xref: /freebsd/sys/vm/vm_fault.c (revision c4eb8f475a00040ffa2e99fdce5b56bbfc2cd00d)
1 /*-
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  *
10  * This code is derived from software contributed to Berkeley by
11  * The Mach Operating System project at Carnegie-Mellon University.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. All advertising materials mentioning features or use of this software
22  *    must display the following acknowledgement:
23  *	This product includes software developed by the University of
24  *	California, Berkeley and its contributors.
25  * 4. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *	from: @(#)vm_fault.c	8.4 (Berkeley) 1/12/94
42  *
43  *
44  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45  * All rights reserved.
46  *
47  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48  *
49  * Permission to use, copy, modify and distribute this software and
50  * its documentation is hereby granted, provided that both the copyright
51  * notice and this permission notice appear in all copies of the
52  * software, derivative works or modified versions, and any portions
53  * thereof, and that both notices appear in supporting documentation.
54  *
55  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58  *
59  * Carnegie Mellon requests users of this software to return to
60  *
61  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62  *  School of Computer Science
63  *  Carnegie Mellon University
64  *  Pittsburgh PA 15213-3890
65  *
66  * any improvements or extensions that they make and grant Carnegie the
67  * rights to redistribute these changes.
68  */
69 
70 /*
71  *	Page fault handling module.
72  */
73 
74 #include <sys/cdefs.h>
75 __FBSDID("$FreeBSD$");
76 
77 #include "opt_vm.h"
78 
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/lock.h>
83 #include <sys/mutex.h>
84 #include <sys/proc.h>
85 #include <sys/resourcevar.h>
86 #include <sys/sysctl.h>
87 #include <sys/vmmeter.h>
88 #include <sys/vnode.h>
89 
90 #include <vm/vm.h>
91 #include <vm/vm_param.h>
92 #include <vm/pmap.h>
93 #include <vm/vm_map.h>
94 #include <vm/vm_object.h>
95 #include <vm/vm_page.h>
96 #include <vm/vm_pageout.h>
97 #include <vm/vm_kern.h>
98 #include <vm/vm_pager.h>
99 #include <vm/vm_extern.h>
100 
101 #include <sys/mount.h>	/* XXX Temporary for VFS_LOCK_GIANT() */
102 
103 #define PFBAK 4
104 #define PFFOR 4
105 #define PAGEORDER_SIZE (PFBAK+PFFOR)
106 
107 static int prefault_pageorder[] = {
108 	-1 * PAGE_SIZE, 1 * PAGE_SIZE,
109 	-2 * PAGE_SIZE, 2 * PAGE_SIZE,
110 	-3 * PAGE_SIZE, 3 * PAGE_SIZE,
111 	-4 * PAGE_SIZE, 4 * PAGE_SIZE
112 };
113 
114 static int vm_fault_additional_pages(vm_page_t, int, int, vm_page_t *, int *);
115 static void vm_fault_prefault(pmap_t, vm_offset_t, vm_map_entry_t);
116 
117 #define VM_FAULT_READ_AHEAD 8
118 #define VM_FAULT_READ_BEHIND 7
119 #define VM_FAULT_READ (VM_FAULT_READ_AHEAD+VM_FAULT_READ_BEHIND+1)
120 
121 struct faultstate {
122 	vm_page_t m;
123 	vm_object_t object;
124 	vm_pindex_t pindex;
125 	vm_page_t first_m;
126 	vm_object_t	first_object;
127 	vm_pindex_t first_pindex;
128 	vm_map_t map;
129 	vm_map_entry_t entry;
130 	int lookup_still_valid;
131 	struct vnode *vp;
132 	int vfslocked;
133 };
134 
135 static inline void
136 release_page(struct faultstate *fs)
137 {
138 
139 	vm_page_wakeup(fs->m);
140 	vm_page_lock(fs->m);
141 	vm_page_deactivate(fs->m);
142 	vm_page_unlock(fs->m);
143 	fs->m = NULL;
144 }
145 
146 static inline void
147 unlock_map(struct faultstate *fs)
148 {
149 
150 	if (fs->lookup_still_valid) {
151 		vm_map_lookup_done(fs->map, fs->entry);
152 		fs->lookup_still_valid = FALSE;
153 	}
154 }
155 
156 static void
157 unlock_and_deallocate(struct faultstate *fs)
158 {
159 
160 	vm_object_pip_wakeup(fs->object);
161 	VM_OBJECT_UNLOCK(fs->object);
162 	if (fs->object != fs->first_object) {
163 		VM_OBJECT_LOCK(fs->first_object);
164 		vm_page_lock(fs->first_m);
165 		vm_page_free(fs->first_m);
166 		vm_page_unlock(fs->first_m);
167 		vm_object_pip_wakeup(fs->first_object);
168 		VM_OBJECT_UNLOCK(fs->first_object);
169 		fs->first_m = NULL;
170 	}
171 	vm_object_deallocate(fs->first_object);
172 	unlock_map(fs);
173 	if (fs->vp != NULL) {
174 		vput(fs->vp);
175 		fs->vp = NULL;
176 	}
177 	VFS_UNLOCK_GIANT(fs->vfslocked);
178 	fs->vfslocked = 0;
179 }
180 
181 /*
182  * TRYPAGER - used by vm_fault to calculate whether the pager for the
183  *	      current object *might* contain the page.
184  *
185  *	      default objects are zero-fill, there is no real pager.
186  */
187 #define TRYPAGER	(fs.object->type != OBJT_DEFAULT && \
188 			((fault_flags & VM_FAULT_CHANGE_WIRING) == 0 || wired))
189 
190 /*
191  *	vm_fault:
192  *
193  *	Handle a page fault occurring at the given address,
194  *	requiring the given permissions, in the map specified.
195  *	If successful, the page is inserted into the
196  *	associated physical map.
197  *
198  *	NOTE: the given address should be truncated to the
199  *	proper page address.
200  *
201  *	KERN_SUCCESS is returned if the page fault is handled; otherwise,
202  *	a standard error specifying why the fault is fatal is returned.
203  *
204  *
205  *	The map in question must be referenced, and remains so.
206  *	Caller may hold no locks.
207  */
208 int
209 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
210 	 int fault_flags)
211 {
212 	vm_prot_t prot;
213 	int is_first_object_locked, result;
214 	boolean_t growstack, wired;
215 	int map_generation;
216 	vm_object_t next_object;
217 	vm_page_t marray[VM_FAULT_READ];
218 	int hardfault;
219 	int faultcount, ahead, behind, alloc_req;
220 	struct faultstate fs;
221 	struct vnode *vp;
222 	int locked, error;
223 
224 	hardfault = 0;
225 	growstack = TRUE;
226 	PCPU_INC(cnt.v_vm_faults);
227 	fs.vp = NULL;
228 	fs.vfslocked = 0;
229 	faultcount = behind = 0;
230 
231 RetryFault:;
232 
233 	/*
234 	 * Find the backing store object and offset into it to begin the
235 	 * search.
236 	 */
237 	fs.map = map;
238 	result = vm_map_lookup(&fs.map, vaddr, fault_type, &fs.entry,
239 	    &fs.first_object, &fs.first_pindex, &prot, &wired);
240 	if (result != KERN_SUCCESS) {
241 		if (growstack && result == KERN_INVALID_ADDRESS &&
242 		    map != kernel_map) {
243 			result = vm_map_growstack(curproc, vaddr);
244 			if (result != KERN_SUCCESS)
245 				return (KERN_FAILURE);
246 			growstack = FALSE;
247 			goto RetryFault;
248 		}
249 		return (result);
250 	}
251 
252 	map_generation = fs.map->timestamp;
253 
254 	if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
255 		panic("vm_fault: fault on nofault entry, addr: %lx",
256 		    (u_long)vaddr);
257 	}
258 
259 	/*
260 	 * Make a reference to this object to prevent its disposal while we
261 	 * are messing with it.  Once we have the reference, the map is free
262 	 * to be diddled.  Since objects reference their shadows (and copies),
263 	 * they will stay around as well.
264 	 *
265 	 * Bump the paging-in-progress count to prevent size changes (e.g.
266 	 * truncation operations) during I/O.  This must be done after
267 	 * obtaining the vnode lock in order to avoid possible deadlocks.
268 	 */
269 	VM_OBJECT_LOCK(fs.first_object);
270 	vm_object_reference_locked(fs.first_object);
271 	vm_object_pip_add(fs.first_object, 1);
272 
273 	fs.lookup_still_valid = TRUE;
274 
275 	if (wired)
276 		fault_type = prot | (fault_type & VM_PROT_COPY);
277 
278 	fs.first_m = NULL;
279 
280 	/*
281 	 * Search for the page at object/offset.
282 	 */
283 	fs.object = fs.first_object;
284 	fs.pindex = fs.first_pindex;
285 	while (TRUE) {
286 		/*
287 		 * If the object is dead, we stop here
288 		 */
289 		if (fs.object->flags & OBJ_DEAD) {
290 			unlock_and_deallocate(&fs);
291 			return (KERN_PROTECTION_FAILURE);
292 		}
293 
294 		/*
295 		 * See if page is resident
296 		 */
297 		fs.m = vm_page_lookup(fs.object, fs.pindex);
298 		if (fs.m != NULL) {
299 			/*
300 			 * check for page-based copy on write.
301 			 * We check fs.object == fs.first_object so
302 			 * as to ensure the legacy COW mechanism is
303 			 * used when the page in question is part of
304 			 * a shadow object.  Otherwise, vm_page_cowfault()
305 			 * removes the page from the backing object,
306 			 * which is not what we want.
307 			 */
308 			vm_page_lock(fs.m);
309 			if ((fs.m->cow) &&
310 			    (fault_type & VM_PROT_WRITE) &&
311 			    (fs.object == fs.first_object)) {
312 				vm_page_cowfault(fs.m);
313 				unlock_and_deallocate(&fs);
314 				goto RetryFault;
315 			}
316 
317 			/*
318 			 * Wait/Retry if the page is busy.  We have to do this
319 			 * if the page is busy via either VPO_BUSY or
320 			 * vm_page_t->busy because the vm_pager may be using
321 			 * vm_page_t->busy for pageouts ( and even pageins if
322 			 * it is the vnode pager ), and we could end up trying
323 			 * to pagein and pageout the same page simultaneously.
324 			 *
325 			 * We can theoretically allow the busy case on a read
326 			 * fault if the page is marked valid, but since such
327 			 * pages are typically already pmap'd, putting that
328 			 * special case in might be more effort then it is
329 			 * worth.  We cannot under any circumstances mess
330 			 * around with a vm_page_t->busy page except, perhaps,
331 			 * to pmap it.
332 			 */
333 			if ((fs.m->oflags & VPO_BUSY) || fs.m->busy) {
334 				/*
335 				 * Reference the page before unlocking and
336 				 * sleeping so that the page daemon is less
337 				 * likely to reclaim it.
338 				 */
339 				vm_page_lock_queues();
340 				vm_page_flag_set(fs.m, PG_REFERENCED);
341 				vm_page_unlock_queues();
342 				vm_page_unlock(fs.m);
343 				VM_OBJECT_UNLOCK(fs.object);
344 				if (fs.object != fs.first_object) {
345 					VM_OBJECT_LOCK(fs.first_object);
346 					vm_page_lock(fs.first_m);
347 					vm_page_free(fs.first_m);
348 					vm_page_unlock(fs.first_m);
349 					vm_object_pip_wakeup(fs.first_object);
350 					VM_OBJECT_UNLOCK(fs.first_object);
351 					fs.first_m = NULL;
352 				}
353 				unlock_map(&fs);
354 				VM_OBJECT_LOCK(fs.object);
355 				if (fs.m == vm_page_lookup(fs.object,
356 				    fs.pindex)) {
357 					vm_page_sleep_if_busy(fs.m, TRUE,
358 					    "vmpfw");
359 				}
360 				vm_object_pip_wakeup(fs.object);
361 				VM_OBJECT_UNLOCK(fs.object);
362 				PCPU_INC(cnt.v_intrans);
363 				vm_object_deallocate(fs.first_object);
364 				goto RetryFault;
365 			}
366 			vm_pageq_remove(fs.m);
367 			vm_page_unlock(fs.m);
368 
369 			/*
370 			 * Mark page busy for other processes, and the
371 			 * pagedaemon.  If it still isn't completely valid
372 			 * (readable), jump to readrest, else break-out ( we
373 			 * found the page ).
374 			 */
375 			vm_page_busy(fs.m);
376 			if (fs.m->valid != VM_PAGE_BITS_ALL &&
377 				fs.m->object != kernel_object && fs.m->object != kmem_object) {
378 				goto readrest;
379 			}
380 
381 			break;
382 		}
383 
384 		/*
385 		 * Page is not resident, If this is the search termination
386 		 * or the pager might contain the page, allocate a new page.
387 		 */
388 		if (TRYPAGER || fs.object == fs.first_object) {
389 			if (fs.pindex >= fs.object->size) {
390 				unlock_and_deallocate(&fs);
391 				return (KERN_PROTECTION_FAILURE);
392 			}
393 
394 			/*
395 			 * Allocate a new page for this object/offset pair.
396 			 *
397 			 * Unlocked read of the p_flag is harmless. At
398 			 * worst, the P_KILLED might be not observed
399 			 * there, and allocation can fail, causing
400 			 * restart and new reading of the p_flag.
401 			 */
402 			fs.m = NULL;
403 			if (!vm_page_count_severe() || P_KILLED(curproc)) {
404 #if VM_NRESERVLEVEL > 0
405 				if ((fs.object->flags & OBJ_COLORED) == 0) {
406 					fs.object->flags |= OBJ_COLORED;
407 					fs.object->pg_color = atop(vaddr) -
408 					    fs.pindex;
409 				}
410 #endif
411 				alloc_req = P_KILLED(curproc) ?
412 				    VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL;
413 				if (fs.object->type != OBJT_VNODE &&
414 				    fs.object->backing_object == NULL)
415 					alloc_req |= VM_ALLOC_ZERO;
416 				fs.m = vm_page_alloc(fs.object, fs.pindex,
417 				    alloc_req);
418 			}
419 			if (fs.m == NULL) {
420 				unlock_and_deallocate(&fs);
421 				VM_WAITPFAULT;
422 				goto RetryFault;
423 			} else if (fs.m->valid == VM_PAGE_BITS_ALL)
424 				break;
425 		}
426 
427 readrest:
428 		/*
429 		 * We have found a valid page or we have allocated a new page.
430 		 * The page thus may not be valid or may not be entirely
431 		 * valid.
432 		 *
433 		 * Attempt to fault-in the page if there is a chance that the
434 		 * pager has it, and potentially fault in additional pages
435 		 * at the same time.
436 		 */
437 		if (TRYPAGER) {
438 			int rv;
439 			int reqpage = 0;
440 			u_char behavior = vm_map_entry_behavior(fs.entry);
441 
442 			if (behavior == MAP_ENTRY_BEHAV_RANDOM ||
443 			    P_KILLED(curproc)) {
444 				ahead = 0;
445 				behind = 0;
446 			} else {
447 				behind = (vaddr - fs.entry->start) >> PAGE_SHIFT;
448 				if (behind > VM_FAULT_READ_BEHIND)
449 					behind = VM_FAULT_READ_BEHIND;
450 
451 				ahead = ((fs.entry->end - vaddr) >> PAGE_SHIFT) - 1;
452 				if (ahead > VM_FAULT_READ_AHEAD)
453 					ahead = VM_FAULT_READ_AHEAD;
454 			}
455 			is_first_object_locked = FALSE;
456 			if ((behavior == MAP_ENTRY_BEHAV_SEQUENTIAL ||
457 			     (behavior != MAP_ENTRY_BEHAV_RANDOM &&
458 			      fs.pindex >= fs.entry->lastr &&
459 			      fs.pindex < fs.entry->lastr + VM_FAULT_READ)) &&
460 			    (fs.first_object == fs.object ||
461 			     (is_first_object_locked = VM_OBJECT_TRYLOCK(fs.first_object))) &&
462 			    fs.first_object->type != OBJT_DEVICE &&
463 			    fs.first_object->type != OBJT_PHYS &&
464 			    fs.first_object->type != OBJT_SG) {
465 				vm_pindex_t firstpindex, tmppindex;
466 
467 				if (fs.first_pindex < 2 * VM_FAULT_READ)
468 					firstpindex = 0;
469 				else
470 					firstpindex = fs.first_pindex - 2 * VM_FAULT_READ;
471 
472 				/*
473 				 * note: partially valid pages cannot be
474 				 * included in the lookahead - NFS piecemeal
475 				 * writes will barf on it badly.
476 				 */
477 				for (tmppindex = fs.first_pindex - 1;
478 					tmppindex >= firstpindex;
479 					--tmppindex) {
480 					vm_page_t mt;
481 
482 					mt = vm_page_lookup(fs.first_object, tmppindex);
483 					if (mt == NULL || (mt->valid != VM_PAGE_BITS_ALL))
484 						break;
485 					if (mt->busy ||
486 					    (mt->oflags & VPO_BUSY))
487 						continue;
488 					vm_page_lock(mt);
489 					if (mt->hold_count ||
490 					    mt->wire_count) {
491 						vm_page_unlock(mt);
492 						continue;
493 					}
494 					pmap_remove_all(mt);
495 					if (mt->dirty != 0)
496 						vm_page_deactivate(mt);
497 					else
498 						vm_page_cache(mt);
499 					vm_page_unlock(mt);
500 				}
501 				ahead += behind;
502 				behind = 0;
503 			}
504 			if (is_first_object_locked)
505 				VM_OBJECT_UNLOCK(fs.first_object);
506 
507 			/*
508 			 * Call the pager to retrieve the data, if any, after
509 			 * releasing the lock on the map.  We hold a ref on
510 			 * fs.object and the pages are VPO_BUSY'd.
511 			 */
512 			unlock_map(&fs);
513 
514 vnode_lock:
515 			if (fs.object->type == OBJT_VNODE) {
516 				vp = fs.object->handle;
517 				if (vp == fs.vp)
518 					goto vnode_locked;
519 				else if (fs.vp != NULL) {
520 					vput(fs.vp);
521 					fs.vp = NULL;
522 				}
523 				locked = VOP_ISLOCKED(vp);
524 
525 				if (VFS_NEEDSGIANT(vp->v_mount) && !fs.vfslocked) {
526 					fs.vfslocked = 1;
527 					if (!mtx_trylock(&Giant)) {
528 						VM_OBJECT_UNLOCK(fs.object);
529 						mtx_lock(&Giant);
530 						VM_OBJECT_LOCK(fs.object);
531 						goto vnode_lock;
532 					}
533 				}
534 				if (locked != LK_EXCLUSIVE)
535 					locked = LK_SHARED;
536 				/* Do not sleep for vnode lock while fs.m is busy */
537 				error = vget(vp, locked | LK_CANRECURSE |
538 				    LK_NOWAIT, curthread);
539 				if (error != 0) {
540 					int vfslocked;
541 
542 					vfslocked = fs.vfslocked;
543 					fs.vfslocked = 0; /* Keep Giant */
544 					vhold(vp);
545 					release_page(&fs);
546 					unlock_and_deallocate(&fs);
547 					error = vget(vp, locked | LK_RETRY |
548 					    LK_CANRECURSE, curthread);
549 					vdrop(vp);
550 					fs.vp = vp;
551 					fs.vfslocked = vfslocked;
552 					KASSERT(error == 0,
553 					    ("vm_fault: vget failed"));
554 					goto RetryFault;
555 				}
556 				fs.vp = vp;
557 			}
558 vnode_locked:
559 			KASSERT(fs.vp == NULL || !fs.map->system_map,
560 			    ("vm_fault: vnode-backed object mapped by system map"));
561 
562 			/*
563 			 * now we find out if any other pages should be paged
564 			 * in at this time this routine checks to see if the
565 			 * pages surrounding this fault reside in the same
566 			 * object as the page for this fault.  If they do,
567 			 * then they are faulted in also into the object.  The
568 			 * array "marray" returned contains an array of
569 			 * vm_page_t structs where one of them is the
570 			 * vm_page_t passed to the routine.  The reqpage
571 			 * return value is the index into the marray for the
572 			 * vm_page_t passed to the routine.
573 			 *
574 			 * fs.m plus the additional pages are VPO_BUSY'd.
575 			 */
576 			faultcount = vm_fault_additional_pages(
577 			    fs.m, behind, ahead, marray, &reqpage);
578 
579 			rv = faultcount ?
580 			    vm_pager_get_pages(fs.object, marray, faultcount,
581 				reqpage) : VM_PAGER_FAIL;
582 
583 			if (rv == VM_PAGER_OK) {
584 				/*
585 				 * Found the page. Leave it busy while we play
586 				 * with it.
587 				 */
588 
589 				/*
590 				 * Relookup in case pager changed page. Pager
591 				 * is responsible for disposition of old page
592 				 * if moved.
593 				 */
594 				fs.m = vm_page_lookup(fs.object, fs.pindex);
595 				if (!fs.m) {
596 					unlock_and_deallocate(&fs);
597 					goto RetryFault;
598 				}
599 
600 				hardfault++;
601 				break; /* break to PAGE HAS BEEN FOUND */
602 			}
603 			/*
604 			 * Remove the bogus page (which does not exist at this
605 			 * object/offset); before doing so, we must get back
606 			 * our object lock to preserve our invariant.
607 			 *
608 			 * Also wake up any other process that may want to bring
609 			 * in this page.
610 			 *
611 			 * If this is the top-level object, we must leave the
612 			 * busy page to prevent another process from rushing
613 			 * past us, and inserting the page in that object at
614 			 * the same time that we are.
615 			 */
616 			if (rv == VM_PAGER_ERROR)
617 				printf("vm_fault: pager read error, pid %d (%s)\n",
618 				    curproc->p_pid, curproc->p_comm);
619 			/*
620 			 * Data outside the range of the pager or an I/O error
621 			 */
622 			/*
623 			 * XXX - the check for kernel_map is a kludge to work
624 			 * around having the machine panic on a kernel space
625 			 * fault w/ I/O error.
626 			 */
627 			if (((fs.map != kernel_map) && (rv == VM_PAGER_ERROR)) ||
628 				(rv == VM_PAGER_BAD)) {
629 				vm_page_lock(fs.m);
630 				vm_page_free(fs.m);
631 				vm_page_unlock(fs.m);
632 				fs.m = NULL;
633 				unlock_and_deallocate(&fs);
634 				return ((rv == VM_PAGER_ERROR) ? KERN_FAILURE : KERN_PROTECTION_FAILURE);
635 			}
636 			if (fs.object != fs.first_object) {
637 				vm_page_lock(fs.m);
638 				vm_page_free(fs.m);
639 				vm_page_unlock(fs.m);
640 				fs.m = NULL;
641 				/*
642 				 * XXX - we cannot just fall out at this
643 				 * point, m has been freed and is invalid!
644 				 */
645 			}
646 		}
647 
648 		/*
649 		 * We get here if the object has default pager (or unwiring)
650 		 * or the pager doesn't have the page.
651 		 */
652 		if (fs.object == fs.first_object)
653 			fs.first_m = fs.m;
654 
655 		/*
656 		 * Move on to the next object.  Lock the next object before
657 		 * unlocking the current one.
658 		 */
659 		fs.pindex += OFF_TO_IDX(fs.object->backing_object_offset);
660 		next_object = fs.object->backing_object;
661 		if (next_object == NULL) {
662 			/*
663 			 * If there's no object left, fill the page in the top
664 			 * object with zeros.
665 			 */
666 			if (fs.object != fs.first_object) {
667 				vm_object_pip_wakeup(fs.object);
668 				VM_OBJECT_UNLOCK(fs.object);
669 
670 				fs.object = fs.first_object;
671 				fs.pindex = fs.first_pindex;
672 				fs.m = fs.first_m;
673 				VM_OBJECT_LOCK(fs.object);
674 			}
675 			fs.first_m = NULL;
676 
677 			/*
678 			 * Zero the page if necessary and mark it valid.
679 			 */
680 			if ((fs.m->flags & PG_ZERO) == 0) {
681 				pmap_zero_page(fs.m);
682 			} else {
683 				PCPU_INC(cnt.v_ozfod);
684 			}
685 			PCPU_INC(cnt.v_zfod);
686 			fs.m->valid = VM_PAGE_BITS_ALL;
687 			break;	/* break to PAGE HAS BEEN FOUND */
688 		} else {
689 			KASSERT(fs.object != next_object,
690 			    ("object loop %p", next_object));
691 			VM_OBJECT_LOCK(next_object);
692 			vm_object_pip_add(next_object, 1);
693 			if (fs.object != fs.first_object)
694 				vm_object_pip_wakeup(fs.object);
695 			VM_OBJECT_UNLOCK(fs.object);
696 			fs.object = next_object;
697 		}
698 	}
699 
700 	KASSERT((fs.m->oflags & VPO_BUSY) != 0,
701 	    ("vm_fault: not busy after main loop"));
702 
703 	/*
704 	 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
705 	 * is held.]
706 	 */
707 
708 	/*
709 	 * If the page is being written, but isn't already owned by the
710 	 * top-level object, we have to copy it into a new page owned by the
711 	 * top-level object.
712 	 */
713 	if (fs.object != fs.first_object) {
714 		/*
715 		 * We only really need to copy if we want to write it.
716 		 */
717 		if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
718 			/*
719 			 * This allows pages to be virtually copied from a
720 			 * backing_object into the first_object, where the
721 			 * backing object has no other refs to it, and cannot
722 			 * gain any more refs.  Instead of a bcopy, we just
723 			 * move the page from the backing object to the
724 			 * first object.  Note that we must mark the page
725 			 * dirty in the first object so that it will go out
726 			 * to swap when needed.
727 			 */
728 			is_first_object_locked = FALSE;
729 			if (
730 				/*
731 				 * Only one shadow object
732 				 */
733 				(fs.object->shadow_count == 1) &&
734 				/*
735 				 * No COW refs, except us
736 				 */
737 				(fs.object->ref_count == 1) &&
738 				/*
739 				 * No one else can look this object up
740 				 */
741 				(fs.object->handle == NULL) &&
742 				/*
743 				 * No other ways to look the object up
744 				 */
745 				((fs.object->type == OBJT_DEFAULT) ||
746 				 (fs.object->type == OBJT_SWAP)) &&
747 			    (is_first_object_locked = VM_OBJECT_TRYLOCK(fs.first_object)) &&
748 				/*
749 				 * We don't chase down the shadow chain
750 				 */
751 			    fs.object == fs.first_object->backing_object) {
752 				/*
753 				 * get rid of the unnecessary page
754 				 */
755 				vm_page_lock(fs.first_m);
756 				vm_page_free(fs.first_m);
757 				vm_page_unlock(fs.first_m);
758 				/*
759 				 * grab the page and put it into the
760 				 * process'es object.  The page is
761 				 * automatically made dirty.
762 				 */
763 				vm_page_lock(fs.m);
764 				vm_page_rename(fs.m, fs.first_object, fs.first_pindex);
765 				vm_page_unlock(fs.m);
766 				vm_page_busy(fs.m);
767 				fs.first_m = fs.m;
768 				fs.m = NULL;
769 				PCPU_INC(cnt.v_cow_optim);
770 			} else {
771 				/*
772 				 * Oh, well, lets copy it.
773 				 */
774 				pmap_copy_page(fs.m, fs.first_m);
775 				fs.first_m->valid = VM_PAGE_BITS_ALL;
776 				if (wired && (fault_flags &
777 				    VM_FAULT_CHANGE_WIRING) == 0) {
778 					vm_page_lock(fs.first_m);
779 					vm_page_wire(fs.first_m);
780 					vm_page_unlock(fs.first_m);
781 
782 					vm_page_lock(fs.m);
783 					vm_page_unwire(fs.m, FALSE);
784 					vm_page_unlock(fs.m);
785 				}
786 				/*
787 				 * We no longer need the old page or object.
788 				 */
789 				release_page(&fs);
790 			}
791 			/*
792 			 * fs.object != fs.first_object due to above
793 			 * conditional
794 			 */
795 			vm_object_pip_wakeup(fs.object);
796 			VM_OBJECT_UNLOCK(fs.object);
797 			/*
798 			 * Only use the new page below...
799 			 */
800 			fs.object = fs.first_object;
801 			fs.pindex = fs.first_pindex;
802 			fs.m = fs.first_m;
803 			if (!is_first_object_locked)
804 				VM_OBJECT_LOCK(fs.object);
805 			PCPU_INC(cnt.v_cow_faults);
806 		} else {
807 			prot &= ~VM_PROT_WRITE;
808 		}
809 	}
810 
811 	/*
812 	 * We must verify that the maps have not changed since our last
813 	 * lookup.
814 	 */
815 	if (!fs.lookup_still_valid) {
816 		vm_object_t retry_object;
817 		vm_pindex_t retry_pindex;
818 		vm_prot_t retry_prot;
819 
820 		if (!vm_map_trylock_read(fs.map)) {
821 			release_page(&fs);
822 			unlock_and_deallocate(&fs);
823 			goto RetryFault;
824 		}
825 		fs.lookup_still_valid = TRUE;
826 		if (fs.map->timestamp != map_generation) {
827 			result = vm_map_lookup_locked(&fs.map, vaddr, fault_type,
828 			    &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
829 
830 			/*
831 			 * If we don't need the page any longer, put it on the inactive
832 			 * list (the easiest thing to do here).  If no one needs it,
833 			 * pageout will grab it eventually.
834 			 */
835 			if (result != KERN_SUCCESS) {
836 				release_page(&fs);
837 				unlock_and_deallocate(&fs);
838 
839 				/*
840 				 * If retry of map lookup would have blocked then
841 				 * retry fault from start.
842 				 */
843 				if (result == KERN_FAILURE)
844 					goto RetryFault;
845 				return (result);
846 			}
847 			if ((retry_object != fs.first_object) ||
848 			    (retry_pindex != fs.first_pindex)) {
849 				release_page(&fs);
850 				unlock_and_deallocate(&fs);
851 				goto RetryFault;
852 			}
853 
854 			/*
855 			 * Check whether the protection has changed or the object has
856 			 * been copied while we left the map unlocked. Changing from
857 			 * read to write permission is OK - we leave the page
858 			 * write-protected, and catch the write fault. Changing from
859 			 * write to read permission means that we can't mark the page
860 			 * write-enabled after all.
861 			 */
862 			prot &= retry_prot;
863 		}
864 	}
865 	/*
866 	 * If the page was filled by a pager, update the map entry's
867 	 * last read offset.  Since the pager does not return the
868 	 * actual set of pages that it read, this update is based on
869 	 * the requested set.  Typically, the requested and actual
870 	 * sets are the same.
871 	 *
872 	 * XXX The following assignment modifies the map
873 	 * without holding a write lock on it.
874 	 */
875 	if (hardfault)
876 		fs.entry->lastr = fs.pindex + faultcount - behind;
877 
878 	if (prot & VM_PROT_WRITE) {
879 		vm_object_set_writeable_dirty(fs.object);
880 
881 		/*
882 		 * If this is a NOSYNC mmap we do not want to set VPO_NOSYNC
883 		 * if the page is already dirty to prevent data written with
884 		 * the expectation of being synced from not being synced.
885 		 * Likewise if this entry does not request NOSYNC then make
886 		 * sure the page isn't marked NOSYNC.  Applications sharing
887 		 * data should use the same flags to avoid ping ponging.
888 		 */
889 		if (fs.entry->eflags & MAP_ENTRY_NOSYNC) {
890 			if (fs.m->dirty == 0)
891 				fs.m->oflags |= VPO_NOSYNC;
892 		} else {
893 			fs.m->oflags &= ~VPO_NOSYNC;
894 		}
895 
896 		/*
897 		 * If the fault is a write, we know that this page is being
898 		 * written NOW so dirty it explicitly to save on
899 		 * pmap_is_modified() calls later.
900 		 *
901 		 * Also tell the backing pager, if any, that it should remove
902 		 * any swap backing since the page is now dirty.
903 		 */
904 		if ((fault_type & VM_PROT_WRITE) != 0 &&
905 		    (fault_flags & VM_FAULT_CHANGE_WIRING) == 0) {
906 			vm_page_dirty(fs.m);
907 			vm_pager_page_unswapped(fs.m);
908 		}
909 	}
910 
911 	/*
912 	 * Page had better still be busy
913 	 */
914 	KASSERT(fs.m->oflags & VPO_BUSY,
915 		("vm_fault: page %p not busy!", fs.m));
916 	/*
917 	 * Page must be completely valid or it is not fit to
918 	 * map into user space.  vm_pager_get_pages() ensures this.
919 	 */
920 	KASSERT(fs.m->valid == VM_PAGE_BITS_ALL,
921 	    ("vm_fault: page %p partially invalid", fs.m));
922 	VM_OBJECT_UNLOCK(fs.object);
923 
924 	/*
925 	 * Put this page into the physical map.  We had to do the unlock above
926 	 * because pmap_enter() may sleep.  We don't put the page
927 	 * back on the active queue until later so that the pageout daemon
928 	 * won't find it (yet).
929 	 */
930 	pmap_enter(fs.map->pmap, vaddr, fault_type, fs.m, prot, wired);
931 	if ((fault_flags & VM_FAULT_CHANGE_WIRING) == 0 && wired == 0)
932 		vm_fault_prefault(fs.map->pmap, vaddr, fs.entry);
933 	VM_OBJECT_LOCK(fs.object);
934 	vm_page_lock(fs.m);
935 
936 	/*
937 	 * If the page is not wired down, then put it where the pageout daemon
938 	 * can find it.
939 	 */
940 	if (fault_flags & VM_FAULT_CHANGE_WIRING) {
941 		if (wired)
942 			vm_page_wire(fs.m);
943 		else
944 			vm_page_unwire(fs.m, 1);
945 	} else
946 		vm_page_activate(fs.m);
947 	vm_page_unlock(fs.m);
948 	vm_page_wakeup(fs.m);
949 
950 	/*
951 	 * Unlock everything, and return
952 	 */
953 	unlock_and_deallocate(&fs);
954 	if (hardfault)
955 		curthread->td_ru.ru_majflt++;
956 	else
957 		curthread->td_ru.ru_minflt++;
958 
959 	return (KERN_SUCCESS);
960 }
961 
962 /*
963  * vm_fault_prefault provides a quick way of clustering
964  * pagefaults into a processes address space.  It is a "cousin"
965  * of vm_map_pmap_enter, except it runs at page fault time instead
966  * of mmap time.
967  */
968 static void
969 vm_fault_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry)
970 {
971 	int i;
972 	vm_offset_t addr, starta;
973 	vm_pindex_t pindex;
974 	vm_page_t m;
975 	vm_object_t object;
976 
977 	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
978 		return;
979 
980 	object = entry->object.vm_object;
981 
982 	starta = addra - PFBAK * PAGE_SIZE;
983 	if (starta < entry->start) {
984 		starta = entry->start;
985 	} else if (starta > addra) {
986 		starta = 0;
987 	}
988 
989 	for (i = 0; i < PAGEORDER_SIZE; i++) {
990 		vm_object_t backing_object, lobject;
991 
992 		addr = addra + prefault_pageorder[i];
993 		if (addr > addra + (PFFOR * PAGE_SIZE))
994 			addr = 0;
995 
996 		if (addr < starta || addr >= entry->end)
997 			continue;
998 
999 		if (!pmap_is_prefaultable(pmap, addr))
1000 			continue;
1001 
1002 		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
1003 		lobject = object;
1004 		VM_OBJECT_LOCK(lobject);
1005 		while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
1006 		    lobject->type == OBJT_DEFAULT &&
1007 		    (backing_object = lobject->backing_object) != NULL) {
1008 			KASSERT((lobject->backing_object_offset & PAGE_MASK) ==
1009 			    0, ("vm_fault_prefault: unaligned object offset"));
1010 			pindex += lobject->backing_object_offset >> PAGE_SHIFT;
1011 			VM_OBJECT_LOCK(backing_object);
1012 			VM_OBJECT_UNLOCK(lobject);
1013 			lobject = backing_object;
1014 		}
1015 		/*
1016 		 * give-up when a page is not in memory
1017 		 */
1018 		if (m == NULL) {
1019 			VM_OBJECT_UNLOCK(lobject);
1020 			break;
1021 		}
1022 		if (m->valid == VM_PAGE_BITS_ALL &&
1023 		    (m->flags & PG_FICTITIOUS) == 0)
1024 			pmap_enter_quick(pmap, addr, m, entry->protection);
1025 		VM_OBJECT_UNLOCK(lobject);
1026 	}
1027 }
1028 
1029 /*
1030  *	vm_fault_quick:
1031  *
1032  *	Ensure that the requested virtual address, which may be in userland,
1033  *	is valid.  Fault-in the page if necessary.  Return -1 on failure.
1034  */
1035 int
1036 vm_fault_quick(caddr_t v, int prot)
1037 {
1038 	int r;
1039 
1040 	if (prot & VM_PROT_WRITE)
1041 		r = subyte(v, fubyte(v));
1042 	else
1043 		r = fubyte(v);
1044 	return(r);
1045 }
1046 
1047 /*
1048  *	vm_fault_wire:
1049  *
1050  *	Wire down a range of virtual addresses in a map.
1051  */
1052 int
1053 vm_fault_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
1054     boolean_t fictitious)
1055 {
1056 	vm_offset_t va;
1057 	int rv;
1058 
1059 	/*
1060 	 * We simulate a fault to get the page and enter it in the physical
1061 	 * map.  For user wiring, we only ask for read access on currently
1062 	 * read-only sections.
1063 	 */
1064 	for (va = start; va < end; va += PAGE_SIZE) {
1065 		rv = vm_fault(map, va, VM_PROT_NONE, VM_FAULT_CHANGE_WIRING);
1066 		if (rv) {
1067 			if (va != start)
1068 				vm_fault_unwire(map, start, va, fictitious);
1069 			return (rv);
1070 		}
1071 	}
1072 	return (KERN_SUCCESS);
1073 }
1074 
1075 /*
1076  *	vm_fault_unwire:
1077  *
1078  *	Unwire a range of virtual addresses in a map.
1079  */
1080 void
1081 vm_fault_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
1082     boolean_t fictitious)
1083 {
1084 	vm_paddr_t pa;
1085 	vm_offset_t va;
1086 	vm_page_t m;
1087 	pmap_t pmap;
1088 
1089 	pmap = vm_map_pmap(map);
1090 
1091 	/*
1092 	 * Since the pages are wired down, we must be able to get their
1093 	 * mappings from the physical map system.
1094 	 */
1095 	for (va = start; va < end; va += PAGE_SIZE) {
1096 		pa = pmap_extract(pmap, va);
1097 		if (pa != 0) {
1098 			pmap_change_wiring(pmap, va, FALSE);
1099 			if (!fictitious) {
1100 				m = PHYS_TO_VM_PAGE(pa);
1101 				vm_page_lock(m);
1102 				vm_page_unwire(m, TRUE);
1103 				vm_page_unlock(m);
1104 			}
1105 		}
1106 	}
1107 }
1108 
1109 /*
1110  *	Routine:
1111  *		vm_fault_copy_entry
1112  *	Function:
1113  *		Create new shadow object backing dst_entry with private copy of
1114  *		all underlying pages. When src_entry is equal to dst_entry,
1115  *		function implements COW for wired-down map entry. Otherwise,
1116  *		it forks wired entry into dst_map.
1117  *
1118  *	In/out conditions:
1119  *		The source and destination maps must be locked for write.
1120  *		The source map entry must be wired down (or be a sharing map
1121  *		entry corresponding to a main map entry that is wired down).
1122  */
1123 void
1124 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1125     vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
1126     vm_ooffset_t *fork_charge)
1127 {
1128 	vm_object_t backing_object, dst_object, object, src_object;
1129 	vm_pindex_t dst_pindex, pindex, src_pindex;
1130 	vm_prot_t access, prot;
1131 	vm_offset_t vaddr;
1132 	vm_page_t dst_m;
1133 	vm_page_t src_m;
1134 	boolean_t src_readonly, upgrade;
1135 
1136 #ifdef	lint
1137 	src_map++;
1138 #endif	/* lint */
1139 
1140 	upgrade = src_entry == dst_entry;
1141 
1142 	src_object = src_entry->object.vm_object;
1143 	src_pindex = OFF_TO_IDX(src_entry->offset);
1144 	src_readonly = (src_entry->protection & VM_PROT_WRITE) == 0;
1145 
1146 	/*
1147 	 * Create the top-level object for the destination entry. (Doesn't
1148 	 * actually shadow anything - we copy the pages directly.)
1149 	 */
1150 	dst_object = vm_object_allocate(OBJT_DEFAULT,
1151 	    OFF_TO_IDX(dst_entry->end - dst_entry->start));
1152 #if VM_NRESERVLEVEL > 0
1153 	dst_object->flags |= OBJ_COLORED;
1154 	dst_object->pg_color = atop(dst_entry->start);
1155 #endif
1156 
1157 	VM_OBJECT_LOCK(dst_object);
1158 	KASSERT(upgrade || dst_entry->object.vm_object == NULL,
1159 	    ("vm_fault_copy_entry: vm_object not NULL"));
1160 	dst_entry->object.vm_object = dst_object;
1161 	dst_entry->offset = 0;
1162 	dst_object->charge = dst_entry->end - dst_entry->start;
1163 	if (fork_charge != NULL) {
1164 		KASSERT(dst_entry->uip == NULL,
1165 		    ("vm_fault_copy_entry: leaked swp charge"));
1166 		dst_object->uip = curthread->td_ucred->cr_ruidinfo;
1167 		uihold(dst_object->uip);
1168 		*fork_charge += dst_object->charge;
1169 	} else {
1170 		dst_object->uip = dst_entry->uip;
1171 		dst_entry->uip = NULL;
1172 	}
1173 	access = prot = dst_entry->protection;
1174 	/*
1175 	 * If not an upgrade, then enter the mappings in the pmap as
1176 	 * read and/or execute accesses.  Otherwise, enter them as
1177 	 * write accesses.
1178 	 *
1179 	 * A writeable large page mapping is only created if all of
1180 	 * the constituent small page mappings are modified. Marking
1181 	 * PTEs as modified on inception allows promotion to happen
1182 	 * without taking potentially large number of soft faults.
1183 	 */
1184 	if (!upgrade)
1185 		access &= ~VM_PROT_WRITE;
1186 
1187 	/*
1188 	 * Loop through all of the pages in the entry's range, copying each
1189 	 * one from the source object (it should be there) to the destination
1190 	 * object.
1191 	 */
1192 	for (vaddr = dst_entry->start, dst_pindex = 0;
1193 	    vaddr < dst_entry->end;
1194 	    vaddr += PAGE_SIZE, dst_pindex++) {
1195 
1196 		/*
1197 		 * Allocate a page in the destination object.
1198 		 */
1199 		do {
1200 			dst_m = vm_page_alloc(dst_object, dst_pindex,
1201 			    VM_ALLOC_NORMAL);
1202 			if (dst_m == NULL) {
1203 				VM_OBJECT_UNLOCK(dst_object);
1204 				VM_WAIT;
1205 				VM_OBJECT_LOCK(dst_object);
1206 			}
1207 		} while (dst_m == NULL);
1208 
1209 		/*
1210 		 * Find the page in the source object, and copy it in.
1211 		 * (Because the source is wired down, the page will be in
1212 		 * memory.)
1213 		 */
1214 		VM_OBJECT_LOCK(src_object);
1215 		object = src_object;
1216 		pindex = src_pindex + dst_pindex;
1217 		while ((src_m = vm_page_lookup(object, pindex)) == NULL &&
1218 		    src_readonly &&
1219 		    (backing_object = object->backing_object) != NULL) {
1220 			/*
1221 			 * Allow fallback to backing objects if we are reading.
1222 			 */
1223 			VM_OBJECT_LOCK(backing_object);
1224 			pindex += OFF_TO_IDX(object->backing_object_offset);
1225 			VM_OBJECT_UNLOCK(object);
1226 			object = backing_object;
1227 		}
1228 		if (src_m == NULL)
1229 			panic("vm_fault_copy_wired: page missing");
1230 		pmap_copy_page(src_m, dst_m);
1231 		VM_OBJECT_UNLOCK(object);
1232 		dst_m->valid = VM_PAGE_BITS_ALL;
1233 		VM_OBJECT_UNLOCK(dst_object);
1234 
1235 		/*
1236 		 * Enter it in the pmap. If a wired, copy-on-write
1237 		 * mapping is being replaced by a write-enabled
1238 		 * mapping, then wire that new mapping.
1239 		 */
1240 		pmap_enter(dst_map->pmap, vaddr, access, dst_m, prot, upgrade);
1241 
1242 		/*
1243 		 * Mark it no longer busy, and put it on the active list.
1244 		 */
1245 		VM_OBJECT_LOCK(dst_object);
1246 
1247 		if (upgrade) {
1248 			vm_page_lock(src_m);
1249 			vm_page_unwire(src_m, 0);
1250 			vm_page_unlock(src_m);
1251 
1252 			vm_page_lock(dst_m);
1253 			vm_page_wire(dst_m);
1254 			vm_page_unlock(dst_m);
1255 		} else {
1256 			vm_page_lock(dst_m);
1257 			vm_page_activate(dst_m);
1258 			vm_page_unlock(dst_m);
1259 		}
1260 		vm_page_wakeup(dst_m);
1261 	}
1262 	VM_OBJECT_UNLOCK(dst_object);
1263 	if (upgrade) {
1264 		dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY);
1265 		vm_object_deallocate(src_object);
1266 	}
1267 }
1268 
1269 
1270 /*
1271  * This routine checks around the requested page for other pages that
1272  * might be able to be faulted in.  This routine brackets the viable
1273  * pages for the pages to be paged in.
1274  *
1275  * Inputs:
1276  *	m, rbehind, rahead
1277  *
1278  * Outputs:
1279  *  marray (array of vm_page_t), reqpage (index of requested page)
1280  *
1281  * Return value:
1282  *  number of pages in marray
1283  */
1284 static int
1285 vm_fault_additional_pages(m, rbehind, rahead, marray, reqpage)
1286 	vm_page_t m;
1287 	int rbehind;
1288 	int rahead;
1289 	vm_page_t *marray;
1290 	int *reqpage;
1291 {
1292 	int i,j;
1293 	vm_object_t object;
1294 	vm_pindex_t pindex, startpindex, endpindex, tpindex;
1295 	vm_page_t rtm;
1296 	int cbehind, cahead;
1297 
1298 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1299 
1300 	object = m->object;
1301 	pindex = m->pindex;
1302 	cbehind = cahead = 0;
1303 
1304 	/*
1305 	 * if the requested page is not available, then give up now
1306 	 */
1307 	if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
1308 		return 0;
1309 	}
1310 
1311 	if ((cbehind == 0) && (cahead == 0)) {
1312 		*reqpage = 0;
1313 		marray[0] = m;
1314 		return 1;
1315 	}
1316 
1317 	if (rahead > cahead) {
1318 		rahead = cahead;
1319 	}
1320 
1321 	if (rbehind > cbehind) {
1322 		rbehind = cbehind;
1323 	}
1324 
1325 	/*
1326 	 * scan backward for the read behind pages -- in memory
1327 	 */
1328 	if (pindex > 0) {
1329 		if (rbehind > pindex) {
1330 			rbehind = pindex;
1331 			startpindex = 0;
1332 		} else {
1333 			startpindex = pindex - rbehind;
1334 		}
1335 
1336 		if ((rtm = TAILQ_PREV(m, pglist, listq)) != NULL &&
1337 		    rtm->pindex >= startpindex)
1338 			startpindex = rtm->pindex + 1;
1339 
1340 		/* tpindex is unsigned; beware of numeric underflow. */
1341 		for (i = 0, tpindex = pindex - 1; tpindex >= startpindex &&
1342 		    tpindex < pindex; i++, tpindex--) {
1343 
1344 			rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
1345 			    VM_ALLOC_IFNOTCACHED);
1346 			if (rtm == NULL) {
1347 				/*
1348 				 * Shift the allocated pages to the
1349 				 * beginning of the array.
1350 				 */
1351 				for (j = 0; j < i; j++) {
1352 					marray[j] = marray[j + tpindex + 1 -
1353 					    startpindex];
1354 				}
1355 				break;
1356 			}
1357 
1358 			marray[tpindex - startpindex] = rtm;
1359 		}
1360 	} else {
1361 		startpindex = 0;
1362 		i = 0;
1363 	}
1364 
1365 	marray[i] = m;
1366 	/* page offset of the required page */
1367 	*reqpage = i;
1368 
1369 	tpindex = pindex + 1;
1370 	i++;
1371 
1372 	/*
1373 	 * scan forward for the read ahead pages
1374 	 */
1375 	endpindex = tpindex + rahead;
1376 	if ((rtm = TAILQ_NEXT(m, listq)) != NULL && rtm->pindex < endpindex)
1377 		endpindex = rtm->pindex;
1378 	if (endpindex > object->size)
1379 		endpindex = object->size;
1380 
1381 	for (; tpindex < endpindex; i++, tpindex++) {
1382 
1383 		rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
1384 		    VM_ALLOC_IFNOTCACHED);
1385 		if (rtm == NULL) {
1386 			break;
1387 		}
1388 
1389 		marray[i] = rtm;
1390 	}
1391 
1392 	/* return number of pages */
1393 	return i;
1394 }
1395