1 /*- 2 * SPDX-License-Identifier: (BSD-4-Clause AND MIT-CMU) 3 * 4 * Copyright (c) 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * Copyright (c) 1994 John S. Dyson 7 * All rights reserved. 8 * Copyright (c) 1994 David Greenman 9 * All rights reserved. 10 * 11 * 12 * This code is derived from software contributed to Berkeley by 13 * The Mach Operating System project at Carnegie-Mellon University. 14 * 15 * Redistribution and use in source and binary forms, with or without 16 * modification, are permitted provided that the following conditions 17 * are met: 18 * 1. Redistributions of source code must retain the above copyright 19 * notice, this list of conditions and the following disclaimer. 20 * 2. Redistributions in binary form must reproduce the above copyright 21 * notice, this list of conditions and the following disclaimer in the 22 * documentation and/or other materials provided with the distribution. 23 * 3. All advertising materials mentioning features or use of this software 24 * must display the following acknowledgement: 25 * This product includes software developed by the University of 26 * California, Berkeley and its contributors. 27 * 4. Neither the name of the University nor the names of its contributors 28 * may be used to endorse or promote products derived from this software 29 * without specific prior written permission. 30 * 31 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 32 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 33 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 34 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 35 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 39 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 40 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 41 * SUCH DAMAGE. 42 * 43 * from: @(#)vm_fault.c 8.4 (Berkeley) 1/12/94 44 * 45 * 46 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 47 * All rights reserved. 48 * 49 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 50 * 51 * Permission to use, copy, modify and distribute this software and 52 * its documentation is hereby granted, provided that both the copyright 53 * notice and this permission notice appear in all copies of the 54 * software, derivative works or modified versions, and any portions 55 * thereof, and that both notices appear in supporting documentation. 56 * 57 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 58 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 59 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 60 * 61 * Carnegie Mellon requests users of this software to return to 62 * 63 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 64 * School of Computer Science 65 * Carnegie Mellon University 66 * Pittsburgh PA 15213-3890 67 * 68 * any improvements or extensions that they make and grant Carnegie the 69 * rights to redistribute these changes. 70 */ 71 72 /* 73 * Page fault handling module. 74 */ 75 76 #include <sys/cdefs.h> 77 #include "opt_ktrace.h" 78 #include "opt_vm.h" 79 80 #include <sys/param.h> 81 #include <sys/systm.h> 82 #include <sys/kernel.h> 83 #include <sys/lock.h> 84 #include <sys/mman.h> 85 #include <sys/mutex.h> 86 #include <sys/pctrie.h> 87 #include <sys/proc.h> 88 #include <sys/racct.h> 89 #include <sys/refcount.h> 90 #include <sys/resourcevar.h> 91 #include <sys/rwlock.h> 92 #include <sys/signalvar.h> 93 #include <sys/sysctl.h> 94 #include <sys/sysent.h> 95 #include <sys/vmmeter.h> 96 #include <sys/vnode.h> 97 #ifdef KTRACE 98 #include <sys/ktrace.h> 99 #endif 100 101 #include <vm/vm.h> 102 #include <vm/vm_param.h> 103 #include <vm/pmap.h> 104 #include <vm/vm_map.h> 105 #include <vm/vm_object.h> 106 #include <vm/vm_page.h> 107 #include <vm/vm_pageout.h> 108 #include <vm/vm_kern.h> 109 #include <vm/vm_pager.h> 110 #include <vm/vm_extern.h> 111 #include <vm/vm_reserv.h> 112 113 #define PFBAK 4 114 #define PFFOR 4 115 116 #define VM_FAULT_READ_DEFAULT (1 + VM_FAULT_READ_AHEAD_INIT) 117 118 #define VM_FAULT_DONTNEED_MIN 1048576 119 120 struct faultstate { 121 /* Fault parameters. */ 122 vm_offset_t vaddr; 123 vm_page_t *m_hold; 124 vm_prot_t fault_type; 125 vm_prot_t prot; 126 int fault_flags; 127 boolean_t wired; 128 129 /* Control state. */ 130 struct timeval oom_start_time; 131 bool oom_started; 132 int nera; 133 bool can_read_lock; 134 135 /* Page reference for cow. */ 136 vm_page_t m_cow; 137 138 /* Current object. */ 139 vm_object_t object; 140 vm_pindex_t pindex; 141 vm_page_t m; 142 143 /* Top-level map object. */ 144 vm_object_t first_object; 145 vm_pindex_t first_pindex; 146 vm_page_t first_m; 147 148 /* Map state. */ 149 vm_map_t map; 150 vm_map_entry_t entry; 151 int map_generation; 152 bool lookup_still_valid; 153 154 /* Vnode if locked. */ 155 struct vnode *vp; 156 }; 157 158 /* 159 * Return codes for internal fault routines. 160 */ 161 enum fault_status { 162 FAULT_SUCCESS = 10000, /* Return success to user. */ 163 FAULT_FAILURE, /* Return failure to user. */ 164 FAULT_CONTINUE, /* Continue faulting. */ 165 FAULT_RESTART, /* Restart fault. */ 166 FAULT_OUT_OF_BOUNDS, /* Invalid address for pager. */ 167 FAULT_HARD, /* Performed I/O. */ 168 FAULT_SOFT, /* Found valid page. */ 169 FAULT_PROTECTION_FAILURE, /* Invalid access. */ 170 }; 171 172 enum fault_next_status { 173 FAULT_NEXT_GOTOBJ = 1, 174 FAULT_NEXT_NOOBJ, 175 FAULT_NEXT_RESTART, 176 }; 177 178 static void vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, 179 int ahead); 180 static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra, 181 int backward, int forward, bool obj_locked); 182 183 static int vm_pfault_oom_attempts = 3; 184 SYSCTL_INT(_vm, OID_AUTO, pfault_oom_attempts, CTLFLAG_RWTUN, 185 &vm_pfault_oom_attempts, 0, 186 "Number of page allocation attempts in page fault handler before it " 187 "triggers OOM handling"); 188 189 static int vm_pfault_oom_wait = 10; 190 SYSCTL_INT(_vm, OID_AUTO, pfault_oom_wait, CTLFLAG_RWTUN, 191 &vm_pfault_oom_wait, 0, 192 "Number of seconds to wait for free pages before retrying " 193 "the page fault handler"); 194 195 static inline void 196 vm_fault_page_release(vm_page_t *mp) 197 { 198 vm_page_t m; 199 200 m = *mp; 201 if (m != NULL) { 202 /* 203 * We are likely to loop around again and attempt to busy 204 * this page. Deactivating it leaves it available for 205 * pageout while optimizing fault restarts. 206 */ 207 vm_page_deactivate(m); 208 vm_page_xunbusy(m); 209 *mp = NULL; 210 } 211 } 212 213 static inline void 214 vm_fault_page_free(vm_page_t *mp) 215 { 216 vm_page_t m; 217 218 m = *mp; 219 if (m != NULL) { 220 VM_OBJECT_ASSERT_WLOCKED(m->object); 221 if (!vm_page_wired(m)) 222 vm_page_free(m); 223 else 224 vm_page_xunbusy(m); 225 *mp = NULL; 226 } 227 } 228 229 /* 230 * Return true if a vm_pager_get_pages() call is needed in order to check 231 * whether the pager might have a particular page, false if it can be determined 232 * immediately that the pager can not have a copy. For swap objects, this can 233 * be checked quickly. 234 */ 235 static inline bool 236 vm_fault_object_needs_getpages(vm_object_t object) 237 { 238 VM_OBJECT_ASSERT_LOCKED(object); 239 240 return ((object->flags & OBJ_SWAP) == 0 || 241 !pctrie_is_empty(&object->un_pager.swp.swp_blks)); 242 } 243 244 static inline void 245 vm_fault_unlock_map(struct faultstate *fs) 246 { 247 248 if (fs->lookup_still_valid) { 249 vm_map_lookup_done(fs->map, fs->entry); 250 fs->lookup_still_valid = false; 251 } 252 } 253 254 static void 255 vm_fault_unlock_vp(struct faultstate *fs) 256 { 257 258 if (fs->vp != NULL) { 259 vput(fs->vp); 260 fs->vp = NULL; 261 } 262 } 263 264 static void 265 vm_fault_deallocate(struct faultstate *fs) 266 { 267 268 vm_fault_page_release(&fs->m_cow); 269 vm_fault_page_release(&fs->m); 270 vm_object_pip_wakeup(fs->object); 271 if (fs->object != fs->first_object) { 272 VM_OBJECT_WLOCK(fs->first_object); 273 vm_fault_page_free(&fs->first_m); 274 VM_OBJECT_WUNLOCK(fs->first_object); 275 vm_object_pip_wakeup(fs->first_object); 276 } 277 vm_object_deallocate(fs->first_object); 278 vm_fault_unlock_map(fs); 279 vm_fault_unlock_vp(fs); 280 } 281 282 static void 283 vm_fault_unlock_and_deallocate(struct faultstate *fs) 284 { 285 286 VM_OBJECT_UNLOCK(fs->object); 287 vm_fault_deallocate(fs); 288 } 289 290 static void 291 vm_fault_dirty(struct faultstate *fs, vm_page_t m) 292 { 293 bool need_dirty; 294 295 if (((fs->prot & VM_PROT_WRITE) == 0 && 296 (fs->fault_flags & VM_FAULT_DIRTY) == 0) || 297 (m->oflags & VPO_UNMANAGED) != 0) 298 return; 299 300 VM_PAGE_OBJECT_BUSY_ASSERT(m); 301 302 need_dirty = ((fs->fault_type & VM_PROT_WRITE) != 0 && 303 (fs->fault_flags & VM_FAULT_WIRE) == 0) || 304 (fs->fault_flags & VM_FAULT_DIRTY) != 0; 305 306 vm_object_set_writeable_dirty(m->object); 307 308 /* 309 * If the fault is a write, we know that this page is being 310 * written NOW so dirty it explicitly to save on 311 * pmap_is_modified() calls later. 312 * 313 * Also, since the page is now dirty, we can possibly tell 314 * the pager to release any swap backing the page. 315 */ 316 if (need_dirty && vm_page_set_dirty(m) == 0) { 317 /* 318 * If this is a NOSYNC mmap we do not want to set PGA_NOSYNC 319 * if the page is already dirty to prevent data written with 320 * the expectation of being synced from not being synced. 321 * Likewise if this entry does not request NOSYNC then make 322 * sure the page isn't marked NOSYNC. Applications sharing 323 * data should use the same flags to avoid ping ponging. 324 */ 325 if ((fs->entry->eflags & MAP_ENTRY_NOSYNC) != 0) 326 vm_page_aflag_set(m, PGA_NOSYNC); 327 else 328 vm_page_aflag_clear(m, PGA_NOSYNC); 329 } 330 331 } 332 333 /* 334 * Unlocks fs.first_object and fs.map on success. 335 */ 336 static enum fault_status 337 vm_fault_soft_fast(struct faultstate *fs) 338 { 339 vm_page_t m, m_map; 340 #if VM_NRESERVLEVEL > 0 341 vm_page_t m_super; 342 int flags; 343 #endif 344 int psind; 345 vm_offset_t vaddr; 346 347 MPASS(fs->vp == NULL); 348 349 /* 350 * If we fail, vast majority of the time it is because the page is not 351 * there to begin with. Opportunistically perform the lookup and 352 * subsequent checks without the object lock, revalidate later. 353 * 354 * Note: a busy page can be mapped for read|execute access. 355 */ 356 m = vm_page_lookup_unlocked(fs->first_object, fs->first_pindex); 357 if (m == NULL || !vm_page_all_valid(m) || 358 ((fs->prot & VM_PROT_WRITE) != 0 && vm_page_busied(m))) { 359 VM_OBJECT_WLOCK(fs->first_object); 360 return (FAULT_FAILURE); 361 } 362 363 vaddr = fs->vaddr; 364 365 VM_OBJECT_RLOCK(fs->first_object); 366 367 /* 368 * Now that we stabilized the state, revalidate the page is in the shape 369 * we encountered above. 370 */ 371 372 if (m->object != fs->first_object || m->pindex != fs->first_pindex) 373 goto fail; 374 375 vm_object_busy(fs->first_object); 376 377 if (!vm_page_all_valid(m) || 378 ((fs->prot & VM_PROT_WRITE) != 0 && vm_page_busied(m))) 379 goto fail_busy; 380 381 m_map = m; 382 psind = 0; 383 #if VM_NRESERVLEVEL > 0 384 if ((m->flags & PG_FICTITIOUS) == 0 && 385 (m_super = vm_reserv_to_superpage(m)) != NULL && 386 rounddown2(vaddr, pagesizes[m_super->psind]) >= fs->entry->start && 387 roundup2(vaddr + 1, pagesizes[m_super->psind]) <= fs->entry->end && 388 (vaddr & (pagesizes[m_super->psind] - 1)) == (VM_PAGE_TO_PHYS(m) & 389 (pagesizes[m_super->psind] - 1)) && 390 pmap_ps_enabled(fs->map->pmap)) { 391 flags = PS_ALL_VALID; 392 if ((fs->prot & VM_PROT_WRITE) != 0) { 393 /* 394 * Create a superpage mapping allowing write access 395 * only if none of the constituent pages are busy and 396 * all of them are already dirty (except possibly for 397 * the page that was faulted on). 398 */ 399 flags |= PS_NONE_BUSY; 400 if ((fs->first_object->flags & OBJ_UNMANAGED) == 0) 401 flags |= PS_ALL_DIRTY; 402 } 403 if (vm_page_ps_test(m_super, flags, m)) { 404 m_map = m_super; 405 psind = m_super->psind; 406 vaddr = rounddown2(vaddr, pagesizes[psind]); 407 /* Preset the modified bit for dirty superpages. */ 408 if ((flags & PS_ALL_DIRTY) != 0) 409 fs->fault_type |= VM_PROT_WRITE; 410 } 411 } 412 #endif 413 if (pmap_enter(fs->map->pmap, vaddr, m_map, fs->prot, fs->fault_type | 414 PMAP_ENTER_NOSLEEP | (fs->wired ? PMAP_ENTER_WIRED : 0), psind) != 415 KERN_SUCCESS) 416 goto fail_busy; 417 if (fs->m_hold != NULL) { 418 (*fs->m_hold) = m; 419 vm_page_wire(m); 420 } 421 if (psind == 0 && !fs->wired) 422 vm_fault_prefault(fs, vaddr, PFBAK, PFFOR, true); 423 VM_OBJECT_RUNLOCK(fs->first_object); 424 vm_fault_dirty(fs, m); 425 vm_object_unbusy(fs->first_object); 426 vm_map_lookup_done(fs->map, fs->entry); 427 curthread->td_ru.ru_minflt++; 428 return (FAULT_SUCCESS); 429 fail_busy: 430 vm_object_unbusy(fs->first_object); 431 fail: 432 if (!VM_OBJECT_TRYUPGRADE(fs->first_object)) { 433 VM_OBJECT_RUNLOCK(fs->first_object); 434 VM_OBJECT_WLOCK(fs->first_object); 435 } 436 return (FAULT_FAILURE); 437 } 438 439 static void 440 vm_fault_restore_map_lock(struct faultstate *fs) 441 { 442 443 VM_OBJECT_ASSERT_WLOCKED(fs->first_object); 444 MPASS(blockcount_read(&fs->first_object->paging_in_progress) > 0); 445 446 if (!vm_map_trylock_read(fs->map)) { 447 VM_OBJECT_WUNLOCK(fs->first_object); 448 vm_map_lock_read(fs->map); 449 VM_OBJECT_WLOCK(fs->first_object); 450 } 451 fs->lookup_still_valid = true; 452 } 453 454 static void 455 vm_fault_populate_check_page(vm_page_t m) 456 { 457 458 /* 459 * Check each page to ensure that the pager is obeying the 460 * interface: the page must be installed in the object, fully 461 * valid, and exclusively busied. 462 */ 463 MPASS(m != NULL); 464 MPASS(vm_page_all_valid(m)); 465 MPASS(vm_page_xbusied(m)); 466 } 467 468 static void 469 vm_fault_populate_cleanup(vm_object_t object, vm_pindex_t first, 470 vm_pindex_t last) 471 { 472 vm_page_t m; 473 vm_pindex_t pidx; 474 475 VM_OBJECT_ASSERT_WLOCKED(object); 476 MPASS(first <= last); 477 for (pidx = first, m = vm_page_lookup(object, pidx); 478 pidx <= last; pidx++, m = vm_page_next(m)) { 479 vm_fault_populate_check_page(m); 480 vm_page_deactivate(m); 481 vm_page_xunbusy(m); 482 } 483 } 484 485 static enum fault_status 486 vm_fault_populate(struct faultstate *fs) 487 { 488 vm_offset_t vaddr; 489 vm_page_t m; 490 vm_pindex_t map_first, map_last, pager_first, pager_last, pidx; 491 int bdry_idx, i, npages, psind, rv; 492 enum fault_status res; 493 494 MPASS(fs->object == fs->first_object); 495 VM_OBJECT_ASSERT_WLOCKED(fs->first_object); 496 MPASS(blockcount_read(&fs->first_object->paging_in_progress) > 0); 497 MPASS(fs->first_object->backing_object == NULL); 498 MPASS(fs->lookup_still_valid); 499 500 pager_first = OFF_TO_IDX(fs->entry->offset); 501 pager_last = pager_first + atop(fs->entry->end - fs->entry->start) - 1; 502 vm_fault_unlock_map(fs); 503 vm_fault_unlock_vp(fs); 504 505 res = FAULT_SUCCESS; 506 507 /* 508 * Call the pager (driver) populate() method. 509 * 510 * There is no guarantee that the method will be called again 511 * if the current fault is for read, and a future fault is 512 * for write. Report the entry's maximum allowed protection 513 * to the driver. 514 */ 515 rv = vm_pager_populate(fs->first_object, fs->first_pindex, 516 fs->fault_type, fs->entry->max_protection, &pager_first, 517 &pager_last); 518 519 VM_OBJECT_ASSERT_WLOCKED(fs->first_object); 520 if (rv == VM_PAGER_BAD) { 521 /* 522 * VM_PAGER_BAD is the backdoor for a pager to request 523 * normal fault handling. 524 */ 525 vm_fault_restore_map_lock(fs); 526 if (fs->map->timestamp != fs->map_generation) 527 return (FAULT_RESTART); 528 return (FAULT_CONTINUE); 529 } 530 if (rv != VM_PAGER_OK) 531 return (FAULT_FAILURE); /* AKA SIGSEGV */ 532 533 /* Ensure that the driver is obeying the interface. */ 534 MPASS(pager_first <= pager_last); 535 MPASS(fs->first_pindex <= pager_last); 536 MPASS(fs->first_pindex >= pager_first); 537 MPASS(pager_last < fs->first_object->size); 538 539 vm_fault_restore_map_lock(fs); 540 bdry_idx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(fs->entry); 541 if (fs->map->timestamp != fs->map_generation) { 542 if (bdry_idx == 0) { 543 vm_fault_populate_cleanup(fs->first_object, pager_first, 544 pager_last); 545 } else { 546 m = vm_page_lookup(fs->first_object, pager_first); 547 if (m != fs->m) 548 vm_page_xunbusy(m); 549 } 550 return (FAULT_RESTART); 551 } 552 553 /* 554 * The map is unchanged after our last unlock. Process the fault. 555 * 556 * First, the special case of largepage mappings, where 557 * populate only busies the first page in superpage run. 558 */ 559 if (bdry_idx != 0) { 560 KASSERT(PMAP_HAS_LARGEPAGES, 561 ("missing pmap support for large pages")); 562 m = vm_page_lookup(fs->first_object, pager_first); 563 vm_fault_populate_check_page(m); 564 VM_OBJECT_WUNLOCK(fs->first_object); 565 vaddr = fs->entry->start + IDX_TO_OFF(pager_first) - 566 fs->entry->offset; 567 /* assert alignment for entry */ 568 KASSERT((vaddr & (pagesizes[bdry_idx] - 1)) == 0, 569 ("unaligned superpage start %#jx pager_first %#jx offset %#jx vaddr %#jx", 570 (uintmax_t)fs->entry->start, (uintmax_t)pager_first, 571 (uintmax_t)fs->entry->offset, (uintmax_t)vaddr)); 572 KASSERT((VM_PAGE_TO_PHYS(m) & (pagesizes[bdry_idx] - 1)) == 0, 573 ("unaligned superpage m %p %#jx", m, 574 (uintmax_t)VM_PAGE_TO_PHYS(m))); 575 rv = pmap_enter(fs->map->pmap, vaddr, m, fs->prot, 576 fs->fault_type | (fs->wired ? PMAP_ENTER_WIRED : 0) | 577 PMAP_ENTER_LARGEPAGE, bdry_idx); 578 VM_OBJECT_WLOCK(fs->first_object); 579 vm_page_xunbusy(m); 580 if (rv != KERN_SUCCESS) { 581 res = FAULT_FAILURE; 582 goto out; 583 } 584 if ((fs->fault_flags & VM_FAULT_WIRE) != 0) { 585 for (i = 0; i < atop(pagesizes[bdry_idx]); i++) 586 vm_page_wire(m + i); 587 } 588 if (fs->m_hold != NULL) { 589 *fs->m_hold = m + (fs->first_pindex - pager_first); 590 vm_page_wire(*fs->m_hold); 591 } 592 goto out; 593 } 594 595 /* 596 * The range [pager_first, pager_last] that is given to the 597 * pager is only a hint. The pager may populate any range 598 * within the object that includes the requested page index. 599 * In case the pager expanded the range, clip it to fit into 600 * the map entry. 601 */ 602 map_first = OFF_TO_IDX(fs->entry->offset); 603 if (map_first > pager_first) { 604 vm_fault_populate_cleanup(fs->first_object, pager_first, 605 map_first - 1); 606 pager_first = map_first; 607 } 608 map_last = map_first + atop(fs->entry->end - fs->entry->start) - 1; 609 if (map_last < pager_last) { 610 vm_fault_populate_cleanup(fs->first_object, map_last + 1, 611 pager_last); 612 pager_last = map_last; 613 } 614 for (pidx = pager_first, m = vm_page_lookup(fs->first_object, pidx); 615 pidx <= pager_last; 616 pidx += npages, m = vm_page_next(&m[npages - 1])) { 617 vaddr = fs->entry->start + IDX_TO_OFF(pidx) - fs->entry->offset; 618 619 psind = m->psind; 620 if (psind > 0 && ((vaddr & (pagesizes[psind] - 1)) != 0 || 621 pidx + OFF_TO_IDX(pagesizes[psind]) - 1 > pager_last || 622 !pmap_ps_enabled(fs->map->pmap))) 623 psind = 0; 624 625 npages = atop(pagesizes[psind]); 626 for (i = 0; i < npages; i++) { 627 vm_fault_populate_check_page(&m[i]); 628 vm_fault_dirty(fs, &m[i]); 629 } 630 VM_OBJECT_WUNLOCK(fs->first_object); 631 rv = pmap_enter(fs->map->pmap, vaddr, m, fs->prot, fs->fault_type | 632 (fs->wired ? PMAP_ENTER_WIRED : 0), psind); 633 634 /* 635 * pmap_enter() may fail for a superpage mapping if additional 636 * protection policies prevent the full mapping. 637 * For example, this will happen on amd64 if the entire 638 * address range does not share the same userspace protection 639 * key. Revert to single-page mappings if this happens. 640 */ 641 MPASS(rv == KERN_SUCCESS || 642 (psind > 0 && rv == KERN_PROTECTION_FAILURE)); 643 if (__predict_false(psind > 0 && 644 rv == KERN_PROTECTION_FAILURE)) { 645 MPASS(!fs->wired); 646 for (i = 0; i < npages; i++) { 647 rv = pmap_enter(fs->map->pmap, vaddr + ptoa(i), 648 &m[i], fs->prot, fs->fault_type, 0); 649 MPASS(rv == KERN_SUCCESS); 650 } 651 } 652 653 VM_OBJECT_WLOCK(fs->first_object); 654 for (i = 0; i < npages; i++) { 655 if ((fs->fault_flags & VM_FAULT_WIRE) != 0 && 656 m[i].pindex == fs->first_pindex) 657 vm_page_wire(&m[i]); 658 else 659 vm_page_activate(&m[i]); 660 if (fs->m_hold != NULL && 661 m[i].pindex == fs->first_pindex) { 662 (*fs->m_hold) = &m[i]; 663 vm_page_wire(&m[i]); 664 } 665 vm_page_xunbusy(&m[i]); 666 } 667 } 668 out: 669 curthread->td_ru.ru_majflt++; 670 return (res); 671 } 672 673 static int prot_fault_translation; 674 SYSCTL_INT(_machdep, OID_AUTO, prot_fault_translation, CTLFLAG_RWTUN, 675 &prot_fault_translation, 0, 676 "Control signal to deliver on protection fault"); 677 678 /* compat definition to keep common code for signal translation */ 679 #define UCODE_PAGEFLT 12 680 #ifdef T_PAGEFLT 681 _Static_assert(UCODE_PAGEFLT == T_PAGEFLT, "T_PAGEFLT"); 682 #endif 683 684 /* 685 * vm_fault_trap: 686 * 687 * Handle a page fault occurring at the given address, 688 * requiring the given permissions, in the map specified. 689 * If successful, the page is inserted into the 690 * associated physical map. 691 * 692 * NOTE: the given address should be truncated to the 693 * proper page address. 694 * 695 * KERN_SUCCESS is returned if the page fault is handled; otherwise, 696 * a standard error specifying why the fault is fatal is returned. 697 * 698 * The map in question must be referenced, and remains so. 699 * Caller may hold no locks. 700 */ 701 int 702 vm_fault_trap(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, 703 int fault_flags, int *signo, int *ucode) 704 { 705 int result; 706 707 MPASS(signo == NULL || ucode != NULL); 708 #ifdef KTRACE 709 if (map != kernel_map && KTRPOINT(curthread, KTR_FAULT)) 710 ktrfault(vaddr, fault_type); 711 #endif 712 result = vm_fault(map, trunc_page(vaddr), fault_type, fault_flags, 713 NULL); 714 KASSERT(result == KERN_SUCCESS || result == KERN_FAILURE || 715 result == KERN_INVALID_ADDRESS || 716 result == KERN_RESOURCE_SHORTAGE || 717 result == KERN_PROTECTION_FAILURE || 718 result == KERN_OUT_OF_BOUNDS, 719 ("Unexpected Mach error %d from vm_fault()", result)); 720 #ifdef KTRACE 721 if (map != kernel_map && KTRPOINT(curthread, KTR_FAULTEND)) 722 ktrfaultend(result); 723 #endif 724 if (result != KERN_SUCCESS && signo != NULL) { 725 switch (result) { 726 case KERN_FAILURE: 727 case KERN_INVALID_ADDRESS: 728 *signo = SIGSEGV; 729 *ucode = SEGV_MAPERR; 730 break; 731 case KERN_RESOURCE_SHORTAGE: 732 *signo = SIGBUS; 733 *ucode = BUS_OOMERR; 734 break; 735 case KERN_OUT_OF_BOUNDS: 736 *signo = SIGBUS; 737 *ucode = BUS_OBJERR; 738 break; 739 case KERN_PROTECTION_FAILURE: 740 if (prot_fault_translation == 0) { 741 /* 742 * Autodetect. This check also covers 743 * the images without the ABI-tag ELF 744 * note. 745 */ 746 if (SV_CURPROC_ABI() == SV_ABI_FREEBSD && 747 curproc->p_osrel >= P_OSREL_SIGSEGV) { 748 *signo = SIGSEGV; 749 *ucode = SEGV_ACCERR; 750 } else { 751 *signo = SIGBUS; 752 *ucode = UCODE_PAGEFLT; 753 } 754 } else if (prot_fault_translation == 1) { 755 /* Always compat mode. */ 756 *signo = SIGBUS; 757 *ucode = UCODE_PAGEFLT; 758 } else { 759 /* Always SIGSEGV mode. */ 760 *signo = SIGSEGV; 761 *ucode = SEGV_ACCERR; 762 } 763 break; 764 default: 765 KASSERT(0, ("Unexpected Mach error %d from vm_fault()", 766 result)); 767 break; 768 } 769 } 770 return (result); 771 } 772 773 static bool 774 vm_fault_object_ensure_wlocked(struct faultstate *fs) 775 { 776 if (fs->object == fs->first_object) 777 VM_OBJECT_ASSERT_WLOCKED(fs->object); 778 779 if (!fs->can_read_lock) { 780 VM_OBJECT_ASSERT_WLOCKED(fs->object); 781 return (true); 782 } 783 784 if (VM_OBJECT_WOWNED(fs->object)) 785 return (true); 786 787 if (VM_OBJECT_TRYUPGRADE(fs->object)) 788 return (true); 789 790 return (false); 791 } 792 793 static enum fault_status 794 vm_fault_lock_vnode(struct faultstate *fs, bool objlocked) 795 { 796 struct vnode *vp; 797 int error, locked; 798 799 if (fs->object->type != OBJT_VNODE) 800 return (FAULT_CONTINUE); 801 vp = fs->object->handle; 802 if (vp == fs->vp) { 803 ASSERT_VOP_LOCKED(vp, "saved vnode is not locked"); 804 return (FAULT_CONTINUE); 805 } 806 807 /* 808 * Perform an unlock in case the desired vnode changed while 809 * the map was unlocked during a retry. 810 */ 811 vm_fault_unlock_vp(fs); 812 813 locked = VOP_ISLOCKED(vp); 814 if (locked != LK_EXCLUSIVE) 815 locked = LK_SHARED; 816 817 /* 818 * We must not sleep acquiring the vnode lock while we have 819 * the page exclusive busied or the object's 820 * paging-in-progress count incremented. Otherwise, we could 821 * deadlock. 822 */ 823 error = vget(vp, locked | LK_CANRECURSE | LK_NOWAIT); 824 if (error == 0) { 825 fs->vp = vp; 826 return (FAULT_CONTINUE); 827 } 828 829 vhold(vp); 830 if (objlocked) 831 vm_fault_unlock_and_deallocate(fs); 832 else 833 vm_fault_deallocate(fs); 834 error = vget(vp, locked | LK_RETRY | LK_CANRECURSE); 835 vdrop(vp); 836 fs->vp = vp; 837 KASSERT(error == 0, ("vm_fault: vget failed %d", error)); 838 return (FAULT_RESTART); 839 } 840 841 /* 842 * Calculate the desired readahead. Handle drop-behind. 843 * 844 * Returns the number of readahead blocks to pass to the pager. 845 */ 846 static int 847 vm_fault_readahead(struct faultstate *fs) 848 { 849 int era, nera; 850 u_char behavior; 851 852 KASSERT(fs->lookup_still_valid, ("map unlocked")); 853 era = fs->entry->read_ahead; 854 behavior = vm_map_entry_behavior(fs->entry); 855 if (behavior == MAP_ENTRY_BEHAV_RANDOM) { 856 nera = 0; 857 } else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) { 858 nera = VM_FAULT_READ_AHEAD_MAX; 859 if (fs->vaddr == fs->entry->next_read) 860 vm_fault_dontneed(fs, fs->vaddr, nera); 861 } else if (fs->vaddr == fs->entry->next_read) { 862 /* 863 * This is a sequential fault. Arithmetically 864 * increase the requested number of pages in 865 * the read-ahead window. The requested 866 * number of pages is "# of sequential faults 867 * x (read ahead min + 1) + read ahead min" 868 */ 869 nera = VM_FAULT_READ_AHEAD_MIN; 870 if (era > 0) { 871 nera += era + 1; 872 if (nera > VM_FAULT_READ_AHEAD_MAX) 873 nera = VM_FAULT_READ_AHEAD_MAX; 874 } 875 if (era == VM_FAULT_READ_AHEAD_MAX) 876 vm_fault_dontneed(fs, fs->vaddr, nera); 877 } else { 878 /* 879 * This is a non-sequential fault. 880 */ 881 nera = 0; 882 } 883 if (era != nera) { 884 /* 885 * A read lock on the map suffices to update 886 * the read ahead count safely. 887 */ 888 fs->entry->read_ahead = nera; 889 } 890 891 return (nera); 892 } 893 894 static int 895 vm_fault_lookup(struct faultstate *fs) 896 { 897 int result; 898 899 KASSERT(!fs->lookup_still_valid, 900 ("vm_fault_lookup: Map already locked.")); 901 result = vm_map_lookup(&fs->map, fs->vaddr, fs->fault_type | 902 VM_PROT_FAULT_LOOKUP, &fs->entry, &fs->first_object, 903 &fs->first_pindex, &fs->prot, &fs->wired); 904 if (result != KERN_SUCCESS) { 905 vm_fault_unlock_vp(fs); 906 return (result); 907 } 908 909 fs->map_generation = fs->map->timestamp; 910 911 if (fs->entry->eflags & MAP_ENTRY_NOFAULT) { 912 panic("%s: fault on nofault entry, addr: %#lx", 913 __func__, (u_long)fs->vaddr); 914 } 915 916 if (fs->entry->eflags & MAP_ENTRY_IN_TRANSITION && 917 fs->entry->wiring_thread != curthread) { 918 vm_map_unlock_read(fs->map); 919 vm_map_lock(fs->map); 920 if (vm_map_lookup_entry(fs->map, fs->vaddr, &fs->entry) && 921 (fs->entry->eflags & MAP_ENTRY_IN_TRANSITION)) { 922 vm_fault_unlock_vp(fs); 923 fs->entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 924 vm_map_unlock_and_wait(fs->map, 0); 925 } else 926 vm_map_unlock(fs->map); 927 return (KERN_RESOURCE_SHORTAGE); 928 } 929 930 MPASS((fs->entry->eflags & MAP_ENTRY_GUARD) == 0); 931 932 if (fs->wired) 933 fs->fault_type = fs->prot | (fs->fault_type & VM_PROT_COPY); 934 else 935 KASSERT((fs->fault_flags & VM_FAULT_WIRE) == 0, 936 ("!fs->wired && VM_FAULT_WIRE")); 937 fs->lookup_still_valid = true; 938 939 return (KERN_SUCCESS); 940 } 941 942 static int 943 vm_fault_relookup(struct faultstate *fs) 944 { 945 vm_object_t retry_object; 946 vm_pindex_t retry_pindex; 947 vm_prot_t retry_prot; 948 int result; 949 950 if (!vm_map_trylock_read(fs->map)) 951 return (KERN_RESTART); 952 953 fs->lookup_still_valid = true; 954 if (fs->map->timestamp == fs->map_generation) 955 return (KERN_SUCCESS); 956 957 result = vm_map_lookup_locked(&fs->map, fs->vaddr, fs->fault_type, 958 &fs->entry, &retry_object, &retry_pindex, &retry_prot, 959 &fs->wired); 960 if (result != KERN_SUCCESS) { 961 /* 962 * If retry of map lookup would have blocked then 963 * retry fault from start. 964 */ 965 if (result == KERN_FAILURE) 966 return (KERN_RESTART); 967 return (result); 968 } 969 if (retry_object != fs->first_object || 970 retry_pindex != fs->first_pindex) 971 return (KERN_RESTART); 972 973 /* 974 * Check whether the protection has changed or the object has 975 * been copied while we left the map unlocked. Changing from 976 * read to write permission is OK - we leave the page 977 * write-protected, and catch the write fault. Changing from 978 * write to read permission means that we can't mark the page 979 * write-enabled after all. 980 */ 981 fs->prot &= retry_prot; 982 fs->fault_type &= retry_prot; 983 if (fs->prot == 0) 984 return (KERN_RESTART); 985 986 /* Reassert because wired may have changed. */ 987 KASSERT(fs->wired || (fs->fault_flags & VM_FAULT_WIRE) == 0, 988 ("!wired && VM_FAULT_WIRE")); 989 990 return (KERN_SUCCESS); 991 } 992 993 static void 994 vm_fault_cow(struct faultstate *fs) 995 { 996 bool is_first_object_locked; 997 998 KASSERT(fs->object != fs->first_object, 999 ("source and target COW objects are identical")); 1000 1001 /* 1002 * This allows pages to be virtually copied from a backing_object 1003 * into the first_object, where the backing object has no other 1004 * refs to it, and cannot gain any more refs. Instead of a bcopy, 1005 * we just move the page from the backing object to the first 1006 * object. Note that we must mark the page dirty in the first 1007 * object so that it will go out to swap when needed. 1008 */ 1009 is_first_object_locked = false; 1010 if ( 1011 /* 1012 * Only one shadow object and no other refs. 1013 */ 1014 fs->object->shadow_count == 1 && fs->object->ref_count == 1 && 1015 /* 1016 * No other ways to look the object up 1017 */ 1018 fs->object->handle == NULL && (fs->object->flags & OBJ_ANON) != 0 && 1019 /* 1020 * We don't chase down the shadow chain and we can acquire locks. 1021 */ 1022 (is_first_object_locked = VM_OBJECT_TRYWLOCK(fs->first_object)) && 1023 fs->object == fs->first_object->backing_object && 1024 VM_OBJECT_TRYWLOCK(fs->object)) { 1025 /* 1026 * Remove but keep xbusy for replace. fs->m is moved into 1027 * fs->first_object and left busy while fs->first_m is 1028 * conditionally freed. 1029 */ 1030 vm_page_remove_xbusy(fs->m); 1031 vm_page_replace(fs->m, fs->first_object, fs->first_pindex, 1032 fs->first_m); 1033 vm_page_dirty(fs->m); 1034 #if VM_NRESERVLEVEL > 0 1035 /* 1036 * Rename the reservation. 1037 */ 1038 vm_reserv_rename(fs->m, fs->first_object, fs->object, 1039 OFF_TO_IDX(fs->first_object->backing_object_offset)); 1040 #endif 1041 VM_OBJECT_WUNLOCK(fs->object); 1042 VM_OBJECT_WUNLOCK(fs->first_object); 1043 fs->first_m = fs->m; 1044 fs->m = NULL; 1045 VM_CNT_INC(v_cow_optim); 1046 } else { 1047 if (is_first_object_locked) 1048 VM_OBJECT_WUNLOCK(fs->first_object); 1049 /* 1050 * Oh, well, lets copy it. 1051 */ 1052 pmap_copy_page(fs->m, fs->first_m); 1053 vm_page_valid(fs->first_m); 1054 if (fs->wired && (fs->fault_flags & VM_FAULT_WIRE) == 0) { 1055 vm_page_wire(fs->first_m); 1056 vm_page_unwire(fs->m, PQ_INACTIVE); 1057 } 1058 /* 1059 * Save the cow page to be released after 1060 * pmap_enter is complete. 1061 */ 1062 fs->m_cow = fs->m; 1063 fs->m = NULL; 1064 1065 /* 1066 * Typically, the shadow object is either private to this 1067 * address space (OBJ_ONEMAPPING) or its pages are read only. 1068 * In the highly unusual case where the pages of a shadow object 1069 * are read/write shared between this and other address spaces, 1070 * we need to ensure that any pmap-level mappings to the 1071 * original, copy-on-write page from the backing object are 1072 * removed from those other address spaces. 1073 * 1074 * The flag check is racy, but this is tolerable: if 1075 * OBJ_ONEMAPPING is cleared after the check, the busy state 1076 * ensures that new mappings of m_cow can't be created. 1077 * pmap_enter() will replace an existing mapping in the current 1078 * address space. If OBJ_ONEMAPPING is set after the check, 1079 * removing mappings will at worse trigger some unnecessary page 1080 * faults. 1081 */ 1082 vm_page_assert_xbusied(fs->m_cow); 1083 if ((fs->first_object->flags & OBJ_ONEMAPPING) == 0) 1084 pmap_remove_all(fs->m_cow); 1085 } 1086 1087 vm_object_pip_wakeup(fs->object); 1088 1089 /* 1090 * Only use the new page below... 1091 */ 1092 fs->object = fs->first_object; 1093 fs->pindex = fs->first_pindex; 1094 fs->m = fs->first_m; 1095 VM_CNT_INC(v_cow_faults); 1096 curthread->td_cow++; 1097 } 1098 1099 static enum fault_next_status 1100 vm_fault_next(struct faultstate *fs) 1101 { 1102 vm_object_t next_object; 1103 1104 if (fs->object == fs->first_object || !fs->can_read_lock) 1105 VM_OBJECT_ASSERT_WLOCKED(fs->object); 1106 else 1107 VM_OBJECT_ASSERT_LOCKED(fs->object); 1108 1109 /* 1110 * The requested page does not exist at this object/ 1111 * offset. Remove the invalid page from the object, 1112 * waking up anyone waiting for it, and continue on to 1113 * the next object. However, if this is the top-level 1114 * object, we must leave the busy page in place to 1115 * prevent another process from rushing past us, and 1116 * inserting the page in that object at the same time 1117 * that we are. 1118 */ 1119 if (fs->object == fs->first_object) { 1120 fs->first_m = fs->m; 1121 fs->m = NULL; 1122 } else if (fs->m != NULL) { 1123 if (!vm_fault_object_ensure_wlocked(fs)) { 1124 fs->can_read_lock = false; 1125 vm_fault_unlock_and_deallocate(fs); 1126 return (FAULT_NEXT_RESTART); 1127 } 1128 vm_fault_page_free(&fs->m); 1129 } 1130 1131 /* 1132 * Move on to the next object. Lock the next object before 1133 * unlocking the current one. 1134 */ 1135 next_object = fs->object->backing_object; 1136 if (next_object == NULL) 1137 return (FAULT_NEXT_NOOBJ); 1138 MPASS(fs->first_m != NULL); 1139 KASSERT(fs->object != next_object, ("object loop %p", next_object)); 1140 if (fs->can_read_lock) 1141 VM_OBJECT_RLOCK(next_object); 1142 else 1143 VM_OBJECT_WLOCK(next_object); 1144 vm_object_pip_add(next_object, 1); 1145 if (fs->object != fs->first_object) 1146 vm_object_pip_wakeup(fs->object); 1147 fs->pindex += OFF_TO_IDX(fs->object->backing_object_offset); 1148 VM_OBJECT_UNLOCK(fs->object); 1149 fs->object = next_object; 1150 1151 return (FAULT_NEXT_GOTOBJ); 1152 } 1153 1154 static void 1155 vm_fault_zerofill(struct faultstate *fs) 1156 { 1157 1158 /* 1159 * If there's no object left, fill the page in the top 1160 * object with zeros. 1161 */ 1162 if (fs->object != fs->first_object) { 1163 vm_object_pip_wakeup(fs->object); 1164 fs->object = fs->first_object; 1165 fs->pindex = fs->first_pindex; 1166 } 1167 MPASS(fs->first_m != NULL); 1168 MPASS(fs->m == NULL); 1169 fs->m = fs->first_m; 1170 fs->first_m = NULL; 1171 1172 /* 1173 * Zero the page if necessary and mark it valid. 1174 */ 1175 if ((fs->m->flags & PG_ZERO) == 0) { 1176 pmap_zero_page(fs->m); 1177 } else { 1178 VM_CNT_INC(v_ozfod); 1179 } 1180 VM_CNT_INC(v_zfod); 1181 vm_page_valid(fs->m); 1182 } 1183 1184 /* 1185 * Initiate page fault after timeout. Returns true if caller should 1186 * do vm_waitpfault() after the call. 1187 */ 1188 static bool 1189 vm_fault_allocate_oom(struct faultstate *fs) 1190 { 1191 struct timeval now; 1192 1193 vm_fault_unlock_and_deallocate(fs); 1194 if (vm_pfault_oom_attempts < 0) 1195 return (true); 1196 if (!fs->oom_started) { 1197 fs->oom_started = true; 1198 getmicrotime(&fs->oom_start_time); 1199 return (true); 1200 } 1201 1202 getmicrotime(&now); 1203 timevalsub(&now, &fs->oom_start_time); 1204 if (now.tv_sec < vm_pfault_oom_attempts * vm_pfault_oom_wait) 1205 return (true); 1206 1207 if (bootverbose) 1208 printf( 1209 "proc %d (%s) failed to alloc page on fault, starting OOM\n", 1210 curproc->p_pid, curproc->p_comm); 1211 vm_pageout_oom(VM_OOM_MEM_PF); 1212 fs->oom_started = false; 1213 return (false); 1214 } 1215 1216 /* 1217 * Allocate a page directly or via the object populate method. 1218 */ 1219 static enum fault_status 1220 vm_fault_allocate(struct faultstate *fs) 1221 { 1222 struct domainset *dset; 1223 enum fault_status res; 1224 1225 if ((fs->object->flags & OBJ_SIZEVNLOCK) != 0) { 1226 res = vm_fault_lock_vnode(fs, true); 1227 MPASS(res == FAULT_CONTINUE || res == FAULT_RESTART); 1228 if (res == FAULT_RESTART) 1229 return (res); 1230 } 1231 1232 if (fs->pindex >= fs->object->size) { 1233 vm_fault_unlock_and_deallocate(fs); 1234 return (FAULT_OUT_OF_BOUNDS); 1235 } 1236 1237 if (fs->object == fs->first_object && 1238 (fs->first_object->flags & OBJ_POPULATE) != 0 && 1239 fs->first_object->shadow_count == 0) { 1240 res = vm_fault_populate(fs); 1241 switch (res) { 1242 case FAULT_SUCCESS: 1243 case FAULT_FAILURE: 1244 case FAULT_RESTART: 1245 vm_fault_unlock_and_deallocate(fs); 1246 return (res); 1247 case FAULT_CONTINUE: 1248 /* 1249 * Pager's populate() method 1250 * returned VM_PAGER_BAD. 1251 */ 1252 break; 1253 default: 1254 panic("inconsistent return codes"); 1255 } 1256 } 1257 1258 /* 1259 * Allocate a new page for this object/offset pair. 1260 * 1261 * If the process has a fatal signal pending, prioritize the allocation 1262 * with the expectation that the process will exit shortly and free some 1263 * pages. In particular, the signal may have been posted by the page 1264 * daemon in an attempt to resolve an out-of-memory condition. 1265 * 1266 * The unlocked read of the p_flag is harmless. At worst, the P_KILLED 1267 * might be not observed here, and allocation fails, causing a restart 1268 * and new reading of the p_flag. 1269 */ 1270 dset = fs->object->domain.dr_policy; 1271 if (dset == NULL) 1272 dset = curthread->td_domain.dr_policy; 1273 if (!vm_page_count_severe_set(&dset->ds_mask) || P_KILLED(curproc)) { 1274 #if VM_NRESERVLEVEL > 0 1275 vm_object_color(fs->object, atop(fs->vaddr) - fs->pindex); 1276 #endif 1277 if (!vm_pager_can_alloc_page(fs->object, fs->pindex)) { 1278 vm_fault_unlock_and_deallocate(fs); 1279 return (FAULT_FAILURE); 1280 } 1281 fs->m = vm_page_alloc(fs->object, fs->pindex, 1282 P_KILLED(curproc) ? VM_ALLOC_SYSTEM : 0); 1283 } 1284 if (fs->m == NULL) { 1285 if (vm_fault_allocate_oom(fs)) 1286 vm_waitpfault(dset, vm_pfault_oom_wait * hz); 1287 return (FAULT_RESTART); 1288 } 1289 fs->oom_started = false; 1290 1291 return (FAULT_CONTINUE); 1292 } 1293 1294 /* 1295 * Call the pager to retrieve the page if there is a chance 1296 * that the pager has it, and potentially retrieve additional 1297 * pages at the same time. 1298 */ 1299 static enum fault_status 1300 vm_fault_getpages(struct faultstate *fs, int *behindp, int *aheadp) 1301 { 1302 vm_offset_t e_end, e_start; 1303 int ahead, behind, cluster_offset, rv; 1304 enum fault_status status; 1305 u_char behavior; 1306 1307 /* 1308 * Prepare for unlocking the map. Save the map 1309 * entry's start and end addresses, which are used to 1310 * optimize the size of the pager operation below. 1311 * Even if the map entry's addresses change after 1312 * unlocking the map, using the saved addresses is 1313 * safe. 1314 */ 1315 e_start = fs->entry->start; 1316 e_end = fs->entry->end; 1317 behavior = vm_map_entry_behavior(fs->entry); 1318 1319 /* 1320 * If the pager for the current object might have 1321 * the page, then determine the number of additional 1322 * pages to read and potentially reprioritize 1323 * previously read pages for earlier reclamation. 1324 * These operations should only be performed once per 1325 * page fault. Even if the current pager doesn't 1326 * have the page, the number of additional pages to 1327 * read will apply to subsequent objects in the 1328 * shadow chain. 1329 */ 1330 if (fs->nera == -1 && !P_KILLED(curproc)) 1331 fs->nera = vm_fault_readahead(fs); 1332 1333 /* 1334 * Release the map lock before locking the vnode or 1335 * sleeping in the pager. (If the current object has 1336 * a shadow, then an earlier iteration of this loop 1337 * may have already unlocked the map.) 1338 */ 1339 vm_fault_unlock_map(fs); 1340 1341 status = vm_fault_lock_vnode(fs, false); 1342 MPASS(status == FAULT_CONTINUE || status == FAULT_RESTART); 1343 if (status == FAULT_RESTART) 1344 return (status); 1345 KASSERT(fs->vp == NULL || !fs->map->system_map, 1346 ("vm_fault: vnode-backed object mapped by system map")); 1347 1348 /* 1349 * Page in the requested page and hint the pager, 1350 * that it may bring up surrounding pages. 1351 */ 1352 if (fs->nera == -1 || behavior == MAP_ENTRY_BEHAV_RANDOM || 1353 P_KILLED(curproc)) { 1354 behind = 0; 1355 ahead = 0; 1356 } else { 1357 /* Is this a sequential fault? */ 1358 if (fs->nera > 0) { 1359 behind = 0; 1360 ahead = fs->nera; 1361 } else { 1362 /* 1363 * Request a cluster of pages that is 1364 * aligned to a VM_FAULT_READ_DEFAULT 1365 * page offset boundary within the 1366 * object. Alignment to a page offset 1367 * boundary is more likely to coincide 1368 * with the underlying file system 1369 * block than alignment to a virtual 1370 * address boundary. 1371 */ 1372 cluster_offset = fs->pindex % VM_FAULT_READ_DEFAULT; 1373 behind = ulmin(cluster_offset, 1374 atop(fs->vaddr - e_start)); 1375 ahead = VM_FAULT_READ_DEFAULT - 1 - cluster_offset; 1376 } 1377 ahead = ulmin(ahead, atop(e_end - fs->vaddr) - 1); 1378 } 1379 *behindp = behind; 1380 *aheadp = ahead; 1381 rv = vm_pager_get_pages(fs->object, &fs->m, 1, behindp, aheadp); 1382 if (rv == VM_PAGER_OK) 1383 return (FAULT_HARD); 1384 if (rv == VM_PAGER_ERROR) 1385 printf("vm_fault: pager read error, pid %d (%s)\n", 1386 curproc->p_pid, curproc->p_comm); 1387 /* 1388 * If an I/O error occurred or the requested page was 1389 * outside the range of the pager, clean up and return 1390 * an error. 1391 */ 1392 if (rv == VM_PAGER_ERROR || rv == VM_PAGER_BAD) { 1393 VM_OBJECT_WLOCK(fs->object); 1394 vm_fault_page_free(&fs->m); 1395 vm_fault_unlock_and_deallocate(fs); 1396 return (FAULT_OUT_OF_BOUNDS); 1397 } 1398 KASSERT(rv == VM_PAGER_FAIL, 1399 ("%s: unexpected pager error %d", __func__, rv)); 1400 return (FAULT_CONTINUE); 1401 } 1402 1403 /* 1404 * Wait/Retry if the page is busy. We have to do this if the page is 1405 * either exclusive or shared busy because the vm_pager may be using 1406 * read busy for pageouts (and even pageins if it is the vnode pager), 1407 * and we could end up trying to pagein and pageout the same page 1408 * simultaneously. 1409 * 1410 * We can theoretically allow the busy case on a read fault if the page 1411 * is marked valid, but since such pages are typically already pmap'd, 1412 * putting that special case in might be more effort then it is worth. 1413 * We cannot under any circumstances mess around with a shared busied 1414 * page except, perhaps, to pmap it. 1415 */ 1416 static void 1417 vm_fault_busy_sleep(struct faultstate *fs) 1418 { 1419 /* 1420 * Reference the page before unlocking and 1421 * sleeping so that the page daemon is less 1422 * likely to reclaim it. 1423 */ 1424 vm_page_aflag_set(fs->m, PGA_REFERENCED); 1425 if (fs->object != fs->first_object) { 1426 vm_fault_page_release(&fs->first_m); 1427 vm_object_pip_wakeup(fs->first_object); 1428 } 1429 vm_object_pip_wakeup(fs->object); 1430 vm_fault_unlock_map(fs); 1431 if (fs->m != vm_page_lookup(fs->object, fs->pindex) || 1432 !vm_page_busy_sleep(fs->m, "vmpfw", 0)) 1433 VM_OBJECT_UNLOCK(fs->object); 1434 VM_CNT_INC(v_intrans); 1435 vm_object_deallocate(fs->first_object); 1436 } 1437 1438 /* 1439 * Handle page lookup, populate, allocate, page-in for the current 1440 * object. 1441 * 1442 * The object is locked on entry and will remain locked with a return 1443 * code of FAULT_CONTINUE so that fault may follow the shadow chain. 1444 * Otherwise, the object will be unlocked upon return. 1445 */ 1446 static enum fault_status 1447 vm_fault_object(struct faultstate *fs, int *behindp, int *aheadp) 1448 { 1449 enum fault_status res; 1450 bool dead; 1451 1452 if (fs->object == fs->first_object || !fs->can_read_lock) 1453 VM_OBJECT_ASSERT_WLOCKED(fs->object); 1454 else 1455 VM_OBJECT_ASSERT_LOCKED(fs->object); 1456 1457 /* 1458 * If the object is marked for imminent termination, we retry 1459 * here, since the collapse pass has raced with us. Otherwise, 1460 * if we see terminally dead object, return fail. 1461 */ 1462 if ((fs->object->flags & OBJ_DEAD) != 0) { 1463 dead = fs->object->type == OBJT_DEAD; 1464 vm_fault_unlock_and_deallocate(fs); 1465 if (dead) 1466 return (FAULT_PROTECTION_FAILURE); 1467 pause("vmf_de", 1); 1468 return (FAULT_RESTART); 1469 } 1470 1471 /* 1472 * See if the page is resident. 1473 */ 1474 fs->m = vm_page_lookup(fs->object, fs->pindex); 1475 if (fs->m != NULL) { 1476 if (!vm_page_tryxbusy(fs->m)) { 1477 vm_fault_busy_sleep(fs); 1478 return (FAULT_RESTART); 1479 } 1480 1481 /* 1482 * The page is marked busy for other processes and the 1483 * pagedaemon. If it is still completely valid we are 1484 * done. 1485 */ 1486 if (vm_page_all_valid(fs->m)) { 1487 VM_OBJECT_UNLOCK(fs->object); 1488 return (FAULT_SOFT); 1489 } 1490 } 1491 1492 /* 1493 * Page is not resident. If the pager might contain the page 1494 * or this is the beginning of the search, allocate a new 1495 * page. 1496 */ 1497 if (fs->m == NULL && (vm_fault_object_needs_getpages(fs->object) || 1498 fs->object == fs->first_object)) { 1499 if (!vm_fault_object_ensure_wlocked(fs)) { 1500 fs->can_read_lock = false; 1501 vm_fault_unlock_and_deallocate(fs); 1502 return (FAULT_RESTART); 1503 } 1504 res = vm_fault_allocate(fs); 1505 if (res != FAULT_CONTINUE) 1506 return (res); 1507 } 1508 1509 /* 1510 * Check to see if the pager can possibly satisfy this fault. 1511 * If not, skip to the next object without dropping the lock to 1512 * preserve atomicity of shadow faults. 1513 */ 1514 if (vm_fault_object_needs_getpages(fs->object)) { 1515 /* 1516 * At this point, we have either allocated a new page 1517 * or found an existing page that is only partially 1518 * valid. 1519 * 1520 * We hold a reference on the current object and the 1521 * page is exclusive busied. The exclusive busy 1522 * prevents simultaneous faults and collapses while 1523 * the object lock is dropped. 1524 */ 1525 VM_OBJECT_UNLOCK(fs->object); 1526 res = vm_fault_getpages(fs, behindp, aheadp); 1527 if (res == FAULT_CONTINUE) 1528 VM_OBJECT_WLOCK(fs->object); 1529 } else { 1530 res = FAULT_CONTINUE; 1531 } 1532 return (res); 1533 } 1534 1535 int 1536 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, 1537 int fault_flags, vm_page_t *m_hold) 1538 { 1539 struct faultstate fs; 1540 int ahead, behind, faultcount, rv; 1541 enum fault_status res; 1542 enum fault_next_status res_next; 1543 bool hardfault; 1544 1545 VM_CNT_INC(v_vm_faults); 1546 1547 if ((curthread->td_pflags & TDP_NOFAULTING) != 0) 1548 return (KERN_PROTECTION_FAILURE); 1549 1550 fs.vp = NULL; 1551 fs.vaddr = vaddr; 1552 fs.m_hold = m_hold; 1553 fs.fault_flags = fault_flags; 1554 fs.map = map; 1555 fs.lookup_still_valid = false; 1556 fs.oom_started = false; 1557 fs.nera = -1; 1558 fs.can_read_lock = true; 1559 faultcount = 0; 1560 hardfault = false; 1561 1562 RetryFault: 1563 fs.fault_type = fault_type; 1564 1565 /* 1566 * Find the backing store object and offset into it to begin the 1567 * search. 1568 */ 1569 rv = vm_fault_lookup(&fs); 1570 if (rv != KERN_SUCCESS) { 1571 if (rv == KERN_RESOURCE_SHORTAGE) 1572 goto RetryFault; 1573 return (rv); 1574 } 1575 1576 /* 1577 * Try to avoid lock contention on the top-level object through 1578 * special-case handling of some types of page faults, specifically, 1579 * those that are mapping an existing page from the top-level object. 1580 * Under this condition, a read lock on the object suffices, allowing 1581 * multiple page faults of a similar type to run in parallel. 1582 */ 1583 if (fs.vp == NULL /* avoid locked vnode leak */ && 1584 (fs.entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) == 0 && 1585 (fs.fault_flags & (VM_FAULT_WIRE | VM_FAULT_DIRTY)) == 0) { 1586 res = vm_fault_soft_fast(&fs); 1587 if (res == FAULT_SUCCESS) { 1588 VM_OBJECT_ASSERT_UNLOCKED(fs.first_object); 1589 return (KERN_SUCCESS); 1590 } 1591 VM_OBJECT_ASSERT_WLOCKED(fs.first_object); 1592 } else { 1593 VM_OBJECT_WLOCK(fs.first_object); 1594 } 1595 1596 /* 1597 * Make a reference to this object to prevent its disposal while we 1598 * are messing with it. Once we have the reference, the map is free 1599 * to be diddled. Since objects reference their shadows (and copies), 1600 * they will stay around as well. 1601 * 1602 * Bump the paging-in-progress count to prevent size changes (e.g. 1603 * truncation operations) during I/O. 1604 */ 1605 vm_object_reference_locked(fs.first_object); 1606 vm_object_pip_add(fs.first_object, 1); 1607 1608 fs.m_cow = fs.m = fs.first_m = NULL; 1609 1610 /* 1611 * Search for the page at object/offset. 1612 */ 1613 fs.object = fs.first_object; 1614 fs.pindex = fs.first_pindex; 1615 1616 if ((fs.entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) != 0) { 1617 res = vm_fault_allocate(&fs); 1618 switch (res) { 1619 case FAULT_RESTART: 1620 goto RetryFault; 1621 case FAULT_SUCCESS: 1622 return (KERN_SUCCESS); 1623 case FAULT_FAILURE: 1624 return (KERN_FAILURE); 1625 case FAULT_OUT_OF_BOUNDS: 1626 return (KERN_OUT_OF_BOUNDS); 1627 case FAULT_CONTINUE: 1628 break; 1629 default: 1630 panic("vm_fault: Unhandled status %d", res); 1631 } 1632 } 1633 1634 while (TRUE) { 1635 KASSERT(fs.m == NULL, 1636 ("page still set %p at loop start", fs.m)); 1637 1638 res = vm_fault_object(&fs, &behind, &ahead); 1639 switch (res) { 1640 case FAULT_SOFT: 1641 goto found; 1642 case FAULT_HARD: 1643 faultcount = behind + 1 + ahead; 1644 hardfault = true; 1645 goto found; 1646 case FAULT_RESTART: 1647 goto RetryFault; 1648 case FAULT_SUCCESS: 1649 return (KERN_SUCCESS); 1650 case FAULT_FAILURE: 1651 return (KERN_FAILURE); 1652 case FAULT_OUT_OF_BOUNDS: 1653 return (KERN_OUT_OF_BOUNDS); 1654 case FAULT_PROTECTION_FAILURE: 1655 return (KERN_PROTECTION_FAILURE); 1656 case FAULT_CONTINUE: 1657 break; 1658 default: 1659 panic("vm_fault: Unhandled status %d", res); 1660 } 1661 1662 /* 1663 * The page was not found in the current object. Try to 1664 * traverse into a backing object or zero fill if none is 1665 * found. 1666 */ 1667 res_next = vm_fault_next(&fs); 1668 if (res_next == FAULT_NEXT_RESTART) 1669 goto RetryFault; 1670 else if (res_next == FAULT_NEXT_GOTOBJ) 1671 continue; 1672 MPASS(res_next == FAULT_NEXT_NOOBJ); 1673 if ((fs.fault_flags & VM_FAULT_NOFILL) != 0) { 1674 if (fs.first_object == fs.object) 1675 vm_fault_page_free(&fs.first_m); 1676 vm_fault_unlock_and_deallocate(&fs); 1677 return (KERN_OUT_OF_BOUNDS); 1678 } 1679 VM_OBJECT_UNLOCK(fs.object); 1680 vm_fault_zerofill(&fs); 1681 /* Don't try to prefault neighboring pages. */ 1682 faultcount = 1; 1683 break; 1684 } 1685 1686 found: 1687 /* 1688 * A valid page has been found and exclusively busied. The 1689 * object lock must no longer be held. 1690 */ 1691 vm_page_assert_xbusied(fs.m); 1692 VM_OBJECT_ASSERT_UNLOCKED(fs.object); 1693 1694 /* 1695 * If the page is being written, but isn't already owned by the 1696 * top-level object, we have to copy it into a new page owned by the 1697 * top-level object. 1698 */ 1699 if (fs.object != fs.first_object) { 1700 /* 1701 * We only really need to copy if we want to write it. 1702 */ 1703 if ((fs.fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) { 1704 vm_fault_cow(&fs); 1705 /* 1706 * We only try to prefault read-only mappings to the 1707 * neighboring pages when this copy-on-write fault is 1708 * a hard fault. In other cases, trying to prefault 1709 * is typically wasted effort. 1710 */ 1711 if (faultcount == 0) 1712 faultcount = 1; 1713 1714 } else { 1715 fs.prot &= ~VM_PROT_WRITE; 1716 } 1717 } 1718 1719 /* 1720 * We must verify that the maps have not changed since our last 1721 * lookup. 1722 */ 1723 if (!fs.lookup_still_valid) { 1724 rv = vm_fault_relookup(&fs); 1725 if (rv != KERN_SUCCESS) { 1726 vm_fault_deallocate(&fs); 1727 if (rv == KERN_RESTART) 1728 goto RetryFault; 1729 return (rv); 1730 } 1731 } 1732 VM_OBJECT_ASSERT_UNLOCKED(fs.object); 1733 1734 /* 1735 * If the page was filled by a pager, save the virtual address that 1736 * should be faulted on next under a sequential access pattern to the 1737 * map entry. A read lock on the map suffices to update this address 1738 * safely. 1739 */ 1740 if (hardfault) 1741 fs.entry->next_read = vaddr + ptoa(ahead) + PAGE_SIZE; 1742 1743 /* 1744 * Page must be completely valid or it is not fit to 1745 * map into user space. vm_pager_get_pages() ensures this. 1746 */ 1747 vm_page_assert_xbusied(fs.m); 1748 KASSERT(vm_page_all_valid(fs.m), 1749 ("vm_fault: page %p partially invalid", fs.m)); 1750 1751 vm_fault_dirty(&fs, fs.m); 1752 1753 /* 1754 * Put this page into the physical map. We had to do the unlock above 1755 * because pmap_enter() may sleep. We don't put the page 1756 * back on the active queue until later so that the pageout daemon 1757 * won't find it (yet). 1758 */ 1759 pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot, 1760 fs.fault_type | (fs.wired ? PMAP_ENTER_WIRED : 0), 0); 1761 if (faultcount != 1 && (fs.fault_flags & VM_FAULT_WIRE) == 0 && 1762 fs.wired == 0) 1763 vm_fault_prefault(&fs, vaddr, 1764 faultcount > 0 ? behind : PFBAK, 1765 faultcount > 0 ? ahead : PFFOR, false); 1766 1767 /* 1768 * If the page is not wired down, then put it where the pageout daemon 1769 * can find it. 1770 */ 1771 if ((fs.fault_flags & VM_FAULT_WIRE) != 0) 1772 vm_page_wire(fs.m); 1773 else 1774 vm_page_activate(fs.m); 1775 if (fs.m_hold != NULL) { 1776 (*fs.m_hold) = fs.m; 1777 vm_page_wire(fs.m); 1778 } 1779 vm_page_xunbusy(fs.m); 1780 fs.m = NULL; 1781 1782 /* 1783 * Unlock everything, and return 1784 */ 1785 vm_fault_deallocate(&fs); 1786 if (hardfault) { 1787 VM_CNT_INC(v_io_faults); 1788 curthread->td_ru.ru_majflt++; 1789 #ifdef RACCT 1790 if (racct_enable && fs.object->type == OBJT_VNODE) { 1791 PROC_LOCK(curproc); 1792 if ((fs.fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) { 1793 racct_add_force(curproc, RACCT_WRITEBPS, 1794 PAGE_SIZE + behind * PAGE_SIZE); 1795 racct_add_force(curproc, RACCT_WRITEIOPS, 1); 1796 } else { 1797 racct_add_force(curproc, RACCT_READBPS, 1798 PAGE_SIZE + ahead * PAGE_SIZE); 1799 racct_add_force(curproc, RACCT_READIOPS, 1); 1800 } 1801 PROC_UNLOCK(curproc); 1802 } 1803 #endif 1804 } else 1805 curthread->td_ru.ru_minflt++; 1806 1807 return (KERN_SUCCESS); 1808 } 1809 1810 /* 1811 * Speed up the reclamation of pages that precede the faulting pindex within 1812 * the first object of the shadow chain. Essentially, perform the equivalent 1813 * to madvise(..., MADV_DONTNEED) on a large cluster of pages that precedes 1814 * the faulting pindex by the cluster size when the pages read by vm_fault() 1815 * cross a cluster-size boundary. The cluster size is the greater of the 1816 * smallest superpage size and VM_FAULT_DONTNEED_MIN. 1817 * 1818 * When "fs->first_object" is a shadow object, the pages in the backing object 1819 * that precede the faulting pindex are deactivated by vm_fault(). So, this 1820 * function must only be concerned with pages in the first object. 1821 */ 1822 static void 1823 vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, int ahead) 1824 { 1825 vm_map_entry_t entry; 1826 vm_object_t first_object; 1827 vm_offset_t end, start; 1828 vm_page_t m, m_next; 1829 vm_pindex_t pend, pstart; 1830 vm_size_t size; 1831 1832 VM_OBJECT_ASSERT_UNLOCKED(fs->object); 1833 first_object = fs->first_object; 1834 /* Neither fictitious nor unmanaged pages can be reclaimed. */ 1835 if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) { 1836 VM_OBJECT_RLOCK(first_object); 1837 size = VM_FAULT_DONTNEED_MIN; 1838 if (MAXPAGESIZES > 1 && size < pagesizes[1]) 1839 size = pagesizes[1]; 1840 end = rounddown2(vaddr, size); 1841 if (vaddr - end >= size - PAGE_SIZE - ptoa(ahead) && 1842 (entry = fs->entry)->start < end) { 1843 if (end - entry->start < size) 1844 start = entry->start; 1845 else 1846 start = end - size; 1847 pmap_advise(fs->map->pmap, start, end, MADV_DONTNEED); 1848 pstart = OFF_TO_IDX(entry->offset) + atop(start - 1849 entry->start); 1850 m_next = vm_page_find_least(first_object, pstart); 1851 pend = OFF_TO_IDX(entry->offset) + atop(end - 1852 entry->start); 1853 while ((m = m_next) != NULL && m->pindex < pend) { 1854 m_next = TAILQ_NEXT(m, listq); 1855 if (!vm_page_all_valid(m) || 1856 vm_page_busied(m)) 1857 continue; 1858 1859 /* 1860 * Don't clear PGA_REFERENCED, since it would 1861 * likely represent a reference by a different 1862 * process. 1863 * 1864 * Typically, at this point, prefetched pages 1865 * are still in the inactive queue. Only 1866 * pages that triggered page faults are in the 1867 * active queue. The test for whether the page 1868 * is in the inactive queue is racy; in the 1869 * worst case we will requeue the page 1870 * unnecessarily. 1871 */ 1872 if (!vm_page_inactive(m)) 1873 vm_page_deactivate(m); 1874 } 1875 } 1876 VM_OBJECT_RUNLOCK(first_object); 1877 } 1878 } 1879 1880 /* 1881 * vm_fault_prefault provides a quick way of clustering 1882 * pagefaults into a processes address space. It is a "cousin" 1883 * of vm_map_pmap_enter, except it runs at page fault time instead 1884 * of mmap time. 1885 */ 1886 static void 1887 vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra, 1888 int backward, int forward, bool obj_locked) 1889 { 1890 pmap_t pmap; 1891 vm_map_entry_t entry; 1892 vm_object_t backing_object, lobject; 1893 vm_offset_t addr, starta; 1894 vm_pindex_t pindex; 1895 vm_page_t m; 1896 int i; 1897 1898 pmap = fs->map->pmap; 1899 if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) 1900 return; 1901 1902 entry = fs->entry; 1903 1904 if (addra < backward * PAGE_SIZE) { 1905 starta = entry->start; 1906 } else { 1907 starta = addra - backward * PAGE_SIZE; 1908 if (starta < entry->start) 1909 starta = entry->start; 1910 } 1911 1912 /* 1913 * Generate the sequence of virtual addresses that are candidates for 1914 * prefaulting in an outward spiral from the faulting virtual address, 1915 * "addra". Specifically, the sequence is "addra - PAGE_SIZE", "addra 1916 * + PAGE_SIZE", "addra - 2 * PAGE_SIZE", "addra + 2 * PAGE_SIZE", ... 1917 * If the candidate address doesn't have a backing physical page, then 1918 * the loop immediately terminates. 1919 */ 1920 for (i = 0; i < 2 * imax(backward, forward); i++) { 1921 addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE : 1922 PAGE_SIZE); 1923 if (addr > addra + forward * PAGE_SIZE) 1924 addr = 0; 1925 1926 if (addr < starta || addr >= entry->end) 1927 continue; 1928 1929 if (!pmap_is_prefaultable(pmap, addr)) 1930 continue; 1931 1932 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT; 1933 lobject = entry->object.vm_object; 1934 if (!obj_locked) 1935 VM_OBJECT_RLOCK(lobject); 1936 while ((m = vm_page_lookup(lobject, pindex)) == NULL && 1937 !vm_fault_object_needs_getpages(lobject) && 1938 (backing_object = lobject->backing_object) != NULL) { 1939 KASSERT((lobject->backing_object_offset & PAGE_MASK) == 1940 0, ("vm_fault_prefault: unaligned object offset")); 1941 pindex += lobject->backing_object_offset >> PAGE_SHIFT; 1942 VM_OBJECT_RLOCK(backing_object); 1943 if (!obj_locked || lobject != entry->object.vm_object) 1944 VM_OBJECT_RUNLOCK(lobject); 1945 lobject = backing_object; 1946 } 1947 if (m == NULL) { 1948 if (!obj_locked || lobject != entry->object.vm_object) 1949 VM_OBJECT_RUNLOCK(lobject); 1950 break; 1951 } 1952 if (vm_page_all_valid(m) && 1953 (m->flags & PG_FICTITIOUS) == 0) 1954 pmap_enter_quick(pmap, addr, m, entry->protection); 1955 if (!obj_locked || lobject != entry->object.vm_object) 1956 VM_OBJECT_RUNLOCK(lobject); 1957 } 1958 } 1959 1960 /* 1961 * Hold each of the physical pages that are mapped by the specified range of 1962 * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid 1963 * and allow the specified types of access, "prot". If all of the implied 1964 * pages are successfully held, then the number of held pages is returned 1965 * together with pointers to those pages in the array "ma". However, if any 1966 * of the pages cannot be held, -1 is returned. 1967 */ 1968 int 1969 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len, 1970 vm_prot_t prot, vm_page_t *ma, int max_count) 1971 { 1972 vm_offset_t end, va; 1973 vm_page_t *mp; 1974 int count; 1975 boolean_t pmap_failed; 1976 1977 if (len == 0) 1978 return (0); 1979 end = round_page(addr + len); 1980 addr = trunc_page(addr); 1981 1982 if (!vm_map_range_valid(map, addr, end)) 1983 return (-1); 1984 1985 if (atop(end - addr) > max_count) 1986 panic("vm_fault_quick_hold_pages: count > max_count"); 1987 count = atop(end - addr); 1988 1989 /* 1990 * Most likely, the physical pages are resident in the pmap, so it is 1991 * faster to try pmap_extract_and_hold() first. 1992 */ 1993 pmap_failed = FALSE; 1994 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) { 1995 *mp = pmap_extract_and_hold(map->pmap, va, prot); 1996 if (*mp == NULL) 1997 pmap_failed = TRUE; 1998 else if ((prot & VM_PROT_WRITE) != 0 && 1999 (*mp)->dirty != VM_PAGE_BITS_ALL) { 2000 /* 2001 * Explicitly dirty the physical page. Otherwise, the 2002 * caller's changes may go unnoticed because they are 2003 * performed through an unmanaged mapping or by a DMA 2004 * operation. 2005 * 2006 * The object lock is not held here. 2007 * See vm_page_clear_dirty_mask(). 2008 */ 2009 vm_page_dirty(*mp); 2010 } 2011 } 2012 if (pmap_failed) { 2013 /* 2014 * One or more pages could not be held by the pmap. Either no 2015 * page was mapped at the specified virtual address or that 2016 * mapping had insufficient permissions. Attempt to fault in 2017 * and hold these pages. 2018 * 2019 * If vm_fault_disable_pagefaults() was called, 2020 * i.e., TDP_NOFAULTING is set, we must not sleep nor 2021 * acquire MD VM locks, which means we must not call 2022 * vm_fault(). Some (out of tree) callers mark 2023 * too wide a code area with vm_fault_disable_pagefaults() 2024 * already, use the VM_PROT_QUICK_NOFAULT flag to request 2025 * the proper behaviour explicitly. 2026 */ 2027 if ((prot & VM_PROT_QUICK_NOFAULT) != 0 && 2028 (curthread->td_pflags & TDP_NOFAULTING) != 0) 2029 goto error; 2030 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) 2031 if (*mp == NULL && vm_fault(map, va, prot, 2032 VM_FAULT_NORMAL, mp) != KERN_SUCCESS) 2033 goto error; 2034 } 2035 return (count); 2036 error: 2037 for (mp = ma; mp < ma + count; mp++) 2038 if (*mp != NULL) 2039 vm_page_unwire(*mp, PQ_INACTIVE); 2040 return (-1); 2041 } 2042 2043 /* 2044 * Routine: 2045 * vm_fault_copy_entry 2046 * Function: 2047 * Create new object backing dst_entry with private copy of all 2048 * underlying pages. When src_entry is equal to dst_entry, function 2049 * implements COW for wired-down map entry. Otherwise, it forks 2050 * wired entry into dst_map. 2051 * 2052 * In/out conditions: 2053 * The source and destination maps must be locked for write. 2054 * The source map entry must be wired down (or be a sharing map 2055 * entry corresponding to a main map entry that is wired down). 2056 */ 2057 void 2058 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map __unused, 2059 vm_map_entry_t dst_entry, vm_map_entry_t src_entry, 2060 vm_ooffset_t *fork_charge) 2061 { 2062 vm_object_t backing_object, dst_object, object, src_object; 2063 vm_pindex_t dst_pindex, pindex, src_pindex; 2064 vm_prot_t access, prot; 2065 vm_offset_t vaddr; 2066 vm_page_t dst_m; 2067 vm_page_t src_m; 2068 bool upgrade; 2069 2070 upgrade = src_entry == dst_entry; 2071 KASSERT(upgrade || dst_entry->object.vm_object == NULL, 2072 ("vm_fault_copy_entry: vm_object not NULL")); 2073 2074 /* 2075 * If not an upgrade, then enter the mappings in the pmap as 2076 * read and/or execute accesses. Otherwise, enter them as 2077 * write accesses. 2078 * 2079 * A writeable large page mapping is only created if all of 2080 * the constituent small page mappings are modified. Marking 2081 * PTEs as modified on inception allows promotion to happen 2082 * without taking potentially large number of soft faults. 2083 */ 2084 access = prot = dst_entry->protection; 2085 if (!upgrade) 2086 access &= ~VM_PROT_WRITE; 2087 2088 src_object = src_entry->object.vm_object; 2089 src_pindex = OFF_TO_IDX(src_entry->offset); 2090 2091 if (upgrade && (dst_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) { 2092 dst_object = src_object; 2093 vm_object_reference(dst_object); 2094 } else { 2095 /* 2096 * Create the top-level object for the destination entry. 2097 * Doesn't actually shadow anything - we copy the pages 2098 * directly. 2099 */ 2100 dst_object = vm_object_allocate_anon(atop(dst_entry->end - 2101 dst_entry->start), NULL, NULL, 0); 2102 #if VM_NRESERVLEVEL > 0 2103 dst_object->flags |= OBJ_COLORED; 2104 dst_object->pg_color = atop(dst_entry->start); 2105 #endif 2106 dst_object->domain = src_object->domain; 2107 dst_object->charge = dst_entry->end - dst_entry->start; 2108 2109 dst_entry->object.vm_object = dst_object; 2110 dst_entry->offset = 0; 2111 dst_entry->eflags &= ~MAP_ENTRY_VN_EXEC; 2112 } 2113 2114 VM_OBJECT_WLOCK(dst_object); 2115 if (fork_charge != NULL) { 2116 KASSERT(dst_entry->cred == NULL, 2117 ("vm_fault_copy_entry: leaked swp charge")); 2118 dst_object->cred = curthread->td_ucred; 2119 crhold(dst_object->cred); 2120 *fork_charge += dst_object->charge; 2121 } else if ((dst_object->flags & OBJ_SWAP) != 0 && 2122 dst_object->cred == NULL) { 2123 KASSERT(dst_entry->cred != NULL, ("no cred for entry %p", 2124 dst_entry)); 2125 dst_object->cred = dst_entry->cred; 2126 dst_entry->cred = NULL; 2127 } 2128 2129 /* 2130 * Loop through all of the virtual pages within the entry's 2131 * range, copying each page from the source object to the 2132 * destination object. Since the source is wired, those pages 2133 * must exist. In contrast, the destination is pageable. 2134 * Since the destination object doesn't share any backing storage 2135 * with the source object, all of its pages must be dirtied, 2136 * regardless of whether they can be written. 2137 */ 2138 for (vaddr = dst_entry->start, dst_pindex = 0; 2139 vaddr < dst_entry->end; 2140 vaddr += PAGE_SIZE, dst_pindex++) { 2141 again: 2142 /* 2143 * Find the page in the source object, and copy it in. 2144 * Because the source is wired down, the page will be 2145 * in memory. 2146 */ 2147 if (src_object != dst_object) 2148 VM_OBJECT_RLOCK(src_object); 2149 object = src_object; 2150 pindex = src_pindex + dst_pindex; 2151 while ((src_m = vm_page_lookup(object, pindex)) == NULL && 2152 (backing_object = object->backing_object) != NULL) { 2153 /* 2154 * Unless the source mapping is read-only or 2155 * it is presently being upgraded from 2156 * read-only, the first object in the shadow 2157 * chain should provide all of the pages. In 2158 * other words, this loop body should never be 2159 * executed when the source mapping is already 2160 * read/write. 2161 */ 2162 KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 || 2163 upgrade, 2164 ("vm_fault_copy_entry: main object missing page")); 2165 2166 VM_OBJECT_RLOCK(backing_object); 2167 pindex += OFF_TO_IDX(object->backing_object_offset); 2168 if (object != dst_object) 2169 VM_OBJECT_RUNLOCK(object); 2170 object = backing_object; 2171 } 2172 KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing")); 2173 2174 if (object != dst_object) { 2175 /* 2176 * Allocate a page in the destination object. 2177 */ 2178 dst_m = vm_page_alloc(dst_object, (src_object == 2179 dst_object ? src_pindex : 0) + dst_pindex, 2180 VM_ALLOC_NORMAL); 2181 if (dst_m == NULL) { 2182 VM_OBJECT_WUNLOCK(dst_object); 2183 VM_OBJECT_RUNLOCK(object); 2184 vm_wait(dst_object); 2185 VM_OBJECT_WLOCK(dst_object); 2186 goto again; 2187 } 2188 2189 /* 2190 * See the comment in vm_fault_cow(). 2191 */ 2192 if (src_object == dst_object && 2193 (object->flags & OBJ_ONEMAPPING) == 0) 2194 pmap_remove_all(src_m); 2195 pmap_copy_page(src_m, dst_m); 2196 2197 /* 2198 * The object lock does not guarantee that "src_m" will 2199 * transition from invalid to valid, but it does ensure 2200 * that "src_m" will not transition from valid to 2201 * invalid. 2202 */ 2203 dst_m->dirty = dst_m->valid = src_m->valid; 2204 VM_OBJECT_RUNLOCK(object); 2205 } else { 2206 dst_m = src_m; 2207 if (vm_page_busy_acquire(dst_m, VM_ALLOC_WAITFAIL) == 0) 2208 goto again; 2209 if (dst_m->pindex >= dst_object->size) { 2210 /* 2211 * We are upgrading. Index can occur 2212 * out of bounds if the object type is 2213 * vnode and the file was truncated. 2214 */ 2215 vm_page_xunbusy(dst_m); 2216 break; 2217 } 2218 } 2219 2220 /* 2221 * Enter it in the pmap. If a wired, copy-on-write 2222 * mapping is being replaced by a write-enabled 2223 * mapping, then wire that new mapping. 2224 * 2225 * The page can be invalid if the user called 2226 * msync(MS_INVALIDATE) or truncated the backing vnode 2227 * or shared memory object. In this case, do not 2228 * insert it into pmap, but still do the copy so that 2229 * all copies of the wired map entry have similar 2230 * backing pages. 2231 */ 2232 if (vm_page_all_valid(dst_m)) { 2233 VM_OBJECT_WUNLOCK(dst_object); 2234 pmap_enter(dst_map->pmap, vaddr, dst_m, prot, 2235 access | (upgrade ? PMAP_ENTER_WIRED : 0), 0); 2236 VM_OBJECT_WLOCK(dst_object); 2237 } 2238 2239 /* 2240 * Mark it no longer busy, and put it on the active list. 2241 */ 2242 if (upgrade) { 2243 if (src_m != dst_m) { 2244 vm_page_unwire(src_m, PQ_INACTIVE); 2245 vm_page_wire(dst_m); 2246 } else { 2247 KASSERT(vm_page_wired(dst_m), 2248 ("dst_m %p is not wired", dst_m)); 2249 } 2250 } else { 2251 vm_page_activate(dst_m); 2252 } 2253 vm_page_xunbusy(dst_m); 2254 } 2255 VM_OBJECT_WUNLOCK(dst_object); 2256 if (upgrade) { 2257 dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY); 2258 vm_object_deallocate(src_object); 2259 } 2260 } 2261 2262 /* 2263 * Block entry into the machine-independent layer's page fault handler by 2264 * the calling thread. Subsequent calls to vm_fault() by that thread will 2265 * return KERN_PROTECTION_FAILURE. Enable machine-dependent handling of 2266 * spurious page faults. 2267 */ 2268 int 2269 vm_fault_disable_pagefaults(void) 2270 { 2271 2272 return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR)); 2273 } 2274 2275 void 2276 vm_fault_enable_pagefaults(int save) 2277 { 2278 2279 curthread_pflags_restore(save); 2280 } 2281