | VM_FAULT_DIRTY)) == 0 && 566 /* avoid calling vm_object_set_writeable_dirty() */ 567 ((prot & VM_PROT_WRITE) == 0 || 568 (fs.first_object->type != OBJT_VNODE && 569 (fs.first_object->flags & OBJ_TMPFS_NODE) == 0) || 570 (fs.first_object->flags & OBJ_MIGHTBEDIRTY) != 0)) { 571 VM_OBJECT_RLOCK(fs.first_object); 572 if ((prot & VM_PROT_WRITE) == 0 || 573 (fs.first_object->type != OBJT_VNODE && 574 (fs.first_object->flags & OBJ_TMPFS_NODE) == 0) || 575 (fs.first_object->flags & OBJ_MIGHTBEDIRTY) != 0) { 576 rv = vm_fault_soft_fast(&fs, vaddr, prot, fault_type, 577 fault_flags, wired, m_hold); 578 if (rv == KERN_SUCCESS) 579 return (rv); 580 } 581 if (!VM_OBJECT_TRYUPGRADE(fs.first_object)) { 582 VM_OBJECT_RUNLOCK(fs.first_object); 583 VM_OBJECT_WLOCK(fs.first_object); 584 } 585 } else { 586 VM_OBJECT_WLOCK(fs.first_object); 587 } 588 589 /* 590 * Make a reference to this object to prevent its disposal while we 591 * are messing with it. Once we have the reference, the map is free 592 * to be diddled. Since objects reference their shadows (and copies), 593 * they will stay around as well. 594 * 595 * Bump the paging-in-progress count to prevent size changes (e.g. 596 * truncation operations) during I/O. 597 */ 598 vm_object_reference_locked(fs.first_object); 599 vm_object_pip_add(fs.first_object, 1); 600 601 fs.lookup_still_valid = true; 602 603 fs.first_m = NULL; 604 605 /* 606 * Search for the page at object/offset. 607 */ 608 fs.object = fs.first_object; 609 fs.pindex = fs.first_pindex; 610 while (TRUE) { 611 /* 612 * If the object is marked for imminent termination, 613 * we retry here, since the collapse pass has raced 614 * with us. Otherwise, if we see terminally dead 615 * object, return fail. 616 */ 617 if ((fs.object->flags & OBJ_DEAD) != 0) { 618 dead = fs.object->type == OBJT_DEAD; 619 unlock_and_deallocate(&fs); 620 if (dead) 621 return (KERN_PROTECTION_FAILURE); 622 pause("vmf_de", 1); 623 goto RetryFault; 624 } 625 626 /* 627 * See if page is resident 628 */ 629 fs.m = vm_page_lookup(fs.object, fs.pindex); 630 if (fs.m != NULL) { 631 /* 632 * Wait/Retry if the page is busy. We have to do this 633 * if the page is either exclusive or shared busy 634 * because the vm_pager may be using read busy for 635 * pageouts (and even pageins if it is the vnode 636 * pager), and we could end up trying to pagein and 637 * pageout the same page simultaneously. 638 * 639 * We can theoretically allow the busy case on a read 640 * fault if the page is marked valid, but since such 641 * pages are typically already pmap'd, putting that 642 * special case in might be more effort then it is 643 * worth. We cannot under any circumstances mess 644 * around with a shared busied page except, perhaps, 645 * to pmap it. 646 */ 647 if (vm_page_busied(fs.m)) { 648 /* 649 * Reference the page before unlocking and 650 * sleeping so that the page daemon is less 651 * likely to reclaim it. 652 */ 653 vm_page_aflag_set(fs.m, PGA_REFERENCED); 654 if (fs.object != fs.first_object) { 655 if (!VM_OBJECT_TRYWLOCK( 656 fs.first_object)) { 657 VM_OBJECT_WUNLOCK(fs.object); 658 VM_OBJECT_WLOCK(fs.first_object); 659 VM_OBJECT_WLOCK(fs.object); 660 } 661 vm_page_lock(fs.first_m); 662 vm_page_free(fs.first_m); 663 vm_page_unlock(fs.first_m); 664 vm_object_pip_wakeup(fs.first_object); 665 VM_OBJECT_WUNLOCK(fs.first_object); 666 fs.first_m = NULL; 667 } 668 unlock_map(&fs); 669 if (fs.m == vm_page_lookup(fs.object, 670 fs.pindex)) { 671 vm_page_sleep_if_busy(fs.m, "vmpfw"); 672 } 673 vm_object_pip_wakeup(fs.object); 674 VM_OBJECT_WUNLOCK(fs.object); 675 PCPU_INC(cnt.v_intrans); 676 vm_object_deallocate(fs.first_object); 677 goto RetryFault; 678 } 679 vm_page_lock(fs.m); 680 vm_page_remque(fs.m); 681 vm_page_unlock(fs.m); 682 683 /* 684 * Mark page busy for other processes, and the 685 * pagedaemon. If it still isn't completely valid 686 * (readable), jump to readrest, else break-out ( we 687 * found the page ). 688 */ 689 vm_page_xbusy(fs.m); 690 if (fs.m->valid != VM_PAGE_BITS_ALL) 691 goto readrest; 692 break; 693 } 694 KASSERT(fs.m == NULL, ("fs.m should be NULL, not %p", fs.m)); 695 696 /* 697 * Page is not resident. If the pager might contain the page 698 * or this is the beginning of the search, allocate a new 699 * page. (Default objects are zero-fill, so there is no real 700 * pager for them.) 701 */ 702 if (fs.object->type != OBJT_DEFAULT || 703 fs.object == fs.first_object) { 704 if (fs.pindex >= fs.object->size) { 705 unlock_and_deallocate(&fs); 706 return (KERN_PROTECTION_FAILURE); 707 } 708 709 if (fs.object == fs.first_object && 710 (fs.first_object->flags & OBJ_POPULATE) != 0 && 711 fs.first_object->shadow_count == 0) { 712 rv = vm_fault_populate(&fs, vaddr, prot, 713 fault_type, fault_flags, wired, m_hold); 714 switch (rv) { 715 case KERN_SUCCESS: 716 case KERN_FAILURE: 717 unlock_and_deallocate(&fs); 718 return (rv); 719 case KERN_RESOURCE_SHORTAGE: 720 unlock_and_deallocate(&fs); 721 goto RetryFault; 722 case KERN_NOT_RECEIVER: 723 /* 724 * Pager's populate() method 725 * returned VM_PAGER_BAD. 726 */ 727 break; 728 default: 729 panic("inconsistent return codes"); 730 } 731 } 732 733 /* 734 * Allocate a new page for this object/offset pair. 735 * 736 * Unlocked read of the p_flag is harmless. At 737 * worst, the P_KILLED might be not observed 738 * there, and allocation can fail, causing 739 * restart and new reading of the p_flag. 740 */ 741 if (!vm_page_count_severe() || P_KILLED(curproc)) { 742 #if VM_NRESERVLEVEL > 0 743 vm_object_color(fs.object, atop(vaddr) - 744 fs.pindex); 745 #endif 746 alloc_req = P_KILLED(curproc) ? 747 VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL; 748 if (fs.object->type != OBJT_VNODE && 749 fs.object->backing_object == NULL) 750 alloc_req |= VM_ALLOC_ZERO; 751 fs.m = vm_page_alloc(fs.object, fs.pindex, 752 alloc_req); 753 } 754 if (fs.m == NULL) { 755 unlock_and_deallocate(&fs); 756 VM_WAITPFAULT; 757 goto RetryFault; 758 } 759 } 760 761 readrest: 762 /* 763 * At this point, we have either allocated a new page or found 764 * an existing page that is only partially valid. 765 * 766 * We hold a reference on the current object and the page is 767 * exclusive busied. 768 */ 769 770 /* 771 * If the pager for the current object might have the page, 772 * then determine the number of additional pages to read and 773 * potentially reprioritize previously read pages for earlier 774 * reclamation. These operations should only be performed 775 * once per page fault. Even if the current pager doesn't 776 * have the page, the number of additional pages to read will 777 * apply to subsequent objects in the shadow chain. 778 */ 779 if (fs.object->type != OBJT_DEFAULT && nera == -1 && 780 !P_KILLED(curproc)) { 781 KASSERT(fs.lookup_still_valid, ("map unlocked")); 782 era = fs.entry->read_ahead; 783 behavior = vm_map_entry_behavior(fs.entry); 784 if (behavior == MAP_ENTRY_BEHAV_RANDOM) { 785 nera = 0; 786 } else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) { 787 nera = VM_FAULT_READ_AHEAD_MAX; 788 if (vaddr == fs.entry->next_read) 789 vm_fault_dontneed(&fs, vaddr, nera); 790 } else if (vaddr == fs.entry->next_read) { 791 /* 792 * This is a sequential fault. Arithmetically 793 * increase the requested number of pages in 794 * the read-ahead window. The requested 795 * number of pages is "# of sequential faults 796 * x (read ahead min + 1) + read ahead min" 797 */ 798 nera = VM_FAULT_READ_AHEAD_MIN; 799 if (era > 0) { 800 nera += era + 1; 801 if (nera > VM_FAULT_READ_AHEAD_MAX) 802 nera = VM_FAULT_READ_AHEAD_MAX; 803 } 804 if (era == VM_FAULT_READ_AHEAD_MAX) 805 vm_fault_dontneed(&fs, vaddr, nera); 806 } else { 807 /* 808 * This is a non-sequential fault. 809 */ 810 nera = 0; 811 } 812 if (era != nera) { 813 /* 814 * A read lock on the map suffices to update 815 * the read ahead count safely. 816 */ 817 fs.entry->read_ahead = nera; 818 } 819 820 /* 821 * Prepare for unlocking the map. Save the map 822 * entry's start and end addresses, which are used to 823 * optimize the size of the pager operation below. 824 * Even if the map entry's addresses change after 825 * unlocking the map, using the saved addresses is 826 * safe. 827 */ 828 e_start = fs.entry->start; 829 e_end = fs.entry->end; 830 } 831 832 /* 833 * Call the pager to retrieve the page if there is a chance 834 * that the pager has it, and potentially retrieve additional 835 * pages at the same time. 836 */ 837 if (fs.object->type != OBJT_DEFAULT) { 838 /* 839 * Release the map lock before locking the vnode or 840 * sleeping in the pager. (If the current object has 841 * a shadow, then an earlier iteration of this loop 842 * may have already unlocked the map.) 843 */ 844 unlock_map(&fs); 845 846 if (fs.object->type == OBJT_VNODE && 847 (vp = fs.object->handle) != fs.vp) { 848 /* 849 * Perform an unlock in case the desired vnode 850 * changed while the map was unlocked during a 851 * retry. 852 */ 853 unlock_vp(&fs); 854 855 locked = VOP_ISLOCKED(vp); 856 if (locked != LK_EXCLUSIVE) 857 locked = LK_SHARED; 858 859 /* 860 * We must not sleep acquiring the vnode lock 861 * while we have the page exclusive busied or 862 * the object's paging-in-progress count 863 * incremented. Otherwise, we could deadlock. 864 */ 865 error = vget(vp, locked | LK_CANRECURSE | 866 LK_NOWAIT, curthread); 867 if (error != 0) { 868 vhold(vp); 869 release_page(&fs); 870 unlock_and_deallocate(&fs); 871 error = vget(vp, locked | LK_RETRY | 872 LK_CANRECURSE, curthread); 873 vdrop(vp); 874 fs.vp = vp; 875 KASSERT(error == 0, 876 ("vm_fault: vget failed")); 877 goto RetryFault; 878 } 879 fs.vp = vp; 880 } 881 KASSERT(fs.vp == NULL || !fs.map->system_map, 882 ("vm_fault: vnode-backed object mapped by system map")); 883 884 /* 885 * Page in the requested page and hint the pager, 886 * that it may bring up surrounding pages. 887 */ 888 if (nera == -1 || behavior == MAP_ENTRY_BEHAV_RANDOM || 889 P_KILLED(curproc)) { 890 behind = 0; 891 ahead = 0; 892 } else { 893 /* Is this a sequential fault? */ 894 if (nera > 0) { 895 behind = 0; 896 ahead = nera; 897 } else { 898 /* 899 * Request a cluster of pages that is 900 * aligned to a VM_FAULT_READ_DEFAULT 901 * page offset boundary within the 902 * object. Alignment to a page offset 903 * boundary is more likely to coincide 904 * with the underlying file system 905 * block than alignment to a virtual 906 * address boundary. 907 */ 908 cluster_offset = fs.pindex % 909 VM_FAULT_READ_DEFAULT; 910 behind = ulmin(cluster_offset, 911 atop(vaddr - e_start)); 912 ahead = VM_FAULT_READ_DEFAULT - 1 - 913 cluster_offset; 914 } 915 ahead = ulmin(ahead, atop(e_end - vaddr) - 1); 916 } 917 rv = vm_pager_get_pages(fs.object, &fs.m, 1, 918 &behind, &ahead); 919 if (rv == VM_PAGER_OK) { 920 faultcount = behind + 1 + ahead; 921 hardfault = true; 922 break; /* break to PAGE HAS BEEN FOUND */ 923 } 924 if (rv == VM_PAGER_ERROR) 925 printf("vm_fault: pager read error, pid %d (%s)\n", 926 curproc->p_pid, curproc->p_comm); 927 928 /* 929 * If an I/O error occurred or the requested page was 930 * outside the range of the pager, clean up and return 931 * an error. 932 */ 933 if (rv == VM_PAGER_ERROR || rv == VM_PAGER_BAD) { 934 vm_page_lock(fs.m); 935 if (fs.m->wire_count == 0) 936 vm_page_free(fs.m); 937 else 938 vm_page_xunbusy_maybelocked(fs.m); 939 vm_page_unlock(fs.m); 940 fs.m = NULL; 941 unlock_and_deallocate(&fs); 942 return (rv == VM_PAGER_ERROR ? KERN_FAILURE : 943 KERN_PROTECTION_FAILURE); 944 } 945 946 /* 947 * The requested page does not exist at this object/ 948 * offset. Remove the invalid page from the object, 949 * waking up anyone waiting for it, and continue on to 950 * the next object. However, if this is the top-level 951 * object, we must leave the busy page in place to 952 * prevent another process from rushing past us, and 953 * inserting the page in that object at the same time 954 * that we are. 955 */ 956 if (fs.object != fs.first_object) { 957 vm_page_lock(fs.m); 958 if (fs.m->wire_count == 0) 959 vm_page_free(fs.m); 960 else 961 vm_page_xunbusy_maybelocked(fs.m); 962 vm_page_unlock(fs.m); 963 fs.m = NULL; 964 } 965 } 966 967 /* 968 * We get here if the object has default pager (or unwiring) 969 * or the pager doesn't have the page. 970 */ 971 if (fs.object == fs.first_object) 972 fs.first_m = fs.m; 973 974 /* 975 * Move on to the next object. Lock the next object before 976 * unlocking the current one. 977 */ 978 next_object = fs.object->backing_object; 979 if (next_object == NULL) { 980 /* 981 * If there's no object left, fill the page in the top 982 * object with zeros. 983 */ 984 if (fs.object != fs.first_object) { 985 vm_object_pip_wakeup(fs.object); 986 VM_OBJECT_WUNLOCK(fs.object); 987 988 fs.object = fs.first_object; 989 fs.pindex = fs.first_pindex; 990 fs.m = fs.first_m; 991 VM_OBJECT_WLOCK(fs.object); 992 } 993 fs.first_m = NULL; 994 995 /* 996 * Zero the page if necessary and mark it valid. 997 */ 998 if ((fs.m->flags & PG_ZERO) == 0) { 999 pmap_zero_page(fs.m); 1000 } else { 1001 PCPU_INC(cnt.v_ozfod); 1002 } 1003 PCPU_INC(cnt.v_zfod); 1004 fs.m->valid = VM_PAGE_BITS_ALL; 1005 /* Don't try to prefault neighboring pages. */ 1006 faultcount = 1; 1007 break; /* break to PAGE HAS BEEN FOUND */ 1008 } else { 1009 KASSERT(fs.object != next_object, 1010 ("object loop %p", next_object)); 1011 VM_OBJECT_WLOCK(next_object); 1012 vm_object_pip_add(next_object, 1); 1013 if (fs.object != fs.first_object) 1014 vm_object_pip_wakeup(fs.object); 1015 fs.pindex += 1016 OFF_TO_IDX(fs.object->backing_object_offset); 1017 VM_OBJECT_WUNLOCK(fs.object); 1018 fs.object = next_object; 1019 } 1020 } 1021 1022 vm_page_assert_xbusied(fs.m); 1023 1024 /* 1025 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock 1026 * is held.] 1027 */ 1028 1029 /* 1030 * If the page is being written, but isn't already owned by the 1031 * top-level object, we have to copy it into a new page owned by the 1032 * top-level object. 1033 */ 1034 if (fs.object != fs.first_object) { 1035 /* 1036 * We only really need to copy if we want to write it. 1037 */ 1038 if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) { 1039 /* 1040 * This allows pages to be virtually copied from a 1041 * backing_object into the first_object, where the 1042 * backing object has no other refs to it, and cannot 1043 * gain any more refs. Instead of a bcopy, we just 1044 * move the page from the backing object to the 1045 * first object. Note that we must mark the page 1046 * dirty in the first object so that it will go out 1047 * to swap when needed. 1048 */ 1049 is_first_object_locked = false; 1050 if ( 1051 /* 1052 * Only one shadow object 1053 */ 1054 (fs.object->shadow_count == 1) && 1055 /* 1056 * No COW refs, except us 1057 */ 1058 (fs.object->ref_count == 1) && 1059 /* 1060 * No one else can look this object up 1061 */ 1062 (fs.object->handle == NULL) && 1063 /* 1064 * No other ways to look the object up 1065 */ 1066 ((fs.object->type == OBJT_DEFAULT) || 1067 (fs.object->type == OBJT_SWAP)) && 1068 (is_first_object_locked = VM_OBJECT_TRYWLOCK(fs.first_object)) && 1069 /* 1070 * We don't chase down the shadow chain 1071 */ 1072 fs.object == fs.first_object->backing_object) { 1073 vm_page_lock(fs.m); 1074 vm_page_remove(fs.m); 1075 vm_page_unlock(fs.m); 1076 vm_page_lock(fs.first_m); 1077 vm_page_replace_checked(fs.m, fs.first_object, 1078 fs.first_pindex, fs.first_m); 1079 vm_page_free(fs.first_m); 1080 vm_page_unlock(fs.first_m); 1081 vm_page_dirty(fs.m); 1082 #if VM_NRESERVLEVEL > 0 1083 /* 1084 * Rename the reservation. 1085 */ 1086 vm_reserv_rename(fs.m, fs.first_object, 1087 fs.object, OFF_TO_IDX( 1088 fs.first_object->backing_object_offset)); 1089 #endif 1090 /* 1091 * Removing the page from the backing object 1092 * unbusied it. 1093 */ 1094 vm_page_xbusy(fs.m); 1095 fs.first_m = fs.m; 1096 fs.m = NULL; 1097 PCPU_INC(cnt.v_cow_optim); 1098 } else { 1099 /* 1100 * Oh, well, lets copy it. 1101 */ 1102 pmap_copy_page(fs.m, fs.first_m); 1103 fs.first_m->valid = VM_PAGE_BITS_ALL; 1104 if (wired && (fault_flags & 1105 VM_FAULT_WIRE) == 0) { 1106 vm_page_lock(fs.first_m); 1107 vm_page_wire(fs.first_m); 1108 vm_page_unlock(fs.first_m); 1109 1110 vm_page_lock(fs.m); 1111 vm_page_unwire(fs.m, PQ_INACTIVE); 1112 vm_page_unlock(fs.m); 1113 } 1114 /* 1115 * We no longer need the old page or object. 1116 */ 1117 release_page(&fs); 1118 } 1119 /* 1120 * fs.object != fs.first_object due to above 1121 * conditional 1122 */ 1123 vm_object_pip_wakeup(fs.object); 1124 VM_OBJECT_WUNLOCK(fs.object); 1125 /* 1126 * Only use the new page below... 1127 */ 1128 fs.object = fs.first_object; 1129 fs.pindex = fs.first_pindex; 1130 fs.m = fs.first_m; 1131 if (!is_first_object_locked) 1132 VM_OBJECT_WLOCK(fs.object); 1133 PCPU_INC(cnt.v_cow_faults); 1134 curthread->td_cow++; 1135 } else { 1136 prot &= ~VM_PROT_WRITE; 1137 } 1138 } 1139 1140 /* 1141 * We must verify that the maps have not changed since our last 1142 * lookup. 1143 */ 1144 if (!fs.lookup_still_valid) { 1145 if (!vm_map_trylock_read(fs.map)) { 1146 release_page(&fs); 1147 unlock_and_deallocate(&fs); 1148 goto RetryFault; 1149 } 1150 fs.lookup_still_valid = true; 1151 if (fs.map->timestamp != fs.map_generation) { 1152 result = vm_map_lookup_locked(&fs.map, vaddr, fault_type, 1153 &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired); 1154 1155 /* 1156 * If we don't need the page any longer, put it on the inactive 1157 * list (the easiest thing to do here). If no one needs it, 1158 * pageout will grab it eventually. 1159 */ 1160 if (result != KERN_SUCCESS) { 1161 release_page(&fs); 1162 unlock_and_deallocate(&fs); 1163 1164 /* 1165 * If retry of map lookup would have blocked then 1166 * retry fault from start. 1167 */ 1168 if (result == KERN_FAILURE) 1169 goto RetryFault; 1170 return (result); 1171 } 1172 if ((retry_object != fs.first_object) || 1173 (retry_pindex != fs.first_pindex)) { 1174 release_page(&fs); 1175 unlock_and_deallocate(&fs); 1176 goto RetryFault; 1177 } 1178 1179 /* 1180 * Check whether the protection has changed or the object has 1181 * been copied while we left the map unlocked. Changing from 1182 * read to write permission is OK - we leave the page 1183 * write-protected, and catch the write fault. Changing from 1184 * write to read permission means that we can't mark the page 1185 * write-enabled after all. 1186 */ 1187 prot &= retry_prot; 1188 } 1189 } 1190 1191 /* 1192 * If the page was filled by a pager, save the virtual address that 1193 * should be faulted on next under a sequential access pattern to the 1194 * map entry. A read lock on the map suffices to update this address 1195 * safely. 1196 */ 1197 if (hardfault) 1198 fs.entry->next_read = vaddr + ptoa(ahead) + PAGE_SIZE; 1199 1200 vm_fault_dirty(fs.entry, fs.m, prot, fault_type, fault_flags, true); 1201 vm_page_assert_xbusied(fs.m); 1202 1203 /* 1204 * Page must be completely valid or it is not fit to 1205 * map into user space. vm_pager_get_pages() ensures this. 1206 */ 1207 KASSERT(fs.m->valid == VM_PAGE_BITS_ALL, 1208 ("vm_fault: page %p partially invalid", fs.m)); 1209 VM_OBJECT_WUNLOCK(fs.object); 1210 1211 /* 1212 * Put this page into the physical map. We had to do the unlock above 1213 * because pmap_enter() may sleep. We don't put the page 1214 * back on the active queue until later so that the pageout daemon 1215 * won't find it (yet). 1216 */ 1217 pmap_enter(fs.map->pmap, vaddr, fs.m, prot, 1218 fault_type | (wired ? PMAP_ENTER_WIRED : 0), 0); 1219 if (faultcount != 1 && (fault_flags & VM_FAULT_WIRE) == 0 && 1220 wired == 0) 1221 vm_fault_prefault(&fs, vaddr, 1222 faultcount > 0 ? behind : PFBAK, 1223 faultcount > 0 ? ahead : PFFOR); 1224 VM_OBJECT_WLOCK(fs.object); 1225 vm_page_lock(fs.m); 1226 1227 /* 1228 * If the page is not wired down, then put it where the pageout daemon 1229 * can find it. 1230 */ 1231 if ((fault_flags & VM_FAULT_WIRE) != 0) { 1232 KASSERT(wired, ("VM_FAULT_WIRE && !wired")); 1233 vm_page_wire(fs.m); 1234 } else 1235 vm_page_activate(fs.m); 1236 if (m_hold != NULL) { 1237 *m_hold = fs.m; 1238 vm_page_hold(fs.m); 1239 } 1240 vm_page_unlock(fs.m); 1241 vm_page_xunbusy(fs.m); 1242 1243 /* 1244 * Unlock everything, and return 1245 */ 1246 unlock_and_deallocate(&fs); 1247 if (hardfault) { 1248 PCPU_INC(cnt.v_io_faults); 1249 curthread->td_ru.ru_majflt++; 1250 #ifdef RACCT 1251 if (racct_enable && fs.object->type == OBJT_VNODE) { 1252 PROC_LOCK(curproc); 1253 if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) { 1254 racct_add_force(curproc, RACCT_WRITEBPS, 1255 PAGE_SIZE + behind * PAGE_SIZE); 1256 racct_add_force(curproc, RACCT_WRITEIOPS, 1); 1257 } else { 1258 racct_add_force(curproc, RACCT_READBPS, 1259 PAGE_SIZE + ahead * PAGE_SIZE); 1260 racct_add_force(curproc, RACCT_READIOPS, 1); 1261 } 1262 PROC_UNLOCK(curproc); 1263 } 1264 #endif 1265 } else 1266 curthread->td_ru.ru_minflt++; 1267 1268 return (KERN_SUCCESS); 1269 } 1270 1271 /* 1272 * Speed up the reclamation of pages that precede the faulting pindex within 1273 * the first object of the shadow chain. Essentially, perform the equivalent 1274 * to madvise(..., MADV_DONTNEED) on a large cluster of pages that precedes 1275 * the faulting pindex by the cluster size when the pages read by vm_fault() 1276 * cross a cluster-size boundary. The cluster size is the greater of the 1277 * smallest superpage size and VM_FAULT_DONTNEED_MIN. 1278 * 1279 * When "fs->first_object" is a shadow object, the pages in the backing object 1280 * that precede the faulting pindex are deactivated by vm_fault(). So, this 1281 * function must only be concerned with pages in the first object. 1282 */ 1283 static void 1284 vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, int ahead) 1285 { 1286 vm_map_entry_t entry; 1287 vm_object_t first_object, object; 1288 vm_offset_t end, start; 1289 vm_page_t m, m_next; 1290 vm_pindex_t pend, pstart; 1291 vm_size_t size; 1292 1293 object = fs->object; 1294 VM_OBJECT_ASSERT_WLOCKED(object); 1295 first_object = fs->first_object; 1296 if (first_object != object) { 1297 if (!VM_OBJECT_TRYWLOCK(first_object)) { 1298 VM_OBJECT_WUNLOCK(object); 1299 VM_OBJECT_WLOCK(first_object); 1300 VM_OBJECT_WLOCK(object); 1301 } 1302 } 1303 /* Neither fictitious nor unmanaged pages can be reclaimed. */ 1304 if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) { 1305 size = VM_FAULT_DONTNEED_MIN; 1306 if (MAXPAGESIZES > 1 && size < pagesizes[1]) 1307 size = pagesizes[1]; 1308 end = rounddown2(vaddr, size); 1309 if (vaddr - end >= size - PAGE_SIZE - ptoa(ahead) && 1310 (entry = fs->entry)->start < end) { 1311 if (end - entry->start < size) 1312 start = entry->start; 1313 else 1314 start = end - size; 1315 pmap_advise(fs->map->pmap, start, end, MADV_DONTNEED); 1316 pstart = OFF_TO_IDX(entry->offset) + atop(start - 1317 entry->start); 1318 m_next = vm_page_find_least(first_object, pstart); 1319 pend = OFF_TO_IDX(entry->offset) + atop(end - 1320 entry->start); 1321 while ((m = m_next) != NULL && m->pindex < pend) { 1322 m_next = TAILQ_NEXT(m, listq); 1323 if (m->valid != VM_PAGE_BITS_ALL || 1324 vm_page_busied(m)) 1325 continue; 1326 1327 /* 1328 * Don't clear PGA_REFERENCED, since it would 1329 * likely represent a reference by a different 1330 * process. 1331 * 1332 * Typically, at this point, prefetched pages 1333 * are still in the inactive queue. Only 1334 * pages that triggered page faults are in the 1335 * active queue. 1336 */ 1337 vm_page_lock(m); 1338 vm_page_deactivate(m); 1339 vm_page_unlock(m); 1340 } 1341 } 1342 } 1343 if (first_object != object) 1344 VM_OBJECT_WUNLOCK(first_object); 1345 } 1346 1347 /* 1348 * vm_fault_prefault provides a quick way of clustering 1349 * pagefaults into a processes address space. It is a "cousin" 1350 * of vm_map_pmap_enter, except it runs at page fault time instead 1351 * of mmap time. 1352 */ 1353 static void 1354 vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra, 1355 int backward, int forward) 1356 { 1357 pmap_t pmap; 1358 vm_map_entry_t entry; 1359 vm_object_t backing_object, lobject; 1360 vm_offset_t addr, starta; 1361 vm_pindex_t pindex; 1362 vm_page_t m; 1363 int i; 1364 1365 pmap = fs->map->pmap; 1366 if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) 1367 return; 1368 1369 entry = fs->entry; 1370 1371 if (addra < backward * PAGE_SIZE) { 1372 starta = entry->start; 1373 } else { 1374 starta = addra - backward * PAGE_SIZE; 1375 if (starta < entry->start) 1376 starta = entry->start; 1377 } 1378 1379 /* 1380 * Generate the sequence of virtual addresses that are candidates for 1381 * prefaulting in an outward spiral from the faulting virtual address, 1382 * "addra". Specifically, the sequence is "addra - PAGE_SIZE", "addra 1383 * + PAGE_SIZE", "addra - 2 * PAGE_SIZE", "addra + 2 * PAGE_SIZE", ... 1384 * If the candidate address doesn't have a backing physical page, then 1385 * the loop immediately terminates. 1386 */ 1387 for (i = 0; i < 2 * imax(backward, forward); i++) { 1388 addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE : 1389 PAGE_SIZE); 1390 if (addr > addra + forward * PAGE_SIZE) 1391 addr = 0; 1392 1393 if (addr < starta || addr >= entry->end) 1394 continue; 1395 1396 if (!pmap_is_prefaultable(pmap, addr)) 1397 continue; 1398 1399 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT; 1400 lobject = entry->object.vm_object; 1401 VM_OBJECT_RLOCK(lobject); 1402 while ((m = vm_page_lookup(lobject, pindex)) == NULL && 1403 lobject->type == OBJT_DEFAULT && 1404 (backing_object = lobject->backing_object) != NULL) { 1405 KASSERT((lobject->backing_object_offset & PAGE_MASK) == 1406 0, ("vm_fault_prefault: unaligned object offset")); 1407 pindex += lobject->backing_object_offset >> PAGE_SHIFT; 1408 VM_OBJECT_RLOCK(backing_object); 1409 VM_OBJECT_RUNLOCK(lobject); 1410 lobject = backing_object; 1411 } 1412 if (m == NULL) { 1413 VM_OBJECT_RUNLOCK(lobject); 1414 break; 1415 } 1416 if (m->valid == VM_PAGE_BITS_ALL && 1417 (m->flags & PG_FICTITIOUS) == 0) 1418 pmap_enter_quick(pmap, addr, m, entry->protection); 1419 VM_OBJECT_RUNLOCK(lobject); 1420 } 1421 } 1422 1423 /* 1424 * Hold each of the physical pages that are mapped by the specified range of 1425 * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid 1426 * and allow the specified types of access, "prot". If all of the implied 1427 * pages are successfully held, then the number of held pages is returned 1428 * together with pointers to those pages in the array "ma". However, if any 1429 * of the pages cannot be held, -1 is returned. 1430 */ 1431 int 1432 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len, 1433 vm_prot_t prot, vm_page_t *ma, int max_count) 1434 { 1435 vm_offset_t end, va; 1436 vm_page_t *mp; 1437 int count; 1438 boolean_t pmap_failed; 1439 1440 if (len == 0) 1441 return (0); 1442 end = round_page(addr + len); 1443 addr = trunc_page(addr); 1444 1445 /* 1446 * Check for illegal addresses. 1447 */ 1448 if (addr < vm_map_min(map) || addr > end || end > vm_map_max(map)) 1449 return (-1); 1450 1451 if (atop(end - addr) > max_count) 1452 panic("vm_fault_quick_hold_pages: count > max_count"); 1453 count = atop(end - addr); 1454 1455 /* 1456 * Most likely, the physical pages are resident in the pmap, so it is 1457 * faster to try pmap_extract_and_hold() first. 1458 */ 1459 pmap_failed = FALSE; 1460 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) { 1461 *mp = pmap_extract_and_hold(map->pmap, va, prot); 1462 if (*mp == NULL) 1463 pmap_failed = TRUE; 1464 else if ((prot & VM_PROT_WRITE) != 0 && 1465 (*mp)->dirty != VM_PAGE_BITS_ALL) { 1466 /* 1467 * Explicitly dirty the physical page. Otherwise, the 1468 * caller's changes may go unnoticed because they are 1469 * performed through an unmanaged mapping or by a DMA 1470 * operation. 1471 * 1472 * The object lock is not held here. 1473 * See vm_page_clear_dirty_mask(). 1474 */ 1475 vm_page_dirty(*mp); 1476 } 1477 } 1478 if (pmap_failed) { 1479 /* 1480 * One or more pages could not be held by the pmap. Either no 1481 * page was mapped at the specified virtual address or that 1482 * mapping had insufficient permissions. Attempt to fault in 1483 * and hold these pages. 1484 */ 1485 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) 1486 if (*mp == NULL && vm_fault_hold(map, va, prot, 1487 VM_FAULT_NORMAL, mp) != KERN_SUCCESS) 1488 goto error; 1489 } 1490 return (count); 1491 error: 1492 for (mp = ma; mp < ma + count; mp++) 1493 if (*mp != NULL) { 1494 vm_page_lock(*mp); 1495 vm_page_unhold(*mp); 1496 vm_page_unlock(*mp); 1497 } 1498 return (-1); 1499 } 1500 1501 /* 1502 * Routine: 1503 * vm_fault_copy_entry 1504 * Function: 1505 * Create new shadow object backing dst_entry with private copy of 1506 * all underlying pages. When src_entry is equal to dst_entry, 1507 * function implements COW for wired-down map entry. Otherwise, 1508 * it forks wired entry into dst_map. 1509 * 1510 * In/out conditions: 1511 * The source and destination maps must be locked for write. 1512 * The source map entry must be wired down (or be a sharing map 1513 * entry corresponding to a main map entry that is wired down). 1514 */ 1515 void 1516 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map, 1517 vm_map_entry_t dst_entry, vm_map_entry_t src_entry, 1518 vm_ooffset_t *fork_charge) 1519 { 1520 vm_object_t backing_object, dst_object, object, src_object; 1521 vm_pindex_t dst_pindex, pindex, src_pindex; 1522 vm_prot_t access, prot; 1523 vm_offset_t vaddr; 1524 vm_page_t dst_m; 1525 vm_page_t src_m; 1526 boolean_t upgrade; 1527 1528 #ifdef lint 1529 src_map++; 1530 #endif /* lint */ 1531 1532 upgrade = src_entry == dst_entry; 1533 access = prot = dst_entry->protection; 1534 1535 src_object = src_entry->object.vm_object; 1536 src_pindex = OFF_TO_IDX(src_entry->offset); 1537 1538 if (upgrade && (dst_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) { 1539 dst_object = src_object; 1540 vm_object_reference(dst_object); 1541 } else { 1542 /* 1543 * Create the top-level object for the destination entry. (Doesn't 1544 * actually shadow anything - we copy the pages directly.) 1545 */ 1546 dst_object = vm_object_allocate(OBJT_DEFAULT, 1547 OFF_TO_IDX(dst_entry->end - dst_entry->start)); 1548 #if VM_NRESERVLEVEL > 0 1549 dst_object->flags |= OBJ_COLORED; 1550 dst_object->pg_color = atop(dst_entry->start); 1551 #endif 1552 } 1553 1554 VM_OBJECT_WLOCK(dst_object); 1555 KASSERT(upgrade || dst_entry->object.vm_object == NULL, 1556 ("vm_fault_copy_entry: vm_object not NULL")); 1557 if (src_object != dst_object) { 1558 dst_entry->object.vm_object = dst_object; 1559 dst_entry->offset = 0; 1560 dst_object->charge = dst_entry->end - dst_entry->start; 1561 } 1562 if (fork_charge != NULL) { 1563 KASSERT(dst_entry->cred == NULL, 1564 ("vm_fault_copy_entry: leaked swp charge")); 1565 dst_object->cred = curthread->td_ucred; 1566 crhold(dst_object->cred); 1567 *fork_charge += dst_object->charge; 1568 } else if (dst_object->cred == NULL) { 1569 KASSERT(dst_entry->cred != NULL, ("no cred for entry %p", 1570 dst_entry)); 1571 dst_object->cred = dst_entry->cred; 1572 dst_entry->cred = NULL; 1573 } 1574 1575 /* 1576 * If not an upgrade, then enter the mappings in the pmap as 1577 * read and/or execute accesses. Otherwise, enter them as 1578 * write accesses. 1579 * 1580 * A writeable large page mapping is only created if all of 1581 * the constituent small page mappings are modified. Marking 1582 * PTEs as modified on inception allows promotion to happen 1583 * without taking potentially large number of soft faults. 1584 */ 1585 if (!upgrade) 1586 access &= ~VM_PROT_WRITE; 1587 1588 /* 1589 * Loop through all of the virtual pages within the entry's 1590 * range, copying each page from the source object to the 1591 * destination object. Since the source is wired, those pages 1592 * must exist. In contrast, the destination is pageable. 1593 * Since the destination object does share any backing storage 1594 * with the source object, all of its pages must be dirtied, 1595 * regardless of whether they can be written. 1596 */ 1597 for (vaddr = dst_entry->start, dst_pindex = 0; 1598 vaddr < dst_entry->end; 1599 vaddr += PAGE_SIZE, dst_pindex++) { 1600 again: 1601 /* 1602 * Find the page in the source object, and copy it in. 1603 * Because the source is wired down, the page will be 1604 * in memory. 1605 */ 1606 if (src_object != dst_object) 1607 VM_OBJECT_RLOCK(src_object); 1608 object = src_object; 1609 pindex = src_pindex + dst_pindex; 1610 while ((src_m = vm_page_lookup(object, pindex)) == NULL && 1611 (backing_object = object->backing_object) != NULL) { 1612 /* 1613 * Unless the source mapping is read-only or 1614 * it is presently being upgraded from 1615 * read-only, the first object in the shadow 1616 * chain should provide all of the pages. In 1617 * other words, this loop body should never be 1618 * executed when the source mapping is already 1619 * read/write. 1620 */ 1621 KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 || 1622 upgrade, 1623 ("vm_fault_copy_entry: main object missing page")); 1624 1625 VM_OBJECT_RLOCK(backing_object); 1626 pindex += OFF_TO_IDX(object->backing_object_offset); 1627 if (object != dst_object) 1628 VM_OBJECT_RUNLOCK(object); 1629 object = backing_object; 1630 } 1631 KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing")); 1632 1633 if (object != dst_object) { 1634 /* 1635 * Allocate a page in the destination object. 1636 */ 1637 dst_m = vm_page_alloc(dst_object, (src_object == 1638 dst_object ? src_pindex : 0) + dst_pindex, 1639 VM_ALLOC_NORMAL); 1640 if (dst_m == NULL) { 1641 VM_OBJECT_WUNLOCK(dst_object); 1642 VM_OBJECT_RUNLOCK(object); 1643 VM_WAIT; 1644 VM_OBJECT_WLOCK(dst_object); 1645 goto again; 1646 } 1647 pmap_copy_page(src_m, dst_m); 1648 VM_OBJECT_RUNLOCK(object); 1649 dst_m->valid = VM_PAGE_BITS_ALL; 1650 dst_m->dirty = VM_PAGE_BITS_ALL; 1651 } else { 1652 dst_m = src_m; 1653 if (vm_page_sleep_if_busy(dst_m, "fltupg")) 1654 goto again; 1655 vm_page_xbusy(dst_m); 1656 KASSERT(dst_m->valid == VM_PAGE_BITS_ALL, 1657 ("invalid dst page %p", dst_m)); 1658 } 1659 VM_OBJECT_WUNLOCK(dst_object); 1660 1661 /* 1662 * Enter it in the pmap. If a wired, copy-on-write 1663 * mapping is being replaced by a write-enabled 1664 * mapping, then wire that new mapping. 1665 */ 1666 pmap_enter(dst_map->pmap, vaddr, dst_m, prot, 1667 access | (upgrade ? PMAP_ENTER_WIRED : 0), 0); 1668 1669 /* 1670 * Mark it no longer busy, and put it on the active list. 1671 */ 1672 VM_OBJECT_WLOCK(dst_object); 1673 1674 if (upgrade) { 1675 if (src_m != dst_m) { 1676 vm_page_lock(src_m); 1677 vm_page_unwire(src_m, PQ_INACTIVE); 1678 vm_page_unlock(src_m); 1679 vm_page_lock(dst_m); 1680 vm_page_wire(dst_m); 1681 vm_page_unlock(dst_m); 1682 } else { 1683 KASSERT(dst_m->wire_count > 0, 1684 ("dst_m %p is not wired", dst_m)); 1685 } 1686 } else { 1687 vm_page_lock(dst_m); 1688 vm_page_activate(dst_m); 1689 vm_page_unlock(dst_m); 1690 } 1691 vm_page_xunbusy(dst_m); 1692 } 1693 VM_OBJECT_WUNLOCK(dst_object); 1694 if (upgrade) { 1695 dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY); 1696 vm_object_deallocate(src_object); 1697 } 1698 } 1699 1700 /* 1701 * Block entry into the machine-independent layer's page fault handler by 1702 * the calling thread. Subsequent calls to vm_fault() by that thread will 1703 * return KERN_PROTECTION_FAILURE. Enable machine-dependent handling of 1704 * spurious page faults. 1705 */ 1706 int 1707 vm_fault_disable_pagefaults(void) 1708 { 1709 1710 return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR)); 1711 } 1712 1713 void 1714 vm_fault_enable_pagefaults(int save) 1715 { 1716 1717 curthread_pflags_restore(save); 1718 } 1719