1 /*- 2 * SPDX-License-Identifier: (BSD-4-Clause AND MIT-CMU) 3 * 4 * Copyright (c) 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * Copyright (c) 1994 John S. Dyson 7 * All rights reserved. 8 * Copyright (c) 1994 David Greenman 9 * All rights reserved. 10 * 11 * 12 * This code is derived from software contributed to Berkeley by 13 * The Mach Operating System project at Carnegie-Mellon University. 14 * 15 * Redistribution and use in source and binary forms, with or without 16 * modification, are permitted provided that the following conditions 17 * are met: 18 * 1. Redistributions of source code must retain the above copyright 19 * notice, this list of conditions and the following disclaimer. 20 * 2. Redistributions in binary form must reproduce the above copyright 21 * notice, this list of conditions and the following disclaimer in the 22 * documentation and/or other materials provided with the distribution. 23 * 3. All advertising materials mentioning features or use of this software 24 * must display the following acknowledgement: 25 * This product includes software developed by the University of 26 * California, Berkeley and its contributors. 27 * 4. Neither the name of the University nor the names of its contributors 28 * may be used to endorse or promote products derived from this software 29 * without specific prior written permission. 30 * 31 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 32 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 33 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 34 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 35 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 39 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 40 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 41 * SUCH DAMAGE. 42 * 43 * from: @(#)vm_fault.c 8.4 (Berkeley) 1/12/94 44 * 45 * 46 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 47 * All rights reserved. 48 * 49 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 50 * 51 * Permission to use, copy, modify and distribute this software and 52 * its documentation is hereby granted, provided that both the copyright 53 * notice and this permission notice appear in all copies of the 54 * software, derivative works or modified versions, and any portions 55 * thereof, and that both notices appear in supporting documentation. 56 * 57 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 58 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 59 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 60 * 61 * Carnegie Mellon requests users of this software to return to 62 * 63 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 64 * School of Computer Science 65 * Carnegie Mellon University 66 * Pittsburgh PA 15213-3890 67 * 68 * any improvements or extensions that they make and grant Carnegie the 69 * rights to redistribute these changes. 70 */ 71 72 /* 73 * Page fault handling module. 74 */ 75 76 #include <sys/cdefs.h> 77 __FBSDID("$FreeBSD$"); 78 79 #include "opt_ktrace.h" 80 #include "opt_vm.h" 81 82 #include <sys/param.h> 83 #include <sys/systm.h> 84 #include <sys/kernel.h> 85 #include <sys/lock.h> 86 #include <sys/mman.h> 87 #include <sys/proc.h> 88 #include <sys/racct.h> 89 #include <sys/resourcevar.h> 90 #include <sys/rwlock.h> 91 #include <sys/sysctl.h> 92 #include <sys/vmmeter.h> 93 #include <sys/vnode.h> 94 #ifdef KTRACE 95 #include <sys/ktrace.h> 96 #endif 97 98 #include <vm/vm.h> 99 #include <vm/vm_param.h> 100 #include <vm/pmap.h> 101 #include <vm/vm_map.h> 102 #include <vm/vm_object.h> 103 #include <vm/vm_page.h> 104 #include <vm/vm_pageout.h> 105 #include <vm/vm_kern.h> 106 #include <vm/vm_pager.h> 107 #include <vm/vm_extern.h> 108 #include <vm/vm_reserv.h> 109 110 #define PFBAK 4 111 #define PFFOR 4 112 113 #define VM_FAULT_READ_DEFAULT (1 + VM_FAULT_READ_AHEAD_INIT) 114 #define VM_FAULT_READ_MAX (1 + VM_FAULT_READ_AHEAD_MAX) 115 116 #define VM_FAULT_DONTNEED_MIN 1048576 117 118 struct faultstate { 119 vm_page_t m; 120 vm_object_t object; 121 vm_pindex_t pindex; 122 vm_page_t first_m; 123 vm_object_t first_object; 124 vm_pindex_t first_pindex; 125 vm_map_t map; 126 vm_map_entry_t entry; 127 int map_generation; 128 bool lookup_still_valid; 129 struct vnode *vp; 130 }; 131 132 static void vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, 133 int ahead); 134 static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra, 135 int backward, int forward, bool obj_locked); 136 137 static inline void 138 release_page(struct faultstate *fs) 139 { 140 141 vm_page_xunbusy(fs->m); 142 vm_page_lock(fs->m); 143 vm_page_deactivate(fs->m); 144 vm_page_unlock(fs->m); 145 fs->m = NULL; 146 } 147 148 static inline void 149 unlock_map(struct faultstate *fs) 150 { 151 152 if (fs->lookup_still_valid) { 153 vm_map_lookup_done(fs->map, fs->entry); 154 fs->lookup_still_valid = false; 155 } 156 } 157 158 static void 159 unlock_vp(struct faultstate *fs) 160 { 161 162 if (fs->vp != NULL) { 163 vput(fs->vp); 164 fs->vp = NULL; 165 } 166 } 167 168 static void 169 unlock_and_deallocate(struct faultstate *fs) 170 { 171 172 vm_object_pip_wakeup(fs->object); 173 VM_OBJECT_WUNLOCK(fs->object); 174 if (fs->object != fs->first_object) { 175 VM_OBJECT_WLOCK(fs->first_object); 176 vm_page_lock(fs->first_m); 177 vm_page_free(fs->first_m); 178 vm_page_unlock(fs->first_m); 179 vm_object_pip_wakeup(fs->first_object); 180 VM_OBJECT_WUNLOCK(fs->first_object); 181 fs->first_m = NULL; 182 } 183 vm_object_deallocate(fs->first_object); 184 unlock_map(fs); 185 unlock_vp(fs); 186 } 187 188 static void 189 vm_fault_dirty(vm_map_entry_t entry, vm_page_t m, vm_prot_t prot, 190 vm_prot_t fault_type, int fault_flags, bool set_wd) 191 { 192 bool need_dirty; 193 194 if (((prot & VM_PROT_WRITE) == 0 && 195 (fault_flags & VM_FAULT_DIRTY) == 0) || 196 (m->oflags & VPO_UNMANAGED) != 0) 197 return; 198 199 VM_OBJECT_ASSERT_LOCKED(m->object); 200 201 need_dirty = ((fault_type & VM_PROT_WRITE) != 0 && 202 (fault_flags & VM_FAULT_WIRE) == 0) || 203 (fault_flags & VM_FAULT_DIRTY) != 0; 204 205 if (set_wd) 206 vm_object_set_writeable_dirty(m->object); 207 else 208 /* 209 * If two callers of vm_fault_dirty() with set_wd == 210 * FALSE, one for the map entry with MAP_ENTRY_NOSYNC 211 * flag set, other with flag clear, race, it is 212 * possible for the no-NOSYNC thread to see m->dirty 213 * != 0 and not clear VPO_NOSYNC. Take vm_page lock 214 * around manipulation of VPO_NOSYNC and 215 * vm_page_dirty() call, to avoid the race and keep 216 * m->oflags consistent. 217 */ 218 vm_page_lock(m); 219 220 /* 221 * If this is a NOSYNC mmap we do not want to set VPO_NOSYNC 222 * if the page is already dirty to prevent data written with 223 * the expectation of being synced from not being synced. 224 * Likewise if this entry does not request NOSYNC then make 225 * sure the page isn't marked NOSYNC. Applications sharing 226 * data should use the same flags to avoid ping ponging. 227 */ 228 if ((entry->eflags & MAP_ENTRY_NOSYNC) != 0) { 229 if (m->dirty == 0) { 230 m->oflags |= VPO_NOSYNC; 231 } 232 } else { 233 m->oflags &= ~VPO_NOSYNC; 234 } 235 236 /* 237 * If the fault is a write, we know that this page is being 238 * written NOW so dirty it explicitly to save on 239 * pmap_is_modified() calls later. 240 * 241 * Also, since the page is now dirty, we can possibly tell 242 * the pager to release any swap backing the page. Calling 243 * the pager requires a write lock on the object. 244 */ 245 if (need_dirty) 246 vm_page_dirty(m); 247 if (!set_wd) 248 vm_page_unlock(m); 249 else if (need_dirty) 250 vm_pager_page_unswapped(m); 251 } 252 253 static void 254 vm_fault_fill_hold(vm_page_t *m_hold, vm_page_t m) 255 { 256 257 if (m_hold != NULL) { 258 *m_hold = m; 259 vm_page_lock(m); 260 vm_page_hold(m); 261 vm_page_unlock(m); 262 } 263 } 264 265 /* 266 * Unlocks fs.first_object and fs.map on success. 267 */ 268 static int 269 vm_fault_soft_fast(struct faultstate *fs, vm_offset_t vaddr, vm_prot_t prot, 270 int fault_type, int fault_flags, boolean_t wired, vm_page_t *m_hold) 271 { 272 vm_page_t m, m_map; 273 #if defined(__amd64__) && VM_NRESERVLEVEL > 0 274 vm_page_t m_super; 275 int flags; 276 #endif 277 int psind, rv; 278 279 MPASS(fs->vp == NULL); 280 m = vm_page_lookup(fs->first_object, fs->first_pindex); 281 /* A busy page can be mapped for read|execute access. */ 282 if (m == NULL || ((prot & VM_PROT_WRITE) != 0 && 283 vm_page_busied(m)) || m->valid != VM_PAGE_BITS_ALL) 284 return (KERN_FAILURE); 285 m_map = m; 286 psind = 0; 287 #if defined(__amd64__) && VM_NRESERVLEVEL > 0 288 if ((m->flags & PG_FICTITIOUS) == 0 && 289 (m_super = vm_reserv_to_superpage(m)) != NULL && 290 rounddown2(vaddr, pagesizes[m_super->psind]) >= fs->entry->start && 291 roundup2(vaddr + 1, pagesizes[m_super->psind]) <= fs->entry->end && 292 (vaddr & (pagesizes[m_super->psind] - 1)) == (VM_PAGE_TO_PHYS(m) & 293 (pagesizes[m_super->psind] - 1)) && 294 pmap_ps_enabled(fs->map->pmap)) { 295 flags = PS_ALL_VALID; 296 if ((prot & VM_PROT_WRITE) != 0) { 297 /* 298 * Create a superpage mapping allowing write access 299 * only if none of the constituent pages are busy and 300 * all of them are already dirty (except possibly for 301 * the page that was faulted on). 302 */ 303 flags |= PS_NONE_BUSY; 304 if ((fs->first_object->flags & OBJ_UNMANAGED) == 0) 305 flags |= PS_ALL_DIRTY; 306 } 307 if (vm_page_ps_test(m_super, flags, m)) { 308 m_map = m_super; 309 psind = m_super->psind; 310 vaddr = rounddown2(vaddr, pagesizes[psind]); 311 /* Preset the modified bit for dirty superpages. */ 312 if ((flags & PS_ALL_DIRTY) != 0) 313 fault_type |= VM_PROT_WRITE; 314 } 315 } 316 #endif 317 rv = pmap_enter(fs->map->pmap, vaddr, m_map, prot, fault_type | 318 PMAP_ENTER_NOSLEEP | (wired ? PMAP_ENTER_WIRED : 0), psind); 319 if (rv != KERN_SUCCESS) 320 return (rv); 321 vm_fault_fill_hold(m_hold, m); 322 vm_fault_dirty(fs->entry, m, prot, fault_type, fault_flags, false); 323 if (psind == 0 && !wired) 324 vm_fault_prefault(fs, vaddr, PFBAK, PFFOR, true); 325 VM_OBJECT_RUNLOCK(fs->first_object); 326 vm_map_lookup_done(fs->map, fs->entry); 327 curthread->td_ru.ru_minflt++; 328 return (KERN_SUCCESS); 329 } 330 331 static void 332 vm_fault_restore_map_lock(struct faultstate *fs) 333 { 334 335 VM_OBJECT_ASSERT_WLOCKED(fs->first_object); 336 MPASS(fs->first_object->paging_in_progress > 0); 337 338 if (!vm_map_trylock_read(fs->map)) { 339 VM_OBJECT_WUNLOCK(fs->first_object); 340 vm_map_lock_read(fs->map); 341 VM_OBJECT_WLOCK(fs->first_object); 342 } 343 fs->lookup_still_valid = true; 344 } 345 346 static void 347 vm_fault_populate_check_page(vm_page_t m) 348 { 349 350 /* 351 * Check each page to ensure that the pager is obeying the 352 * interface: the page must be installed in the object, fully 353 * valid, and exclusively busied. 354 */ 355 MPASS(m != NULL); 356 MPASS(m->valid == VM_PAGE_BITS_ALL); 357 MPASS(vm_page_xbusied(m)); 358 } 359 360 static void 361 vm_fault_populate_cleanup(vm_object_t object, vm_pindex_t first, 362 vm_pindex_t last) 363 { 364 vm_page_t m; 365 vm_pindex_t pidx; 366 367 VM_OBJECT_ASSERT_WLOCKED(object); 368 MPASS(first <= last); 369 for (pidx = first, m = vm_page_lookup(object, pidx); 370 pidx <= last; pidx++, m = vm_page_next(m)) { 371 vm_fault_populate_check_page(m); 372 vm_page_lock(m); 373 vm_page_deactivate(m); 374 vm_page_unlock(m); 375 vm_page_xunbusy(m); 376 } 377 } 378 379 static int 380 vm_fault_populate(struct faultstate *fs, vm_prot_t prot, int fault_type, 381 int fault_flags, boolean_t wired, vm_page_t *m_hold) 382 { 383 struct mtx *m_mtx; 384 vm_offset_t vaddr; 385 vm_page_t m; 386 vm_pindex_t map_first, map_last, pager_first, pager_last, pidx; 387 int i, npages, psind, rv; 388 389 MPASS(fs->object == fs->first_object); 390 VM_OBJECT_ASSERT_WLOCKED(fs->first_object); 391 MPASS(fs->first_object->paging_in_progress > 0); 392 MPASS(fs->first_object->backing_object == NULL); 393 MPASS(fs->lookup_still_valid); 394 395 pager_first = OFF_TO_IDX(fs->entry->offset); 396 pager_last = pager_first + atop(fs->entry->end - fs->entry->start) - 1; 397 unlock_map(fs); 398 unlock_vp(fs); 399 400 /* 401 * Call the pager (driver) populate() method. 402 * 403 * There is no guarantee that the method will be called again 404 * if the current fault is for read, and a future fault is 405 * for write. Report the entry's maximum allowed protection 406 * to the driver. 407 */ 408 rv = vm_pager_populate(fs->first_object, fs->first_pindex, 409 fault_type, fs->entry->max_protection, &pager_first, &pager_last); 410 411 VM_OBJECT_ASSERT_WLOCKED(fs->first_object); 412 if (rv == VM_PAGER_BAD) { 413 /* 414 * VM_PAGER_BAD is the backdoor for a pager to request 415 * normal fault handling. 416 */ 417 vm_fault_restore_map_lock(fs); 418 if (fs->map->timestamp != fs->map_generation) 419 return (KERN_RESOURCE_SHORTAGE); /* RetryFault */ 420 return (KERN_NOT_RECEIVER); 421 } 422 if (rv != VM_PAGER_OK) 423 return (KERN_FAILURE); /* AKA SIGSEGV */ 424 425 /* Ensure that the driver is obeying the interface. */ 426 MPASS(pager_first <= pager_last); 427 MPASS(fs->first_pindex <= pager_last); 428 MPASS(fs->first_pindex >= pager_first); 429 MPASS(pager_last < fs->first_object->size); 430 431 vm_fault_restore_map_lock(fs); 432 if (fs->map->timestamp != fs->map_generation) { 433 vm_fault_populate_cleanup(fs->first_object, pager_first, 434 pager_last); 435 return (KERN_RESOURCE_SHORTAGE); /* RetryFault */ 436 } 437 438 /* 439 * The map is unchanged after our last unlock. Process the fault. 440 * 441 * The range [pager_first, pager_last] that is given to the 442 * pager is only a hint. The pager may populate any range 443 * within the object that includes the requested page index. 444 * In case the pager expanded the range, clip it to fit into 445 * the map entry. 446 */ 447 map_first = OFF_TO_IDX(fs->entry->offset); 448 if (map_first > pager_first) { 449 vm_fault_populate_cleanup(fs->first_object, pager_first, 450 map_first - 1); 451 pager_first = map_first; 452 } 453 map_last = map_first + atop(fs->entry->end - fs->entry->start) - 1; 454 if (map_last < pager_last) { 455 vm_fault_populate_cleanup(fs->first_object, map_last + 1, 456 pager_last); 457 pager_last = map_last; 458 } 459 for (pidx = pager_first, m = vm_page_lookup(fs->first_object, pidx); 460 pidx <= pager_last; 461 pidx += npages, m = vm_page_next(&m[npages - 1])) { 462 vaddr = fs->entry->start + IDX_TO_OFF(pidx) - fs->entry->offset; 463 #if defined(__amd64__) 464 psind = m->psind; 465 if (psind > 0 && ((vaddr & (pagesizes[psind] - 1)) != 0 || 466 pidx + OFF_TO_IDX(pagesizes[psind]) - 1 > pager_last || 467 !pmap_ps_enabled(fs->map->pmap))) 468 psind = 0; 469 #else 470 psind = 0; 471 #endif 472 npages = atop(pagesizes[psind]); 473 for (i = 0; i < npages; i++) { 474 vm_fault_populate_check_page(&m[i]); 475 vm_fault_dirty(fs->entry, &m[i], prot, fault_type, 476 fault_flags, true); 477 } 478 VM_OBJECT_WUNLOCK(fs->first_object); 479 pmap_enter(fs->map->pmap, vaddr, m, prot, fault_type | (wired ? 480 PMAP_ENTER_WIRED : 0), psind); 481 VM_OBJECT_WLOCK(fs->first_object); 482 m_mtx = NULL; 483 for (i = 0; i < npages; i++) { 484 vm_page_change_lock(&m[i], &m_mtx); 485 if ((fault_flags & VM_FAULT_WIRE) != 0) 486 vm_page_wire(&m[i]); 487 else 488 vm_page_activate(&m[i]); 489 if (m_hold != NULL && m[i].pindex == fs->first_pindex) { 490 *m_hold = &m[i]; 491 vm_page_hold(&m[i]); 492 } 493 vm_page_xunbusy_maybelocked(&m[i]); 494 } 495 if (m_mtx != NULL) 496 mtx_unlock(m_mtx); 497 } 498 curthread->td_ru.ru_majflt++; 499 return (KERN_SUCCESS); 500 } 501 502 /* 503 * vm_fault: 504 * 505 * Handle a page fault occurring at the given address, 506 * requiring the given permissions, in the map specified. 507 * If successful, the page is inserted into the 508 * associated physical map. 509 * 510 * NOTE: the given address should be truncated to the 511 * proper page address. 512 * 513 * KERN_SUCCESS is returned if the page fault is handled; otherwise, 514 * a standard error specifying why the fault is fatal is returned. 515 * 516 * The map in question must be referenced, and remains so. 517 * Caller may hold no locks. 518 */ 519 int 520 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, 521 int fault_flags) 522 { 523 struct thread *td; 524 int result; 525 526 td = curthread; 527 if ((td->td_pflags & TDP_NOFAULTING) != 0) 528 return (KERN_PROTECTION_FAILURE); 529 #ifdef KTRACE 530 if (map != kernel_map && KTRPOINT(td, KTR_FAULT)) 531 ktrfault(vaddr, fault_type); 532 #endif 533 result = vm_fault_hold(map, trunc_page(vaddr), fault_type, fault_flags, 534 NULL); 535 #ifdef KTRACE 536 if (map != kernel_map && KTRPOINT(td, KTR_FAULTEND)) 537 ktrfaultend(result); 538 #endif 539 return (result); 540 } 541 542 int 543 vm_fault_hold(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, 544 int fault_flags, vm_page_t *m_hold) 545 { 546 struct faultstate fs; 547 struct vnode *vp; 548 vm_object_t next_object, retry_object; 549 vm_offset_t e_end, e_start; 550 vm_pindex_t retry_pindex; 551 vm_prot_t prot, retry_prot; 552 int ahead, alloc_req, behind, cluster_offset, error, era, faultcount; 553 int locked, nera, result, rv; 554 u_char behavior; 555 boolean_t wired; /* Passed by reference. */ 556 bool dead, hardfault, is_first_object_locked; 557 558 VM_CNT_INC(v_vm_faults); 559 fs.vp = NULL; 560 faultcount = 0; 561 nera = -1; 562 hardfault = false; 563 564 RetryFault:; 565 566 /* 567 * Find the backing store object and offset into it to begin the 568 * search. 569 */ 570 fs.map = map; 571 result = vm_map_lookup(&fs.map, vaddr, fault_type | 572 VM_PROT_FAULT_LOOKUP, &fs.entry, &fs.first_object, 573 &fs.first_pindex, &prot, &wired); 574 if (result != KERN_SUCCESS) { 575 unlock_vp(&fs); 576 return (result); 577 } 578 579 fs.map_generation = fs.map->timestamp; 580 581 if (fs.entry->eflags & MAP_ENTRY_NOFAULT) { 582 panic("%s: fault on nofault entry, addr: %#lx", 583 __func__, (u_long)vaddr); 584 } 585 586 if (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION && 587 fs.entry->wiring_thread != curthread) { 588 vm_map_unlock_read(fs.map); 589 vm_map_lock(fs.map); 590 if (vm_map_lookup_entry(fs.map, vaddr, &fs.entry) && 591 (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION)) { 592 unlock_vp(&fs); 593 fs.entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 594 vm_map_unlock_and_wait(fs.map, 0); 595 } else 596 vm_map_unlock(fs.map); 597 goto RetryFault; 598 } 599 600 MPASS((fs.entry->eflags & MAP_ENTRY_GUARD) == 0); 601 602 if (wired) 603 fault_type = prot | (fault_type & VM_PROT_COPY); 604 else 605 KASSERT((fault_flags & VM_FAULT_WIRE) == 0, 606 ("!wired && VM_FAULT_WIRE")); 607 608 /* 609 * Try to avoid lock contention on the top-level object through 610 * special-case handling of some types of page faults, specifically, 611 * those that are both (1) mapping an existing page from the top- 612 * level object and (2) not having to mark that object as containing 613 * dirty pages. Under these conditions, a read lock on the top-level 614 * object suffices, allowing multiple page faults of a similar type to 615 * run in parallel on the same top-level object. 616 */ 617 if (fs.vp == NULL /* avoid locked vnode leak */ && 618 (fault_flags & (VM_FAULT_WIRE | VM_FAULT_DIRTY)) == 0 && 619 /* avoid calling vm_object_set_writeable_dirty() */ 620 ((prot & VM_PROT_WRITE) == 0 || 621 (fs.first_object->type != OBJT_VNODE && 622 (fs.first_object->flags & OBJ_TMPFS_NODE) == 0) || 623 (fs.first_object->flags & OBJ_MIGHTBEDIRTY) != 0)) { 624 VM_OBJECT_RLOCK(fs.first_object); 625 if ((prot & VM_PROT_WRITE) == 0 || 626 (fs.first_object->type != OBJT_VNODE && 627 (fs.first_object->flags & OBJ_TMPFS_NODE) == 0) || 628 (fs.first_object->flags & OBJ_MIGHTBEDIRTY) != 0) { 629 rv = vm_fault_soft_fast(&fs, vaddr, prot, fault_type, 630 fault_flags, wired, m_hold); 631 if (rv == KERN_SUCCESS) 632 return (rv); 633 } 634 if (!VM_OBJECT_TRYUPGRADE(fs.first_object)) { 635 VM_OBJECT_RUNLOCK(fs.first_object); 636 VM_OBJECT_WLOCK(fs.first_object); 637 } 638 } else { 639 VM_OBJECT_WLOCK(fs.first_object); 640 } 641 642 /* 643 * Make a reference to this object to prevent its disposal while we 644 * are messing with it. Once we have the reference, the map is free 645 * to be diddled. Since objects reference their shadows (and copies), 646 * they will stay around as well. 647 * 648 * Bump the paging-in-progress count to prevent size changes (e.g. 649 * truncation operations) during I/O. 650 */ 651 vm_object_reference_locked(fs.first_object); 652 vm_object_pip_add(fs.first_object, 1); 653 654 fs.lookup_still_valid = true; 655 656 fs.first_m = NULL; 657 658 /* 659 * Search for the page at object/offset. 660 */ 661 fs.object = fs.first_object; 662 fs.pindex = fs.first_pindex; 663 while (TRUE) { 664 /* 665 * If the object is marked for imminent termination, 666 * we retry here, since the collapse pass has raced 667 * with us. Otherwise, if we see terminally dead 668 * object, return fail. 669 */ 670 if ((fs.object->flags & OBJ_DEAD) != 0) { 671 dead = fs.object->type == OBJT_DEAD; 672 unlock_and_deallocate(&fs); 673 if (dead) 674 return (KERN_PROTECTION_FAILURE); 675 pause("vmf_de", 1); 676 goto RetryFault; 677 } 678 679 /* 680 * See if page is resident 681 */ 682 fs.m = vm_page_lookup(fs.object, fs.pindex); 683 if (fs.m != NULL) { 684 /* 685 * Wait/Retry if the page is busy. We have to do this 686 * if the page is either exclusive or shared busy 687 * because the vm_pager may be using read busy for 688 * pageouts (and even pageins if it is the vnode 689 * pager), and we could end up trying to pagein and 690 * pageout the same page simultaneously. 691 * 692 * We can theoretically allow the busy case on a read 693 * fault if the page is marked valid, but since such 694 * pages are typically already pmap'd, putting that 695 * special case in might be more effort then it is 696 * worth. We cannot under any circumstances mess 697 * around with a shared busied page except, perhaps, 698 * to pmap it. 699 */ 700 if (vm_page_busied(fs.m)) { 701 /* 702 * Reference the page before unlocking and 703 * sleeping so that the page daemon is less 704 * likely to reclaim it. 705 */ 706 vm_page_aflag_set(fs.m, PGA_REFERENCED); 707 if (fs.object != fs.first_object) { 708 if (!VM_OBJECT_TRYWLOCK( 709 fs.first_object)) { 710 VM_OBJECT_WUNLOCK(fs.object); 711 VM_OBJECT_WLOCK(fs.first_object); 712 VM_OBJECT_WLOCK(fs.object); 713 } 714 vm_page_lock(fs.first_m); 715 vm_page_free(fs.first_m); 716 vm_page_unlock(fs.first_m); 717 vm_object_pip_wakeup(fs.first_object); 718 VM_OBJECT_WUNLOCK(fs.first_object); 719 fs.first_m = NULL; 720 } 721 unlock_map(&fs); 722 if (fs.m == vm_page_lookup(fs.object, 723 fs.pindex)) { 724 vm_page_sleep_if_busy(fs.m, "vmpfw"); 725 } 726 vm_object_pip_wakeup(fs.object); 727 VM_OBJECT_WUNLOCK(fs.object); 728 VM_CNT_INC(v_intrans); 729 vm_object_deallocate(fs.first_object); 730 goto RetryFault; 731 } 732 733 /* 734 * Mark page busy for other processes, and the 735 * pagedaemon. If it still isn't completely valid 736 * (readable), jump to readrest, else break-out ( we 737 * found the page ). 738 */ 739 vm_page_xbusy(fs.m); 740 if (fs.m->valid != VM_PAGE_BITS_ALL) 741 goto readrest; 742 break; /* break to PAGE HAS BEEN FOUND */ 743 } 744 KASSERT(fs.m == NULL, ("fs.m should be NULL, not %p", fs.m)); 745 746 /* 747 * Page is not resident. If the pager might contain the page 748 * or this is the beginning of the search, allocate a new 749 * page. (Default objects are zero-fill, so there is no real 750 * pager for them.) 751 */ 752 if (fs.object->type != OBJT_DEFAULT || 753 fs.object == fs.first_object) { 754 if (fs.pindex >= fs.object->size) { 755 unlock_and_deallocate(&fs); 756 return (KERN_PROTECTION_FAILURE); 757 } 758 759 if (fs.object == fs.first_object && 760 (fs.first_object->flags & OBJ_POPULATE) != 0 && 761 fs.first_object->shadow_count == 0) { 762 rv = vm_fault_populate(&fs, prot, fault_type, 763 fault_flags, wired, m_hold); 764 switch (rv) { 765 case KERN_SUCCESS: 766 case KERN_FAILURE: 767 unlock_and_deallocate(&fs); 768 return (rv); 769 case KERN_RESOURCE_SHORTAGE: 770 unlock_and_deallocate(&fs); 771 goto RetryFault; 772 case KERN_NOT_RECEIVER: 773 /* 774 * Pager's populate() method 775 * returned VM_PAGER_BAD. 776 */ 777 break; 778 default: 779 panic("inconsistent return codes"); 780 } 781 } 782 783 /* 784 * Allocate a new page for this object/offset pair. 785 * 786 * Unlocked read of the p_flag is harmless. At 787 * worst, the P_KILLED might be not observed 788 * there, and allocation can fail, causing 789 * restart and new reading of the p_flag. 790 */ 791 if (!vm_page_count_severe() || P_KILLED(curproc)) { 792 #if VM_NRESERVLEVEL > 0 793 vm_object_color(fs.object, atop(vaddr) - 794 fs.pindex); 795 #endif 796 alloc_req = P_KILLED(curproc) ? 797 VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL; 798 if (fs.object->type != OBJT_VNODE && 799 fs.object->backing_object == NULL) 800 alloc_req |= VM_ALLOC_ZERO; 801 fs.m = vm_page_alloc(fs.object, fs.pindex, 802 alloc_req); 803 } 804 if (fs.m == NULL) { 805 unlock_and_deallocate(&fs); 806 vm_waitpfault(); 807 goto RetryFault; 808 } 809 } 810 811 readrest: 812 /* 813 * At this point, we have either allocated a new page or found 814 * an existing page that is only partially valid. 815 * 816 * We hold a reference on the current object and the page is 817 * exclusive busied. 818 */ 819 820 /* 821 * If the pager for the current object might have the page, 822 * then determine the number of additional pages to read and 823 * potentially reprioritize previously read pages for earlier 824 * reclamation. These operations should only be performed 825 * once per page fault. Even if the current pager doesn't 826 * have the page, the number of additional pages to read will 827 * apply to subsequent objects in the shadow chain. 828 */ 829 if (fs.object->type != OBJT_DEFAULT && nera == -1 && 830 !P_KILLED(curproc)) { 831 KASSERT(fs.lookup_still_valid, ("map unlocked")); 832 era = fs.entry->read_ahead; 833 behavior = vm_map_entry_behavior(fs.entry); 834 if (behavior == MAP_ENTRY_BEHAV_RANDOM) { 835 nera = 0; 836 } else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) { 837 nera = VM_FAULT_READ_AHEAD_MAX; 838 if (vaddr == fs.entry->next_read) 839 vm_fault_dontneed(&fs, vaddr, nera); 840 } else if (vaddr == fs.entry->next_read) { 841 /* 842 * This is a sequential fault. Arithmetically 843 * increase the requested number of pages in 844 * the read-ahead window. The requested 845 * number of pages is "# of sequential faults 846 * x (read ahead min + 1) + read ahead min" 847 */ 848 nera = VM_FAULT_READ_AHEAD_MIN; 849 if (era > 0) { 850 nera += era + 1; 851 if (nera > VM_FAULT_READ_AHEAD_MAX) 852 nera = VM_FAULT_READ_AHEAD_MAX; 853 } 854 if (era == VM_FAULT_READ_AHEAD_MAX) 855 vm_fault_dontneed(&fs, vaddr, nera); 856 } else { 857 /* 858 * This is a non-sequential fault. 859 */ 860 nera = 0; 861 } 862 if (era != nera) { 863 /* 864 * A read lock on the map suffices to update 865 * the read ahead count safely. 866 */ 867 fs.entry->read_ahead = nera; 868 } 869 870 /* 871 * Prepare for unlocking the map. Save the map 872 * entry's start and end addresses, which are used to 873 * optimize the size of the pager operation below. 874 * Even if the map entry's addresses change after 875 * unlocking the map, using the saved addresses is 876 * safe. 877 */ 878 e_start = fs.entry->start; 879 e_end = fs.entry->end; 880 } 881 882 /* 883 * Call the pager to retrieve the page if there is a chance 884 * that the pager has it, and potentially retrieve additional 885 * pages at the same time. 886 */ 887 if (fs.object->type != OBJT_DEFAULT) { 888 /* 889 * Release the map lock before locking the vnode or 890 * sleeping in the pager. (If the current object has 891 * a shadow, then an earlier iteration of this loop 892 * may have already unlocked the map.) 893 */ 894 unlock_map(&fs); 895 896 if (fs.object->type == OBJT_VNODE && 897 (vp = fs.object->handle) != fs.vp) { 898 /* 899 * Perform an unlock in case the desired vnode 900 * changed while the map was unlocked during a 901 * retry. 902 */ 903 unlock_vp(&fs); 904 905 locked = VOP_ISLOCKED(vp); 906 if (locked != LK_EXCLUSIVE) 907 locked = LK_SHARED; 908 909 /* 910 * We must not sleep acquiring the vnode lock 911 * while we have the page exclusive busied or 912 * the object's paging-in-progress count 913 * incremented. Otherwise, we could deadlock. 914 */ 915 error = vget(vp, locked | LK_CANRECURSE | 916 LK_NOWAIT, curthread); 917 if (error != 0) { 918 vhold(vp); 919 release_page(&fs); 920 unlock_and_deallocate(&fs); 921 error = vget(vp, locked | LK_RETRY | 922 LK_CANRECURSE, curthread); 923 vdrop(vp); 924 fs.vp = vp; 925 KASSERT(error == 0, 926 ("vm_fault: vget failed")); 927 goto RetryFault; 928 } 929 fs.vp = vp; 930 } 931 KASSERT(fs.vp == NULL || !fs.map->system_map, 932 ("vm_fault: vnode-backed object mapped by system map")); 933 934 /* 935 * Page in the requested page and hint the pager, 936 * that it may bring up surrounding pages. 937 */ 938 if (nera == -1 || behavior == MAP_ENTRY_BEHAV_RANDOM || 939 P_KILLED(curproc)) { 940 behind = 0; 941 ahead = 0; 942 } else { 943 /* Is this a sequential fault? */ 944 if (nera > 0) { 945 behind = 0; 946 ahead = nera; 947 } else { 948 /* 949 * Request a cluster of pages that is 950 * aligned to a VM_FAULT_READ_DEFAULT 951 * page offset boundary within the 952 * object. Alignment to a page offset 953 * boundary is more likely to coincide 954 * with the underlying file system 955 * block than alignment to a virtual 956 * address boundary. 957 */ 958 cluster_offset = fs.pindex % 959 VM_FAULT_READ_DEFAULT; 960 behind = ulmin(cluster_offset, 961 atop(vaddr - e_start)); 962 ahead = VM_FAULT_READ_DEFAULT - 1 - 963 cluster_offset; 964 } 965 ahead = ulmin(ahead, atop(e_end - vaddr) - 1); 966 } 967 rv = vm_pager_get_pages(fs.object, &fs.m, 1, 968 &behind, &ahead); 969 if (rv == VM_PAGER_OK) { 970 faultcount = behind + 1 + ahead; 971 hardfault = true; 972 break; /* break to PAGE HAS BEEN FOUND */ 973 } 974 if (rv == VM_PAGER_ERROR) 975 printf("vm_fault: pager read error, pid %d (%s)\n", 976 curproc->p_pid, curproc->p_comm); 977 978 /* 979 * If an I/O error occurred or the requested page was 980 * outside the range of the pager, clean up and return 981 * an error. 982 */ 983 if (rv == VM_PAGER_ERROR || rv == VM_PAGER_BAD) { 984 vm_page_lock(fs.m); 985 if (fs.m->wire_count == 0) 986 vm_page_free(fs.m); 987 else 988 vm_page_xunbusy_maybelocked(fs.m); 989 vm_page_unlock(fs.m); 990 fs.m = NULL; 991 unlock_and_deallocate(&fs); 992 return (rv == VM_PAGER_ERROR ? KERN_FAILURE : 993 KERN_PROTECTION_FAILURE); 994 } 995 996 /* 997 * The requested page does not exist at this object/ 998 * offset. Remove the invalid page from the object, 999 * waking up anyone waiting for it, and continue on to 1000 * the next object. However, if this is the top-level 1001 * object, we must leave the busy page in place to 1002 * prevent another process from rushing past us, and 1003 * inserting the page in that object at the same time 1004 * that we are. 1005 */ 1006 if (fs.object != fs.first_object) { 1007 vm_page_lock(fs.m); 1008 if (fs.m->wire_count == 0) 1009 vm_page_free(fs.m); 1010 else 1011 vm_page_xunbusy_maybelocked(fs.m); 1012 vm_page_unlock(fs.m); 1013 fs.m = NULL; 1014 } 1015 } 1016 1017 /* 1018 * We get here if the object has default pager (or unwiring) 1019 * or the pager doesn't have the page. 1020 */ 1021 if (fs.object == fs.first_object) 1022 fs.first_m = fs.m; 1023 1024 /* 1025 * Move on to the next object. Lock the next object before 1026 * unlocking the current one. 1027 */ 1028 next_object = fs.object->backing_object; 1029 if (next_object == NULL) { 1030 /* 1031 * If there's no object left, fill the page in the top 1032 * object with zeros. 1033 */ 1034 if (fs.object != fs.first_object) { 1035 vm_object_pip_wakeup(fs.object); 1036 VM_OBJECT_WUNLOCK(fs.object); 1037 1038 fs.object = fs.first_object; 1039 fs.pindex = fs.first_pindex; 1040 fs.m = fs.first_m; 1041 VM_OBJECT_WLOCK(fs.object); 1042 } 1043 fs.first_m = NULL; 1044 1045 /* 1046 * Zero the page if necessary and mark it valid. 1047 */ 1048 if ((fs.m->flags & PG_ZERO) == 0) { 1049 pmap_zero_page(fs.m); 1050 } else { 1051 VM_CNT_INC(v_ozfod); 1052 } 1053 VM_CNT_INC(v_zfod); 1054 fs.m->valid = VM_PAGE_BITS_ALL; 1055 /* Don't try to prefault neighboring pages. */ 1056 faultcount = 1; 1057 break; /* break to PAGE HAS BEEN FOUND */ 1058 } else { 1059 KASSERT(fs.object != next_object, 1060 ("object loop %p", next_object)); 1061 VM_OBJECT_WLOCK(next_object); 1062 vm_object_pip_add(next_object, 1); 1063 if (fs.object != fs.first_object) 1064 vm_object_pip_wakeup(fs.object); 1065 fs.pindex += 1066 OFF_TO_IDX(fs.object->backing_object_offset); 1067 VM_OBJECT_WUNLOCK(fs.object); 1068 fs.object = next_object; 1069 } 1070 } 1071 1072 vm_page_assert_xbusied(fs.m); 1073 1074 /* 1075 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock 1076 * is held.] 1077 */ 1078 1079 /* 1080 * If the page is being written, but isn't already owned by the 1081 * top-level object, we have to copy it into a new page owned by the 1082 * top-level object. 1083 */ 1084 if (fs.object != fs.first_object) { 1085 /* 1086 * We only really need to copy if we want to write it. 1087 */ 1088 if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) { 1089 /* 1090 * This allows pages to be virtually copied from a 1091 * backing_object into the first_object, where the 1092 * backing object has no other refs to it, and cannot 1093 * gain any more refs. Instead of a bcopy, we just 1094 * move the page from the backing object to the 1095 * first object. Note that we must mark the page 1096 * dirty in the first object so that it will go out 1097 * to swap when needed. 1098 */ 1099 is_first_object_locked = false; 1100 if ( 1101 /* 1102 * Only one shadow object 1103 */ 1104 (fs.object->shadow_count == 1) && 1105 /* 1106 * No COW refs, except us 1107 */ 1108 (fs.object->ref_count == 1) && 1109 /* 1110 * No one else can look this object up 1111 */ 1112 (fs.object->handle == NULL) && 1113 /* 1114 * No other ways to look the object up 1115 */ 1116 ((fs.object->type == OBJT_DEFAULT) || 1117 (fs.object->type == OBJT_SWAP)) && 1118 (is_first_object_locked = VM_OBJECT_TRYWLOCK(fs.first_object)) && 1119 /* 1120 * We don't chase down the shadow chain 1121 */ 1122 fs.object == fs.first_object->backing_object) { 1123 vm_page_lock(fs.m); 1124 vm_page_remque(fs.m); 1125 vm_page_remove(fs.m); 1126 vm_page_unlock(fs.m); 1127 vm_page_lock(fs.first_m); 1128 vm_page_replace_checked(fs.m, fs.first_object, 1129 fs.first_pindex, fs.first_m); 1130 vm_page_free(fs.first_m); 1131 vm_page_unlock(fs.first_m); 1132 vm_page_dirty(fs.m); 1133 #if VM_NRESERVLEVEL > 0 1134 /* 1135 * Rename the reservation. 1136 */ 1137 vm_reserv_rename(fs.m, fs.first_object, 1138 fs.object, OFF_TO_IDX( 1139 fs.first_object->backing_object_offset)); 1140 #endif 1141 /* 1142 * Removing the page from the backing object 1143 * unbusied it. 1144 */ 1145 vm_page_xbusy(fs.m); 1146 fs.first_m = fs.m; 1147 fs.m = NULL; 1148 VM_CNT_INC(v_cow_optim); 1149 } else { 1150 /* 1151 * Oh, well, lets copy it. 1152 */ 1153 pmap_copy_page(fs.m, fs.first_m); 1154 fs.first_m->valid = VM_PAGE_BITS_ALL; 1155 if ((fault_flags & VM_FAULT_WIRE) == 0) { 1156 prot &= ~VM_PROT_WRITE; 1157 fault_type &= ~VM_PROT_WRITE; 1158 } 1159 if (wired && (fault_flags & 1160 VM_FAULT_WIRE) == 0) { 1161 vm_page_lock(fs.first_m); 1162 vm_page_wire(fs.first_m); 1163 vm_page_unlock(fs.first_m); 1164 1165 vm_page_lock(fs.m); 1166 vm_page_unwire(fs.m, PQ_INACTIVE); 1167 vm_page_unlock(fs.m); 1168 } 1169 /* 1170 * We no longer need the old page or object. 1171 */ 1172 release_page(&fs); 1173 } 1174 /* 1175 * fs.object != fs.first_object due to above 1176 * conditional 1177 */ 1178 vm_object_pip_wakeup(fs.object); 1179 VM_OBJECT_WUNLOCK(fs.object); 1180 /* 1181 * Only use the new page below... 1182 */ 1183 fs.object = fs.first_object; 1184 fs.pindex = fs.first_pindex; 1185 fs.m = fs.first_m; 1186 if (!is_first_object_locked) 1187 VM_OBJECT_WLOCK(fs.object); 1188 VM_CNT_INC(v_cow_faults); 1189 curthread->td_cow++; 1190 } else { 1191 prot &= ~VM_PROT_WRITE; 1192 } 1193 } 1194 1195 /* 1196 * We must verify that the maps have not changed since our last 1197 * lookup. 1198 */ 1199 if (!fs.lookup_still_valid) { 1200 if (!vm_map_trylock_read(fs.map)) { 1201 release_page(&fs); 1202 unlock_and_deallocate(&fs); 1203 goto RetryFault; 1204 } 1205 fs.lookup_still_valid = true; 1206 if (fs.map->timestamp != fs.map_generation) { 1207 result = vm_map_lookup_locked(&fs.map, vaddr, fault_type, 1208 &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired); 1209 1210 /* 1211 * If we don't need the page any longer, put it on the inactive 1212 * list (the easiest thing to do here). If no one needs it, 1213 * pageout will grab it eventually. 1214 */ 1215 if (result != KERN_SUCCESS) { 1216 release_page(&fs); 1217 unlock_and_deallocate(&fs); 1218 1219 /* 1220 * If retry of map lookup would have blocked then 1221 * retry fault from start. 1222 */ 1223 if (result == KERN_FAILURE) 1224 goto RetryFault; 1225 return (result); 1226 } 1227 if ((retry_object != fs.first_object) || 1228 (retry_pindex != fs.first_pindex)) { 1229 release_page(&fs); 1230 unlock_and_deallocate(&fs); 1231 goto RetryFault; 1232 } 1233 1234 /* 1235 * Check whether the protection has changed or the object has 1236 * been copied while we left the map unlocked. Changing from 1237 * read to write permission is OK - we leave the page 1238 * write-protected, and catch the write fault. Changing from 1239 * write to read permission means that we can't mark the page 1240 * write-enabled after all. 1241 */ 1242 prot &= retry_prot; 1243 fault_type &= retry_prot; 1244 if (prot == 0) { 1245 release_page(&fs); 1246 unlock_and_deallocate(&fs); 1247 goto RetryFault; 1248 } 1249 1250 /* Reassert because wired may have changed. */ 1251 KASSERT(wired || (fault_flags & VM_FAULT_WIRE) == 0, 1252 ("!wired && VM_FAULT_WIRE")); 1253 } 1254 } 1255 1256 /* 1257 * If the page was filled by a pager, save the virtual address that 1258 * should be faulted on next under a sequential access pattern to the 1259 * map entry. A read lock on the map suffices to update this address 1260 * safely. 1261 */ 1262 if (hardfault) 1263 fs.entry->next_read = vaddr + ptoa(ahead) + PAGE_SIZE; 1264 1265 vm_fault_dirty(fs.entry, fs.m, prot, fault_type, fault_flags, true); 1266 vm_page_assert_xbusied(fs.m); 1267 1268 /* 1269 * Page must be completely valid or it is not fit to 1270 * map into user space. vm_pager_get_pages() ensures this. 1271 */ 1272 KASSERT(fs.m->valid == VM_PAGE_BITS_ALL, 1273 ("vm_fault: page %p partially invalid", fs.m)); 1274 VM_OBJECT_WUNLOCK(fs.object); 1275 1276 /* 1277 * Put this page into the physical map. We had to do the unlock above 1278 * because pmap_enter() may sleep. We don't put the page 1279 * back on the active queue until later so that the pageout daemon 1280 * won't find it (yet). 1281 */ 1282 pmap_enter(fs.map->pmap, vaddr, fs.m, prot, 1283 fault_type | (wired ? PMAP_ENTER_WIRED : 0), 0); 1284 if (faultcount != 1 && (fault_flags & VM_FAULT_WIRE) == 0 && 1285 wired == 0) 1286 vm_fault_prefault(&fs, vaddr, 1287 faultcount > 0 ? behind : PFBAK, 1288 faultcount > 0 ? ahead : PFFOR, false); 1289 VM_OBJECT_WLOCK(fs.object); 1290 vm_page_lock(fs.m); 1291 1292 /* 1293 * If the page is not wired down, then put it where the pageout daemon 1294 * can find it. 1295 */ 1296 if ((fault_flags & VM_FAULT_WIRE) != 0) 1297 vm_page_wire(fs.m); 1298 else 1299 vm_page_activate(fs.m); 1300 if (m_hold != NULL) { 1301 *m_hold = fs.m; 1302 vm_page_hold(fs.m); 1303 } 1304 vm_page_unlock(fs.m); 1305 vm_page_xunbusy(fs.m); 1306 1307 /* 1308 * Unlock everything, and return 1309 */ 1310 unlock_and_deallocate(&fs); 1311 if (hardfault) { 1312 VM_CNT_INC(v_io_faults); 1313 curthread->td_ru.ru_majflt++; 1314 #ifdef RACCT 1315 if (racct_enable && fs.object->type == OBJT_VNODE) { 1316 PROC_LOCK(curproc); 1317 if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) { 1318 racct_add_force(curproc, RACCT_WRITEBPS, 1319 PAGE_SIZE + behind * PAGE_SIZE); 1320 racct_add_force(curproc, RACCT_WRITEIOPS, 1); 1321 } else { 1322 racct_add_force(curproc, RACCT_READBPS, 1323 PAGE_SIZE + ahead * PAGE_SIZE); 1324 racct_add_force(curproc, RACCT_READIOPS, 1); 1325 } 1326 PROC_UNLOCK(curproc); 1327 } 1328 #endif 1329 } else 1330 curthread->td_ru.ru_minflt++; 1331 1332 return (KERN_SUCCESS); 1333 } 1334 1335 /* 1336 * Speed up the reclamation of pages that precede the faulting pindex within 1337 * the first object of the shadow chain. Essentially, perform the equivalent 1338 * to madvise(..., MADV_DONTNEED) on a large cluster of pages that precedes 1339 * the faulting pindex by the cluster size when the pages read by vm_fault() 1340 * cross a cluster-size boundary. The cluster size is the greater of the 1341 * smallest superpage size and VM_FAULT_DONTNEED_MIN. 1342 * 1343 * When "fs->first_object" is a shadow object, the pages in the backing object 1344 * that precede the faulting pindex are deactivated by vm_fault(). So, this 1345 * function must only be concerned with pages in the first object. 1346 */ 1347 static void 1348 vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, int ahead) 1349 { 1350 vm_map_entry_t entry; 1351 vm_object_t first_object, object; 1352 vm_offset_t end, start; 1353 vm_page_t m, m_next; 1354 vm_pindex_t pend, pstart; 1355 vm_size_t size; 1356 1357 object = fs->object; 1358 VM_OBJECT_ASSERT_WLOCKED(object); 1359 first_object = fs->first_object; 1360 if (first_object != object) { 1361 if (!VM_OBJECT_TRYWLOCK(first_object)) { 1362 VM_OBJECT_WUNLOCK(object); 1363 VM_OBJECT_WLOCK(first_object); 1364 VM_OBJECT_WLOCK(object); 1365 } 1366 } 1367 /* Neither fictitious nor unmanaged pages can be reclaimed. */ 1368 if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) { 1369 size = VM_FAULT_DONTNEED_MIN; 1370 if (MAXPAGESIZES > 1 && size < pagesizes[1]) 1371 size = pagesizes[1]; 1372 end = rounddown2(vaddr, size); 1373 if (vaddr - end >= size - PAGE_SIZE - ptoa(ahead) && 1374 (entry = fs->entry)->start < end) { 1375 if (end - entry->start < size) 1376 start = entry->start; 1377 else 1378 start = end - size; 1379 pmap_advise(fs->map->pmap, start, end, MADV_DONTNEED); 1380 pstart = OFF_TO_IDX(entry->offset) + atop(start - 1381 entry->start); 1382 m_next = vm_page_find_least(first_object, pstart); 1383 pend = OFF_TO_IDX(entry->offset) + atop(end - 1384 entry->start); 1385 while ((m = m_next) != NULL && m->pindex < pend) { 1386 m_next = TAILQ_NEXT(m, listq); 1387 if (m->valid != VM_PAGE_BITS_ALL || 1388 vm_page_busied(m)) 1389 continue; 1390 1391 /* 1392 * Don't clear PGA_REFERENCED, since it would 1393 * likely represent a reference by a different 1394 * process. 1395 * 1396 * Typically, at this point, prefetched pages 1397 * are still in the inactive queue. Only 1398 * pages that triggered page faults are in the 1399 * active queue. 1400 */ 1401 vm_page_lock(m); 1402 if (!vm_page_inactive(m)) 1403 vm_page_deactivate(m); 1404 vm_page_unlock(m); 1405 } 1406 } 1407 } 1408 if (first_object != object) 1409 VM_OBJECT_WUNLOCK(first_object); 1410 } 1411 1412 /* 1413 * vm_fault_prefault provides a quick way of clustering 1414 * pagefaults into a processes address space. It is a "cousin" 1415 * of vm_map_pmap_enter, except it runs at page fault time instead 1416 * of mmap time. 1417 */ 1418 static void 1419 vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra, 1420 int backward, int forward, bool obj_locked) 1421 { 1422 pmap_t pmap; 1423 vm_map_entry_t entry; 1424 vm_object_t backing_object, lobject; 1425 vm_offset_t addr, starta; 1426 vm_pindex_t pindex; 1427 vm_page_t m; 1428 int i; 1429 1430 pmap = fs->map->pmap; 1431 if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) 1432 return; 1433 1434 entry = fs->entry; 1435 1436 if (addra < backward * PAGE_SIZE) { 1437 starta = entry->start; 1438 } else { 1439 starta = addra - backward * PAGE_SIZE; 1440 if (starta < entry->start) 1441 starta = entry->start; 1442 } 1443 1444 /* 1445 * Generate the sequence of virtual addresses that are candidates for 1446 * prefaulting in an outward spiral from the faulting virtual address, 1447 * "addra". Specifically, the sequence is "addra - PAGE_SIZE", "addra 1448 * + PAGE_SIZE", "addra - 2 * PAGE_SIZE", "addra + 2 * PAGE_SIZE", ... 1449 * If the candidate address doesn't have a backing physical page, then 1450 * the loop immediately terminates. 1451 */ 1452 for (i = 0; i < 2 * imax(backward, forward); i++) { 1453 addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE : 1454 PAGE_SIZE); 1455 if (addr > addra + forward * PAGE_SIZE) 1456 addr = 0; 1457 1458 if (addr < starta || addr >= entry->end) 1459 continue; 1460 1461 if (!pmap_is_prefaultable(pmap, addr)) 1462 continue; 1463 1464 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT; 1465 lobject = entry->object.vm_object; 1466 if (!obj_locked) 1467 VM_OBJECT_RLOCK(lobject); 1468 while ((m = vm_page_lookup(lobject, pindex)) == NULL && 1469 lobject->type == OBJT_DEFAULT && 1470 (backing_object = lobject->backing_object) != NULL) { 1471 KASSERT((lobject->backing_object_offset & PAGE_MASK) == 1472 0, ("vm_fault_prefault: unaligned object offset")); 1473 pindex += lobject->backing_object_offset >> PAGE_SHIFT; 1474 VM_OBJECT_RLOCK(backing_object); 1475 if (!obj_locked || lobject != entry->object.vm_object) 1476 VM_OBJECT_RUNLOCK(lobject); 1477 lobject = backing_object; 1478 } 1479 if (m == NULL) { 1480 if (!obj_locked || lobject != entry->object.vm_object) 1481 VM_OBJECT_RUNLOCK(lobject); 1482 break; 1483 } 1484 if (m->valid == VM_PAGE_BITS_ALL && 1485 (m->flags & PG_FICTITIOUS) == 0) 1486 pmap_enter_quick(pmap, addr, m, entry->protection); 1487 if (!obj_locked || lobject != entry->object.vm_object) 1488 VM_OBJECT_RUNLOCK(lobject); 1489 } 1490 } 1491 1492 /* 1493 * Hold each of the physical pages that are mapped by the specified range of 1494 * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid 1495 * and allow the specified types of access, "prot". If all of the implied 1496 * pages are successfully held, then the number of held pages is returned 1497 * together with pointers to those pages in the array "ma". However, if any 1498 * of the pages cannot be held, -1 is returned. 1499 */ 1500 int 1501 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len, 1502 vm_prot_t prot, vm_page_t *ma, int max_count) 1503 { 1504 vm_offset_t end, va; 1505 vm_page_t *mp; 1506 int count; 1507 boolean_t pmap_failed; 1508 1509 if (len == 0) 1510 return (0); 1511 end = round_page(addr + len); 1512 addr = trunc_page(addr); 1513 1514 /* 1515 * Check for illegal addresses. 1516 */ 1517 if (addr < vm_map_min(map) || addr > end || end > vm_map_max(map)) 1518 return (-1); 1519 1520 if (atop(end - addr) > max_count) 1521 panic("vm_fault_quick_hold_pages: count > max_count"); 1522 count = atop(end - addr); 1523 1524 /* 1525 * Most likely, the physical pages are resident in the pmap, so it is 1526 * faster to try pmap_extract_and_hold() first. 1527 */ 1528 pmap_failed = FALSE; 1529 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) { 1530 *mp = pmap_extract_and_hold(map->pmap, va, prot); 1531 if (*mp == NULL) 1532 pmap_failed = TRUE; 1533 else if ((prot & VM_PROT_WRITE) != 0 && 1534 (*mp)->dirty != VM_PAGE_BITS_ALL) { 1535 /* 1536 * Explicitly dirty the physical page. Otherwise, the 1537 * caller's changes may go unnoticed because they are 1538 * performed through an unmanaged mapping or by a DMA 1539 * operation. 1540 * 1541 * The object lock is not held here. 1542 * See vm_page_clear_dirty_mask(). 1543 */ 1544 vm_page_dirty(*mp); 1545 } 1546 } 1547 if (pmap_failed) { 1548 /* 1549 * One or more pages could not be held by the pmap. Either no 1550 * page was mapped at the specified virtual address or that 1551 * mapping had insufficient permissions. Attempt to fault in 1552 * and hold these pages. 1553 * 1554 * If vm_fault_disable_pagefaults() was called, 1555 * i.e., TDP_NOFAULTING is set, we must not sleep nor 1556 * acquire MD VM locks, which means we must not call 1557 * vm_fault_hold(). Some (out of tree) callers mark 1558 * too wide a code area with vm_fault_disable_pagefaults() 1559 * already, use the VM_PROT_QUICK_NOFAULT flag to request 1560 * the proper behaviour explicitly. 1561 */ 1562 if ((prot & VM_PROT_QUICK_NOFAULT) != 0 && 1563 (curthread->td_pflags & TDP_NOFAULTING) != 0) 1564 goto error; 1565 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) 1566 if (*mp == NULL && vm_fault_hold(map, va, prot, 1567 VM_FAULT_NORMAL, mp) != KERN_SUCCESS) 1568 goto error; 1569 } 1570 return (count); 1571 error: 1572 for (mp = ma; mp < ma + count; mp++) 1573 if (*mp != NULL) { 1574 vm_page_lock(*mp); 1575 vm_page_unhold(*mp); 1576 vm_page_unlock(*mp); 1577 } 1578 return (-1); 1579 } 1580 1581 /* 1582 * Routine: 1583 * vm_fault_copy_entry 1584 * Function: 1585 * Create new shadow object backing dst_entry with private copy of 1586 * all underlying pages. When src_entry is equal to dst_entry, 1587 * function implements COW for wired-down map entry. Otherwise, 1588 * it forks wired entry into dst_map. 1589 * 1590 * In/out conditions: 1591 * The source and destination maps must be locked for write. 1592 * The source map entry must be wired down (or be a sharing map 1593 * entry corresponding to a main map entry that is wired down). 1594 */ 1595 void 1596 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map, 1597 vm_map_entry_t dst_entry, vm_map_entry_t src_entry, 1598 vm_ooffset_t *fork_charge) 1599 { 1600 vm_object_t backing_object, dst_object, object, src_object; 1601 vm_pindex_t dst_pindex, pindex, src_pindex; 1602 vm_prot_t access, prot; 1603 vm_offset_t vaddr; 1604 vm_page_t dst_m; 1605 vm_page_t src_m; 1606 boolean_t upgrade; 1607 1608 #ifdef lint 1609 src_map++; 1610 #endif /* lint */ 1611 1612 upgrade = src_entry == dst_entry; 1613 access = prot = dst_entry->protection; 1614 1615 src_object = src_entry->object.vm_object; 1616 src_pindex = OFF_TO_IDX(src_entry->offset); 1617 1618 if (upgrade && (dst_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) { 1619 dst_object = src_object; 1620 vm_object_reference(dst_object); 1621 } else { 1622 /* 1623 * Create the top-level object for the destination entry. (Doesn't 1624 * actually shadow anything - we copy the pages directly.) 1625 */ 1626 dst_object = vm_object_allocate(OBJT_DEFAULT, 1627 atop(dst_entry->end - dst_entry->start)); 1628 #if VM_NRESERVLEVEL > 0 1629 dst_object->flags |= OBJ_COLORED; 1630 dst_object->pg_color = atop(dst_entry->start); 1631 #endif 1632 } 1633 1634 VM_OBJECT_WLOCK(dst_object); 1635 KASSERT(upgrade || dst_entry->object.vm_object == NULL, 1636 ("vm_fault_copy_entry: vm_object not NULL")); 1637 if (src_object != dst_object) { 1638 dst_object->domain = src_object->domain; 1639 dst_entry->object.vm_object = dst_object; 1640 dst_entry->offset = 0; 1641 dst_object->charge = dst_entry->end - dst_entry->start; 1642 } 1643 if (fork_charge != NULL) { 1644 KASSERT(dst_entry->cred == NULL, 1645 ("vm_fault_copy_entry: leaked swp charge")); 1646 dst_object->cred = curthread->td_ucred; 1647 crhold(dst_object->cred); 1648 *fork_charge += dst_object->charge; 1649 } else if (dst_object->cred == NULL) { 1650 KASSERT(dst_entry->cred != NULL, ("no cred for entry %p", 1651 dst_entry)); 1652 dst_object->cred = dst_entry->cred; 1653 dst_entry->cred = NULL; 1654 } 1655 1656 /* 1657 * If not an upgrade, then enter the mappings in the pmap as 1658 * read and/or execute accesses. Otherwise, enter them as 1659 * write accesses. 1660 * 1661 * A writeable large page mapping is only created if all of 1662 * the constituent small page mappings are modified. Marking 1663 * PTEs as modified on inception allows promotion to happen 1664 * without taking potentially large number of soft faults. 1665 */ 1666 if (!upgrade) 1667 access &= ~VM_PROT_WRITE; 1668 1669 /* 1670 * Loop through all of the virtual pages within the entry's 1671 * range, copying each page from the source object to the 1672 * destination object. Since the source is wired, those pages 1673 * must exist. In contrast, the destination is pageable. 1674 * Since the destination object doesn't share any backing storage 1675 * with the source object, all of its pages must be dirtied, 1676 * regardless of whether they can be written. 1677 */ 1678 for (vaddr = dst_entry->start, dst_pindex = 0; 1679 vaddr < dst_entry->end; 1680 vaddr += PAGE_SIZE, dst_pindex++) { 1681 again: 1682 /* 1683 * Find the page in the source object, and copy it in. 1684 * Because the source is wired down, the page will be 1685 * in memory. 1686 */ 1687 if (src_object != dst_object) 1688 VM_OBJECT_RLOCK(src_object); 1689 object = src_object; 1690 pindex = src_pindex + dst_pindex; 1691 while ((src_m = vm_page_lookup(object, pindex)) == NULL && 1692 (backing_object = object->backing_object) != NULL) { 1693 /* 1694 * Unless the source mapping is read-only or 1695 * it is presently being upgraded from 1696 * read-only, the first object in the shadow 1697 * chain should provide all of the pages. In 1698 * other words, this loop body should never be 1699 * executed when the source mapping is already 1700 * read/write. 1701 */ 1702 KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 || 1703 upgrade, 1704 ("vm_fault_copy_entry: main object missing page")); 1705 1706 VM_OBJECT_RLOCK(backing_object); 1707 pindex += OFF_TO_IDX(object->backing_object_offset); 1708 if (object != dst_object) 1709 VM_OBJECT_RUNLOCK(object); 1710 object = backing_object; 1711 } 1712 KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing")); 1713 1714 if (object != dst_object) { 1715 /* 1716 * Allocate a page in the destination object. 1717 */ 1718 dst_m = vm_page_alloc(dst_object, (src_object == 1719 dst_object ? src_pindex : 0) + dst_pindex, 1720 VM_ALLOC_NORMAL); 1721 if (dst_m == NULL) { 1722 VM_OBJECT_WUNLOCK(dst_object); 1723 VM_OBJECT_RUNLOCK(object); 1724 vm_wait(dst_object); 1725 VM_OBJECT_WLOCK(dst_object); 1726 goto again; 1727 } 1728 pmap_copy_page(src_m, dst_m); 1729 VM_OBJECT_RUNLOCK(object); 1730 dst_m->valid = VM_PAGE_BITS_ALL; 1731 dst_m->dirty = VM_PAGE_BITS_ALL; 1732 } else { 1733 dst_m = src_m; 1734 if (vm_page_sleep_if_busy(dst_m, "fltupg")) 1735 goto again; 1736 vm_page_xbusy(dst_m); 1737 KASSERT(dst_m->valid == VM_PAGE_BITS_ALL, 1738 ("invalid dst page %p", dst_m)); 1739 } 1740 VM_OBJECT_WUNLOCK(dst_object); 1741 1742 /* 1743 * Enter it in the pmap. If a wired, copy-on-write 1744 * mapping is being replaced by a write-enabled 1745 * mapping, then wire that new mapping. 1746 */ 1747 pmap_enter(dst_map->pmap, vaddr, dst_m, prot, 1748 access | (upgrade ? PMAP_ENTER_WIRED : 0), 0); 1749 1750 /* 1751 * Mark it no longer busy, and put it on the active list. 1752 */ 1753 VM_OBJECT_WLOCK(dst_object); 1754 1755 if (upgrade) { 1756 if (src_m != dst_m) { 1757 vm_page_lock(src_m); 1758 vm_page_unwire(src_m, PQ_INACTIVE); 1759 vm_page_unlock(src_m); 1760 vm_page_lock(dst_m); 1761 vm_page_wire(dst_m); 1762 vm_page_unlock(dst_m); 1763 } else { 1764 KASSERT(dst_m->wire_count > 0, 1765 ("dst_m %p is not wired", dst_m)); 1766 } 1767 } else { 1768 vm_page_lock(dst_m); 1769 vm_page_activate(dst_m); 1770 vm_page_unlock(dst_m); 1771 } 1772 vm_page_xunbusy(dst_m); 1773 } 1774 VM_OBJECT_WUNLOCK(dst_object); 1775 if (upgrade) { 1776 dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY); 1777 vm_object_deallocate(src_object); 1778 } 1779 } 1780 1781 /* 1782 * Block entry into the machine-independent layer's page fault handler by 1783 * the calling thread. Subsequent calls to vm_fault() by that thread will 1784 * return KERN_PROTECTION_FAILURE. Enable machine-dependent handling of 1785 * spurious page faults. 1786 */ 1787 int 1788 vm_fault_disable_pagefaults(void) 1789 { 1790 1791 return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR)); 1792 } 1793 1794 void 1795 vm_fault_enable_pagefaults(int save) 1796 { 1797 1798 curthread_pflags_restore(save); 1799 } 1800