xref: /freebsd/sys/vm/vm_fault.c (revision b3aaa0cc21c63d388230c7ef2a80abd631ff20d5)
1 /*-
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  *
10  * This code is derived from software contributed to Berkeley by
11  * The Mach Operating System project at Carnegie-Mellon University.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. All advertising materials mentioning features or use of this software
22  *    must display the following acknowledgement:
23  *	This product includes software developed by the University of
24  *	California, Berkeley and its contributors.
25  * 4. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *	from: @(#)vm_fault.c	8.4 (Berkeley) 1/12/94
42  *
43  *
44  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45  * All rights reserved.
46  *
47  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48  *
49  * Permission to use, copy, modify and distribute this software and
50  * its documentation is hereby granted, provided that both the copyright
51  * notice and this permission notice appear in all copies of the
52  * software, derivative works or modified versions, and any portions
53  * thereof, and that both notices appear in supporting documentation.
54  *
55  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58  *
59  * Carnegie Mellon requests users of this software to return to
60  *
61  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62  *  School of Computer Science
63  *  Carnegie Mellon University
64  *  Pittsburgh PA 15213-3890
65  *
66  * any improvements or extensions that they make and grant Carnegie the
67  * rights to redistribute these changes.
68  */
69 
70 /*
71  *	Page fault handling module.
72  */
73 
74 #include <sys/cdefs.h>
75 __FBSDID("$FreeBSD$");
76 
77 #include "opt_vm.h"
78 
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/lock.h>
83 #include <sys/mutex.h>
84 #include <sys/proc.h>
85 #include <sys/resourcevar.h>
86 #include <sys/sysctl.h>
87 #include <sys/vmmeter.h>
88 #include <sys/vnode.h>
89 
90 #include <vm/vm.h>
91 #include <vm/vm_param.h>
92 #include <vm/pmap.h>
93 #include <vm/vm_map.h>
94 #include <vm/vm_object.h>
95 #include <vm/vm_page.h>
96 #include <vm/vm_pageout.h>
97 #include <vm/vm_kern.h>
98 #include <vm/vm_pager.h>
99 #include <vm/vnode_pager.h>
100 #include <vm/vm_extern.h>
101 
102 #include <sys/mount.h>	/* XXX Temporary for VFS_LOCK_GIANT() */
103 
104 #define PFBAK 4
105 #define PFFOR 4
106 #define PAGEORDER_SIZE (PFBAK+PFFOR)
107 
108 static int prefault_pageorder[] = {
109 	-1 * PAGE_SIZE, 1 * PAGE_SIZE,
110 	-2 * PAGE_SIZE, 2 * PAGE_SIZE,
111 	-3 * PAGE_SIZE, 3 * PAGE_SIZE,
112 	-4 * PAGE_SIZE, 4 * PAGE_SIZE
113 };
114 
115 static int vm_fault_additional_pages(vm_page_t, int, int, vm_page_t *, int *);
116 static void vm_fault_prefault(pmap_t, vm_offset_t, vm_map_entry_t);
117 
118 #define VM_FAULT_READ_AHEAD 8
119 #define VM_FAULT_READ_BEHIND 7
120 #define VM_FAULT_READ (VM_FAULT_READ_AHEAD+VM_FAULT_READ_BEHIND+1)
121 
122 struct faultstate {
123 	vm_page_t m;
124 	vm_object_t object;
125 	vm_pindex_t pindex;
126 	vm_page_t first_m;
127 	vm_object_t	first_object;
128 	vm_pindex_t first_pindex;
129 	vm_map_t map;
130 	vm_map_entry_t entry;
131 	int lookup_still_valid;
132 	struct vnode *vp;
133 	int vfslocked;
134 };
135 
136 static inline void
137 release_page(struct faultstate *fs)
138 {
139 
140 	vm_page_wakeup(fs->m);
141 	vm_page_lock_queues();
142 	vm_page_deactivate(fs->m);
143 	vm_page_unlock_queues();
144 	fs->m = NULL;
145 }
146 
147 static inline void
148 unlock_map(struct faultstate *fs)
149 {
150 
151 	if (fs->lookup_still_valid) {
152 		vm_map_lookup_done(fs->map, fs->entry);
153 		fs->lookup_still_valid = FALSE;
154 	}
155 }
156 
157 static void
158 unlock_and_deallocate(struct faultstate *fs)
159 {
160 
161 	vm_object_pip_wakeup(fs->object);
162 	VM_OBJECT_UNLOCK(fs->object);
163 	if (fs->object != fs->first_object) {
164 		VM_OBJECT_LOCK(fs->first_object);
165 		vm_page_lock_queues();
166 		vm_page_free(fs->first_m);
167 		vm_page_unlock_queues();
168 		vm_object_pip_wakeup(fs->first_object);
169 		VM_OBJECT_UNLOCK(fs->first_object);
170 		fs->first_m = NULL;
171 	}
172 	vm_object_deallocate(fs->first_object);
173 	unlock_map(fs);
174 	if (fs->vp != NULL) {
175 		vput(fs->vp);
176 		fs->vp = NULL;
177 	}
178 	VFS_UNLOCK_GIANT(fs->vfslocked);
179 	fs->vfslocked = 0;
180 }
181 
182 /*
183  * TRYPAGER - used by vm_fault to calculate whether the pager for the
184  *	      current object *might* contain the page.
185  *
186  *	      default objects are zero-fill, there is no real pager.
187  */
188 #define TRYPAGER	(fs.object->type != OBJT_DEFAULT && \
189 			(((fault_flags & VM_FAULT_WIRE_MASK) == 0) || wired))
190 
191 /*
192  *	vm_fault:
193  *
194  *	Handle a page fault occurring at the given address,
195  *	requiring the given permissions, in the map specified.
196  *	If successful, the page is inserted into the
197  *	associated physical map.
198  *
199  *	NOTE: the given address should be truncated to the
200  *	proper page address.
201  *
202  *	KERN_SUCCESS is returned if the page fault is handled; otherwise,
203  *	a standard error specifying why the fault is fatal is returned.
204  *
205  *
206  *	The map in question must be referenced, and remains so.
207  *	Caller may hold no locks.
208  */
209 int
210 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
211 	 int fault_flags)
212 {
213 	vm_prot_t prot;
214 	int is_first_object_locked, result;
215 	boolean_t are_queues_locked, growstack, wired;
216 	int map_generation;
217 	vm_object_t next_object;
218 	vm_page_t marray[VM_FAULT_READ];
219 	int hardfault;
220 	int faultcount, ahead, behind;
221 	struct faultstate fs;
222 	struct vnode *vp;
223 	int locked, error;
224 
225 	hardfault = 0;
226 	growstack = TRUE;
227 	PCPU_INC(cnt.v_vm_faults);
228 	fs.vp = NULL;
229 	fs.vfslocked = 0;
230 	faultcount = behind = 0;
231 
232 RetryFault:;
233 
234 	/*
235 	 * Find the backing store object and offset into it to begin the
236 	 * search.
237 	 */
238 	fs.map = map;
239 	result = vm_map_lookup(&fs.map, vaddr, fault_type, &fs.entry,
240 	    &fs.first_object, &fs.first_pindex, &prot, &wired);
241 	if (result != KERN_SUCCESS) {
242 		if (result != KERN_PROTECTION_FAILURE ||
243 		    (fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE) {
244 			if (growstack && result == KERN_INVALID_ADDRESS &&
245 			    map != kernel_map && curproc != NULL) {
246 				result = vm_map_growstack(curproc, vaddr);
247 				if (result != KERN_SUCCESS)
248 					return (KERN_FAILURE);
249 				growstack = FALSE;
250 				goto RetryFault;
251 			}
252 			return (result);
253 		}
254 
255 		/*
256    		 * If we are user-wiring a r/w segment, and it is COW, then
257    		 * we need to do the COW operation.  Note that we don't COW
258    		 * currently RO sections now, because it is NOT desirable
259    		 * to COW .text.  We simply keep .text from ever being COW'ed
260    		 * and take the heat that one cannot debug wired .text sections.
261    		 */
262 		result = vm_map_lookup(&fs.map, vaddr,
263 			VM_PROT_READ|VM_PROT_WRITE|VM_PROT_OVERRIDE_WRITE,
264 			&fs.entry, &fs.first_object, &fs.first_pindex, &prot, &wired);
265 		if (result != KERN_SUCCESS)
266 			return (result);
267 
268 		/*
269 		 * If we don't COW now, on a user wire, the user will never
270 		 * be able to write to the mapping.  If we don't make this
271 		 * restriction, the bookkeeping would be nearly impossible.
272 		 *
273 		 * XXX The following assignment modifies the map without
274 		 * holding a write lock on it.
275 		 */
276 		if ((fs.entry->protection & VM_PROT_WRITE) == 0)
277 			fs.entry->max_protection &= ~VM_PROT_WRITE;
278 	}
279 
280 	map_generation = fs.map->timestamp;
281 
282 	if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
283 		panic("vm_fault: fault on nofault entry, addr: %lx",
284 		    (u_long)vaddr);
285 	}
286 
287 	/*
288 	 * Make a reference to this object to prevent its disposal while we
289 	 * are messing with it.  Once we have the reference, the map is free
290 	 * to be diddled.  Since objects reference their shadows (and copies),
291 	 * they will stay around as well.
292 	 *
293 	 * Bump the paging-in-progress count to prevent size changes (e.g.
294 	 * truncation operations) during I/O.  This must be done after
295 	 * obtaining the vnode lock in order to avoid possible deadlocks.
296 	 */
297 	VM_OBJECT_LOCK(fs.first_object);
298 	vm_object_reference_locked(fs.first_object);
299 	vm_object_pip_add(fs.first_object, 1);
300 
301 	fs.lookup_still_valid = TRUE;
302 
303 	if (wired)
304 		fault_type = prot;
305 
306 	fs.first_m = NULL;
307 
308 	/*
309 	 * Search for the page at object/offset.
310 	 */
311 	fs.object = fs.first_object;
312 	fs.pindex = fs.first_pindex;
313 	while (TRUE) {
314 		/*
315 		 * If the object is dead, we stop here
316 		 */
317 		if (fs.object->flags & OBJ_DEAD) {
318 			unlock_and_deallocate(&fs);
319 			return (KERN_PROTECTION_FAILURE);
320 		}
321 
322 		/*
323 		 * See if page is resident
324 		 */
325 		fs.m = vm_page_lookup(fs.object, fs.pindex);
326 		if (fs.m != NULL) {
327 			/*
328 			 * check for page-based copy on write.
329 			 * We check fs.object == fs.first_object so
330 			 * as to ensure the legacy COW mechanism is
331 			 * used when the page in question is part of
332 			 * a shadow object.  Otherwise, vm_page_cowfault()
333 			 * removes the page from the backing object,
334 			 * which is not what we want.
335 			 */
336 			vm_page_lock_queues();
337 			if ((fs.m->cow) &&
338 			    (fault_type & VM_PROT_WRITE) &&
339 			    (fs.object == fs.first_object)) {
340 				vm_page_cowfault(fs.m);
341 				vm_page_unlock_queues();
342 				unlock_and_deallocate(&fs);
343 				goto RetryFault;
344 			}
345 
346 			/*
347 			 * Wait/Retry if the page is busy.  We have to do this
348 			 * if the page is busy via either VPO_BUSY or
349 			 * vm_page_t->busy because the vm_pager may be using
350 			 * vm_page_t->busy for pageouts ( and even pageins if
351 			 * it is the vnode pager ), and we could end up trying
352 			 * to pagein and pageout the same page simultaneously.
353 			 *
354 			 * We can theoretically allow the busy case on a read
355 			 * fault if the page is marked valid, but since such
356 			 * pages are typically already pmap'd, putting that
357 			 * special case in might be more effort then it is
358 			 * worth.  We cannot under any circumstances mess
359 			 * around with a vm_page_t->busy page except, perhaps,
360 			 * to pmap it.
361 			 */
362 			if ((fs.m->oflags & VPO_BUSY) || fs.m->busy) {
363 				vm_page_unlock_queues();
364 				VM_OBJECT_UNLOCK(fs.object);
365 				if (fs.object != fs.first_object) {
366 					VM_OBJECT_LOCK(fs.first_object);
367 					vm_page_lock_queues();
368 					vm_page_free(fs.first_m);
369 					vm_page_unlock_queues();
370 					vm_object_pip_wakeup(fs.first_object);
371 					VM_OBJECT_UNLOCK(fs.first_object);
372 					fs.first_m = NULL;
373 				}
374 				unlock_map(&fs);
375 				VM_OBJECT_LOCK(fs.object);
376 				if (fs.m == vm_page_lookup(fs.object,
377 				    fs.pindex)) {
378 					vm_page_sleep_if_busy(fs.m, TRUE,
379 					    "vmpfw");
380 				}
381 				vm_object_pip_wakeup(fs.object);
382 				VM_OBJECT_UNLOCK(fs.object);
383 				PCPU_INC(cnt.v_intrans);
384 				vm_object_deallocate(fs.first_object);
385 				goto RetryFault;
386 			}
387 			vm_pageq_remove(fs.m);
388 			vm_page_unlock_queues();
389 
390 			/*
391 			 * Mark page busy for other processes, and the
392 			 * pagedaemon.  If it still isn't completely valid
393 			 * (readable), jump to readrest, else break-out ( we
394 			 * found the page ).
395 			 */
396 			vm_page_busy(fs.m);
397 			if (((fs.m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) &&
398 				fs.m->object != kernel_object && fs.m->object != kmem_object) {
399 				goto readrest;
400 			}
401 
402 			break;
403 		}
404 
405 		/*
406 		 * Page is not resident, If this is the search termination
407 		 * or the pager might contain the page, allocate a new page.
408 		 */
409 		if (TRYPAGER || fs.object == fs.first_object) {
410 			if (fs.pindex >= fs.object->size) {
411 				unlock_and_deallocate(&fs);
412 				return (KERN_PROTECTION_FAILURE);
413 			}
414 
415 			/*
416 			 * Allocate a new page for this object/offset pair.
417 			 */
418 			fs.m = NULL;
419 			if (!vm_page_count_severe()) {
420 #if VM_NRESERVLEVEL > 0
421 				if ((fs.object->flags & OBJ_COLORED) == 0) {
422 					fs.object->flags |= OBJ_COLORED;
423 					fs.object->pg_color = atop(vaddr) -
424 					    fs.pindex;
425 				}
426 #endif
427 				fs.m = vm_page_alloc(fs.object, fs.pindex,
428 				    (fs.object->type == OBJT_VNODE ||
429 				     fs.object->backing_object != NULL) ?
430 				    VM_ALLOC_NORMAL : VM_ALLOC_ZERO);
431 			}
432 			if (fs.m == NULL) {
433 				unlock_and_deallocate(&fs);
434 				VM_WAITPFAULT;
435 				goto RetryFault;
436 			} else if ((fs.m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL)
437 				break;
438 		}
439 
440 readrest:
441 		/*
442 		 * We have found a valid page or we have allocated a new page.
443 		 * The page thus may not be valid or may not be entirely
444 		 * valid.
445 		 *
446 		 * Attempt to fault-in the page if there is a chance that the
447 		 * pager has it, and potentially fault in additional pages
448 		 * at the same time.
449 		 */
450 		if (TRYPAGER) {
451 			int rv;
452 			int reqpage = 0;
453 			u_char behavior = vm_map_entry_behavior(fs.entry);
454 
455 			if (behavior == MAP_ENTRY_BEHAV_RANDOM) {
456 				ahead = 0;
457 				behind = 0;
458 			} else {
459 				behind = (vaddr - fs.entry->start) >> PAGE_SHIFT;
460 				if (behind > VM_FAULT_READ_BEHIND)
461 					behind = VM_FAULT_READ_BEHIND;
462 
463 				ahead = ((fs.entry->end - vaddr) >> PAGE_SHIFT) - 1;
464 				if (ahead > VM_FAULT_READ_AHEAD)
465 					ahead = VM_FAULT_READ_AHEAD;
466 			}
467 			is_first_object_locked = FALSE;
468 			if ((behavior == MAP_ENTRY_BEHAV_SEQUENTIAL ||
469 			     (behavior != MAP_ENTRY_BEHAV_RANDOM &&
470 			      fs.pindex >= fs.entry->lastr &&
471 			      fs.pindex < fs.entry->lastr + VM_FAULT_READ)) &&
472 			    (fs.first_object == fs.object ||
473 			     (is_first_object_locked = VM_OBJECT_TRYLOCK(fs.first_object))) &&
474 			    fs.first_object->type != OBJT_DEVICE &&
475 			    fs.first_object->type != OBJT_PHYS) {
476 				vm_pindex_t firstpindex, tmppindex;
477 
478 				if (fs.first_pindex < 2 * VM_FAULT_READ)
479 					firstpindex = 0;
480 				else
481 					firstpindex = fs.first_pindex - 2 * VM_FAULT_READ;
482 
483 				are_queues_locked = FALSE;
484 				/*
485 				 * note: partially valid pages cannot be
486 				 * included in the lookahead - NFS piecemeal
487 				 * writes will barf on it badly.
488 				 */
489 				for (tmppindex = fs.first_pindex - 1;
490 					tmppindex >= firstpindex;
491 					--tmppindex) {
492 					vm_page_t mt;
493 
494 					mt = vm_page_lookup(fs.first_object, tmppindex);
495 					if (mt == NULL || (mt->valid != VM_PAGE_BITS_ALL))
496 						break;
497 					if (mt->busy ||
498 					    (mt->oflags & VPO_BUSY))
499 						continue;
500 					if (!are_queues_locked) {
501 						are_queues_locked = TRUE;
502 						vm_page_lock_queues();
503 					}
504 					if (mt->hold_count ||
505 						mt->wire_count)
506 						continue;
507 					pmap_remove_all(mt);
508 					if (mt->dirty) {
509 						vm_page_deactivate(mt);
510 					} else {
511 						vm_page_cache(mt);
512 					}
513 				}
514 				if (are_queues_locked)
515 					vm_page_unlock_queues();
516 				ahead += behind;
517 				behind = 0;
518 			}
519 			if (is_first_object_locked)
520 				VM_OBJECT_UNLOCK(fs.first_object);
521 
522 			/*
523 			 * Call the pager to retrieve the data, if any, after
524 			 * releasing the lock on the map.  We hold a ref on
525 			 * fs.object and the pages are VPO_BUSY'd.
526 			 */
527 			unlock_map(&fs);
528 
529 vnode_lock:
530 			if (fs.object->type == OBJT_VNODE) {
531 				vp = fs.object->handle;
532 				if (vp == fs.vp)
533 					goto vnode_locked;
534 				else if (fs.vp != NULL) {
535 					vput(fs.vp);
536 					fs.vp = NULL;
537 				}
538 				locked = VOP_ISLOCKED(vp);
539 
540 				if (VFS_NEEDSGIANT(vp->v_mount) && !fs.vfslocked) {
541 					fs.vfslocked = 1;
542 					if (!mtx_trylock(&Giant)) {
543 						VM_OBJECT_UNLOCK(fs.object);
544 						mtx_lock(&Giant);
545 						VM_OBJECT_LOCK(fs.object);
546 						goto vnode_lock;
547 					}
548 				}
549 				if (locked != LK_EXCLUSIVE)
550 					locked = LK_SHARED;
551 				/* Do not sleep for vnode lock while fs.m is busy */
552 				error = vget(vp, locked | LK_CANRECURSE |
553 				    LK_NOWAIT, curthread);
554 				if (error != 0) {
555 					int vfslocked;
556 
557 					vfslocked = fs.vfslocked;
558 					fs.vfslocked = 0; /* Keep Giant */
559 					vhold(vp);
560 					release_page(&fs);
561 					unlock_and_deallocate(&fs);
562 					error = vget(vp, locked | LK_RETRY |
563 					    LK_CANRECURSE, curthread);
564 					vdrop(vp);
565 					fs.vp = vp;
566 					fs.vfslocked = vfslocked;
567 					KASSERT(error == 0,
568 					    ("vm_fault: vget failed"));
569 					goto RetryFault;
570 				}
571 				fs.vp = vp;
572 			}
573 vnode_locked:
574 			KASSERT(fs.vp == NULL || !fs.map->system_map,
575 			    ("vm_fault: vnode-backed object mapped by system map"));
576 
577 			/*
578 			 * now we find out if any other pages should be paged
579 			 * in at this time this routine checks to see if the
580 			 * pages surrounding this fault reside in the same
581 			 * object as the page for this fault.  If they do,
582 			 * then they are faulted in also into the object.  The
583 			 * array "marray" returned contains an array of
584 			 * vm_page_t structs where one of them is the
585 			 * vm_page_t passed to the routine.  The reqpage
586 			 * return value is the index into the marray for the
587 			 * vm_page_t passed to the routine.
588 			 *
589 			 * fs.m plus the additional pages are VPO_BUSY'd.
590 			 */
591 			faultcount = vm_fault_additional_pages(
592 			    fs.m, behind, ahead, marray, &reqpage);
593 
594 			rv = faultcount ?
595 			    vm_pager_get_pages(fs.object, marray, faultcount,
596 				reqpage) : VM_PAGER_FAIL;
597 
598 			if (rv == VM_PAGER_OK) {
599 				/*
600 				 * Found the page. Leave it busy while we play
601 				 * with it.
602 				 */
603 
604 				/*
605 				 * Relookup in case pager changed page. Pager
606 				 * is responsible for disposition of old page
607 				 * if moved.
608 				 */
609 				fs.m = vm_page_lookup(fs.object, fs.pindex);
610 				if (!fs.m) {
611 					unlock_and_deallocate(&fs);
612 					goto RetryFault;
613 				}
614 
615 				hardfault++;
616 				break; /* break to PAGE HAS BEEN FOUND */
617 			}
618 			/*
619 			 * Remove the bogus page (which does not exist at this
620 			 * object/offset); before doing so, we must get back
621 			 * our object lock to preserve our invariant.
622 			 *
623 			 * Also wake up any other process that may want to bring
624 			 * in this page.
625 			 *
626 			 * If this is the top-level object, we must leave the
627 			 * busy page to prevent another process from rushing
628 			 * past us, and inserting the page in that object at
629 			 * the same time that we are.
630 			 */
631 			if (rv == VM_PAGER_ERROR)
632 				printf("vm_fault: pager read error, pid %d (%s)\n",
633 				    curproc->p_pid, curproc->p_comm);
634 			/*
635 			 * Data outside the range of the pager or an I/O error
636 			 */
637 			/*
638 			 * XXX - the check for kernel_map is a kludge to work
639 			 * around having the machine panic on a kernel space
640 			 * fault w/ I/O error.
641 			 */
642 			if (((fs.map != kernel_map) && (rv == VM_PAGER_ERROR)) ||
643 				(rv == VM_PAGER_BAD)) {
644 				vm_page_lock_queues();
645 				vm_page_free(fs.m);
646 				vm_page_unlock_queues();
647 				fs.m = NULL;
648 				unlock_and_deallocate(&fs);
649 				return ((rv == VM_PAGER_ERROR) ? KERN_FAILURE : KERN_PROTECTION_FAILURE);
650 			}
651 			if (fs.object != fs.first_object) {
652 				vm_page_lock_queues();
653 				vm_page_free(fs.m);
654 				vm_page_unlock_queues();
655 				fs.m = NULL;
656 				/*
657 				 * XXX - we cannot just fall out at this
658 				 * point, m has been freed and is invalid!
659 				 */
660 			}
661 		}
662 
663 		/*
664 		 * We get here if the object has default pager (or unwiring)
665 		 * or the pager doesn't have the page.
666 		 */
667 		if (fs.object == fs.first_object)
668 			fs.first_m = fs.m;
669 
670 		/*
671 		 * Move on to the next object.  Lock the next object before
672 		 * unlocking the current one.
673 		 */
674 		fs.pindex += OFF_TO_IDX(fs.object->backing_object_offset);
675 		next_object = fs.object->backing_object;
676 		if (next_object == NULL) {
677 			/*
678 			 * If there's no object left, fill the page in the top
679 			 * object with zeros.
680 			 */
681 			if (fs.object != fs.first_object) {
682 				vm_object_pip_wakeup(fs.object);
683 				VM_OBJECT_UNLOCK(fs.object);
684 
685 				fs.object = fs.first_object;
686 				fs.pindex = fs.first_pindex;
687 				fs.m = fs.first_m;
688 				VM_OBJECT_LOCK(fs.object);
689 			}
690 			fs.first_m = NULL;
691 
692 			/*
693 			 * Zero the page if necessary and mark it valid.
694 			 */
695 			if ((fs.m->flags & PG_ZERO) == 0) {
696 				pmap_zero_page(fs.m);
697 			} else {
698 				PCPU_INC(cnt.v_ozfod);
699 			}
700 			PCPU_INC(cnt.v_zfod);
701 			fs.m->valid = VM_PAGE_BITS_ALL;
702 			break;	/* break to PAGE HAS BEEN FOUND */
703 		} else {
704 			KASSERT(fs.object != next_object,
705 			    ("object loop %p", next_object));
706 			VM_OBJECT_LOCK(next_object);
707 			vm_object_pip_add(next_object, 1);
708 			if (fs.object != fs.first_object)
709 				vm_object_pip_wakeup(fs.object);
710 			VM_OBJECT_UNLOCK(fs.object);
711 			fs.object = next_object;
712 		}
713 	}
714 
715 	KASSERT((fs.m->oflags & VPO_BUSY) != 0,
716 	    ("vm_fault: not busy after main loop"));
717 
718 	/*
719 	 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
720 	 * is held.]
721 	 */
722 
723 	/*
724 	 * If the page is being written, but isn't already owned by the
725 	 * top-level object, we have to copy it into a new page owned by the
726 	 * top-level object.
727 	 */
728 	if (fs.object != fs.first_object) {
729 		/*
730 		 * We only really need to copy if we want to write it.
731 		 */
732 		if (fault_type & VM_PROT_WRITE) {
733 			/*
734 			 * This allows pages to be virtually copied from a
735 			 * backing_object into the first_object, where the
736 			 * backing object has no other refs to it, and cannot
737 			 * gain any more refs.  Instead of a bcopy, we just
738 			 * move the page from the backing object to the
739 			 * first object.  Note that we must mark the page
740 			 * dirty in the first object so that it will go out
741 			 * to swap when needed.
742 			 */
743 			is_first_object_locked = FALSE;
744 			if (
745 				/*
746 				 * Only one shadow object
747 				 */
748 				(fs.object->shadow_count == 1) &&
749 				/*
750 				 * No COW refs, except us
751 				 */
752 				(fs.object->ref_count == 1) &&
753 				/*
754 				 * No one else can look this object up
755 				 */
756 				(fs.object->handle == NULL) &&
757 				/*
758 				 * No other ways to look the object up
759 				 */
760 				((fs.object->type == OBJT_DEFAULT) ||
761 				 (fs.object->type == OBJT_SWAP)) &&
762 			    (is_first_object_locked = VM_OBJECT_TRYLOCK(fs.first_object)) &&
763 				/*
764 				 * We don't chase down the shadow chain
765 				 */
766 			    fs.object == fs.first_object->backing_object) {
767 				vm_page_lock_queues();
768 				/*
769 				 * get rid of the unnecessary page
770 				 */
771 				vm_page_free(fs.first_m);
772 				/*
773 				 * grab the page and put it into the
774 				 * process'es object.  The page is
775 				 * automatically made dirty.
776 				 */
777 				vm_page_rename(fs.m, fs.first_object, fs.first_pindex);
778 				vm_page_unlock_queues();
779 				vm_page_busy(fs.m);
780 				fs.first_m = fs.m;
781 				fs.m = NULL;
782 				PCPU_INC(cnt.v_cow_optim);
783 			} else {
784 				/*
785 				 * Oh, well, lets copy it.
786 				 */
787 				pmap_copy_page(fs.m, fs.first_m);
788 				fs.first_m->valid = VM_PAGE_BITS_ALL;
789 			}
790 			if (fs.m) {
791 				/*
792 				 * We no longer need the old page or object.
793 				 */
794 				release_page(&fs);
795 			}
796 			/*
797 			 * fs.object != fs.first_object due to above
798 			 * conditional
799 			 */
800 			vm_object_pip_wakeup(fs.object);
801 			VM_OBJECT_UNLOCK(fs.object);
802 			/*
803 			 * Only use the new page below...
804 			 */
805 			fs.object = fs.first_object;
806 			fs.pindex = fs.first_pindex;
807 			fs.m = fs.first_m;
808 			if (!is_first_object_locked)
809 				VM_OBJECT_LOCK(fs.object);
810 			PCPU_INC(cnt.v_cow_faults);
811 		} else {
812 			prot &= ~VM_PROT_WRITE;
813 		}
814 	}
815 
816 	/*
817 	 * We must verify that the maps have not changed since our last
818 	 * lookup.
819 	 */
820 	if (!fs.lookup_still_valid) {
821 		vm_object_t retry_object;
822 		vm_pindex_t retry_pindex;
823 		vm_prot_t retry_prot;
824 
825 		if (!vm_map_trylock_read(fs.map)) {
826 			release_page(&fs);
827 			unlock_and_deallocate(&fs);
828 			goto RetryFault;
829 		}
830 		fs.lookup_still_valid = TRUE;
831 		if (fs.map->timestamp != map_generation) {
832 			result = vm_map_lookup_locked(&fs.map, vaddr, fault_type,
833 			    &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
834 
835 			/*
836 			 * If we don't need the page any longer, put it on the inactive
837 			 * list (the easiest thing to do here).  If no one needs it,
838 			 * pageout will grab it eventually.
839 			 */
840 			if (result != KERN_SUCCESS) {
841 				release_page(&fs);
842 				unlock_and_deallocate(&fs);
843 
844 				/*
845 				 * If retry of map lookup would have blocked then
846 				 * retry fault from start.
847 				 */
848 				if (result == KERN_FAILURE)
849 					goto RetryFault;
850 				return (result);
851 			}
852 			if ((retry_object != fs.first_object) ||
853 			    (retry_pindex != fs.first_pindex)) {
854 				release_page(&fs);
855 				unlock_and_deallocate(&fs);
856 				goto RetryFault;
857 			}
858 
859 			/*
860 			 * Check whether the protection has changed or the object has
861 			 * been copied while we left the map unlocked. Changing from
862 			 * read to write permission is OK - we leave the page
863 			 * write-protected, and catch the write fault. Changing from
864 			 * write to read permission means that we can't mark the page
865 			 * write-enabled after all.
866 			 */
867 			prot &= retry_prot;
868 		}
869 	}
870 	/*
871 	 * If the page was filled by a pager, update the map entry's
872 	 * last read offset.  Since the pager does not return the
873 	 * actual set of pages that it read, this update is based on
874 	 * the requested set.  Typically, the requested and actual
875 	 * sets are the same.
876 	 *
877 	 * XXX The following assignment modifies the map
878 	 * without holding a write lock on it.
879 	 */
880 	if (hardfault)
881 		fs.entry->lastr = fs.pindex + faultcount - behind;
882 
883 	if (prot & VM_PROT_WRITE) {
884 		vm_object_set_writeable_dirty(fs.object);
885 
886 		/*
887 		 * If the fault is a write, we know that this page is being
888 		 * written NOW so dirty it explicitly to save on
889 		 * pmap_is_modified() calls later.
890 		 *
891 		 * If this is a NOSYNC mmap we do not want to set VPO_NOSYNC
892 		 * if the page is already dirty to prevent data written with
893 		 * the expectation of being synced from not being synced.
894 		 * Likewise if this entry does not request NOSYNC then make
895 		 * sure the page isn't marked NOSYNC.  Applications sharing
896 		 * data should use the same flags to avoid ping ponging.
897 		 *
898 		 * Also tell the backing pager, if any, that it should remove
899 		 * any swap backing since the page is now dirty.
900 		 */
901 		if (fs.entry->eflags & MAP_ENTRY_NOSYNC) {
902 			if (fs.m->dirty == 0)
903 				fs.m->oflags |= VPO_NOSYNC;
904 		} else {
905 			fs.m->oflags &= ~VPO_NOSYNC;
906 		}
907 		if (fault_flags & VM_FAULT_DIRTY) {
908 			vm_page_dirty(fs.m);
909 			vm_pager_page_unswapped(fs.m);
910 		}
911 	}
912 
913 	/*
914 	 * Page had better still be busy
915 	 */
916 	KASSERT(fs.m->oflags & VPO_BUSY,
917 		("vm_fault: page %p not busy!", fs.m));
918 	/*
919 	 * Sanity check: page must be completely valid or it is not fit to
920 	 * map into user space.  vm_pager_get_pages() ensures this.
921 	 */
922 	if (fs.m->valid != VM_PAGE_BITS_ALL) {
923 		vm_page_zero_invalid(fs.m, TRUE);
924 		printf("Warning: page %p partially invalid on fault\n", fs.m);
925 	}
926 	VM_OBJECT_UNLOCK(fs.object);
927 
928 	/*
929 	 * Put this page into the physical map.  We had to do the unlock above
930 	 * because pmap_enter() may sleep.  We don't put the page
931 	 * back on the active queue until later so that the pageout daemon
932 	 * won't find it (yet).
933 	 */
934 	pmap_enter(fs.map->pmap, vaddr, fault_type, fs.m, prot, wired);
935 	if (((fault_flags & VM_FAULT_WIRE_MASK) == 0) && (wired == 0)) {
936 		vm_fault_prefault(fs.map->pmap, vaddr, fs.entry);
937 	}
938 	VM_OBJECT_LOCK(fs.object);
939 	vm_page_lock_queues();
940 	vm_page_flag_set(fs.m, PG_REFERENCED);
941 
942 	/*
943 	 * If the page is not wired down, then put it where the pageout daemon
944 	 * can find it.
945 	 */
946 	if (fault_flags & VM_FAULT_WIRE_MASK) {
947 		if (wired)
948 			vm_page_wire(fs.m);
949 		else
950 			vm_page_unwire(fs.m, 1);
951 	} else {
952 		vm_page_activate(fs.m);
953 	}
954 	vm_page_unlock_queues();
955 	vm_page_wakeup(fs.m);
956 
957 	/*
958 	 * Unlock everything, and return
959 	 */
960 	unlock_and_deallocate(&fs);
961 	if (hardfault)
962 		curthread->td_ru.ru_majflt++;
963 	else
964 		curthread->td_ru.ru_minflt++;
965 
966 	return (KERN_SUCCESS);
967 }
968 
969 /*
970  * vm_fault_prefault provides a quick way of clustering
971  * pagefaults into a processes address space.  It is a "cousin"
972  * of vm_map_pmap_enter, except it runs at page fault time instead
973  * of mmap time.
974  */
975 static void
976 vm_fault_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry)
977 {
978 	int i;
979 	vm_offset_t addr, starta;
980 	vm_pindex_t pindex;
981 	vm_page_t m;
982 	vm_object_t object;
983 
984 	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
985 		return;
986 
987 	object = entry->object.vm_object;
988 
989 	starta = addra - PFBAK * PAGE_SIZE;
990 	if (starta < entry->start) {
991 		starta = entry->start;
992 	} else if (starta > addra) {
993 		starta = 0;
994 	}
995 
996 	for (i = 0; i < PAGEORDER_SIZE; i++) {
997 		vm_object_t backing_object, lobject;
998 
999 		addr = addra + prefault_pageorder[i];
1000 		if (addr > addra + (PFFOR * PAGE_SIZE))
1001 			addr = 0;
1002 
1003 		if (addr < starta || addr >= entry->end)
1004 			continue;
1005 
1006 		if (!pmap_is_prefaultable(pmap, addr))
1007 			continue;
1008 
1009 		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
1010 		lobject = object;
1011 		VM_OBJECT_LOCK(lobject);
1012 		while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
1013 		    lobject->type == OBJT_DEFAULT &&
1014 		    (backing_object = lobject->backing_object) != NULL) {
1015 			if (lobject->backing_object_offset & PAGE_MASK)
1016 				break;
1017 			pindex += lobject->backing_object_offset >> PAGE_SHIFT;
1018 			VM_OBJECT_LOCK(backing_object);
1019 			VM_OBJECT_UNLOCK(lobject);
1020 			lobject = backing_object;
1021 		}
1022 		/*
1023 		 * give-up when a page is not in memory
1024 		 */
1025 		if (m == NULL) {
1026 			VM_OBJECT_UNLOCK(lobject);
1027 			break;
1028 		}
1029 		if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
1030 			(m->busy == 0) &&
1031 		    (m->flags & PG_FICTITIOUS) == 0) {
1032 
1033 			vm_page_lock_queues();
1034 			pmap_enter_quick(pmap, addr, m, entry->protection);
1035 			vm_page_unlock_queues();
1036 		}
1037 		VM_OBJECT_UNLOCK(lobject);
1038 	}
1039 }
1040 
1041 /*
1042  *	vm_fault_quick:
1043  *
1044  *	Ensure that the requested virtual address, which may be in userland,
1045  *	is valid.  Fault-in the page if necessary.  Return -1 on failure.
1046  */
1047 int
1048 vm_fault_quick(caddr_t v, int prot)
1049 {
1050 	int r;
1051 
1052 	if (prot & VM_PROT_WRITE)
1053 		r = subyte(v, fubyte(v));
1054 	else
1055 		r = fubyte(v);
1056 	return(r);
1057 }
1058 
1059 /*
1060  *	vm_fault_wire:
1061  *
1062  *	Wire down a range of virtual addresses in a map.
1063  */
1064 int
1065 vm_fault_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
1066     boolean_t user_wire, boolean_t fictitious)
1067 {
1068 	vm_offset_t va;
1069 	int rv;
1070 
1071 	/*
1072 	 * We simulate a fault to get the page and enter it in the physical
1073 	 * map.  For user wiring, we only ask for read access on currently
1074 	 * read-only sections.
1075 	 */
1076 	for (va = start; va < end; va += PAGE_SIZE) {
1077 		rv = vm_fault(map, va,
1078 		    user_wire ? VM_PROT_READ : VM_PROT_READ | VM_PROT_WRITE,
1079 		    user_wire ? VM_FAULT_USER_WIRE : VM_FAULT_CHANGE_WIRING);
1080 		if (rv) {
1081 			if (va != start)
1082 				vm_fault_unwire(map, start, va, fictitious);
1083 			return (rv);
1084 		}
1085 	}
1086 	return (KERN_SUCCESS);
1087 }
1088 
1089 /*
1090  *	vm_fault_unwire:
1091  *
1092  *	Unwire a range of virtual addresses in a map.
1093  */
1094 void
1095 vm_fault_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
1096     boolean_t fictitious)
1097 {
1098 	vm_paddr_t pa;
1099 	vm_offset_t va;
1100 	pmap_t pmap;
1101 
1102 	pmap = vm_map_pmap(map);
1103 
1104 	/*
1105 	 * Since the pages are wired down, we must be able to get their
1106 	 * mappings from the physical map system.
1107 	 */
1108 	for (va = start; va < end; va += PAGE_SIZE) {
1109 		pa = pmap_extract(pmap, va);
1110 		if (pa != 0) {
1111 			pmap_change_wiring(pmap, va, FALSE);
1112 			if (!fictitious) {
1113 				vm_page_lock_queues();
1114 				vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1);
1115 				vm_page_unlock_queues();
1116 			}
1117 		}
1118 	}
1119 }
1120 
1121 /*
1122  *	Routine:
1123  *		vm_fault_copy_entry
1124  *	Function:
1125  *		Copy all of the pages from a wired-down map entry to another.
1126  *
1127  *	In/out conditions:
1128  *		The source and destination maps must be locked for write.
1129  *		The source map entry must be wired down (or be a sharing map
1130  *		entry corresponding to a main map entry that is wired down).
1131  */
1132 void
1133 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry)
1134 	vm_map_t dst_map;
1135 	vm_map_t src_map;
1136 	vm_map_entry_t dst_entry;
1137 	vm_map_entry_t src_entry;
1138 {
1139 	vm_object_t backing_object, dst_object, object;
1140 	vm_object_t src_object;
1141 	vm_ooffset_t dst_offset;
1142 	vm_ooffset_t src_offset;
1143 	vm_pindex_t pindex;
1144 	vm_prot_t prot;
1145 	vm_offset_t vaddr;
1146 	vm_page_t dst_m;
1147 	vm_page_t src_m;
1148 
1149 #ifdef	lint
1150 	src_map++;
1151 #endif	/* lint */
1152 
1153 	src_object = src_entry->object.vm_object;
1154 	src_offset = src_entry->offset;
1155 
1156 	/*
1157 	 * Create the top-level object for the destination entry. (Doesn't
1158 	 * actually shadow anything - we copy the pages directly.)
1159 	 */
1160 	dst_object = vm_object_allocate(OBJT_DEFAULT,
1161 	    OFF_TO_IDX(dst_entry->end - dst_entry->start));
1162 #if VM_NRESERVLEVEL > 0
1163 	dst_object->flags |= OBJ_COLORED;
1164 	dst_object->pg_color = atop(dst_entry->start);
1165 #endif
1166 
1167 	VM_OBJECT_LOCK(dst_object);
1168 	dst_entry->object.vm_object = dst_object;
1169 	dst_entry->offset = 0;
1170 
1171 	prot = dst_entry->max_protection;
1172 
1173 	/*
1174 	 * Loop through all of the pages in the entry's range, copying each
1175 	 * one from the source object (it should be there) to the destination
1176 	 * object.
1177 	 */
1178 	for (vaddr = dst_entry->start, dst_offset = 0;
1179 	    vaddr < dst_entry->end;
1180 	    vaddr += PAGE_SIZE, dst_offset += PAGE_SIZE) {
1181 
1182 		/*
1183 		 * Allocate a page in the destination object
1184 		 */
1185 		do {
1186 			dst_m = vm_page_alloc(dst_object,
1187 				OFF_TO_IDX(dst_offset), VM_ALLOC_NORMAL);
1188 			if (dst_m == NULL) {
1189 				VM_OBJECT_UNLOCK(dst_object);
1190 				VM_WAIT;
1191 				VM_OBJECT_LOCK(dst_object);
1192 			}
1193 		} while (dst_m == NULL);
1194 
1195 		/*
1196 		 * Find the page in the source object, and copy it in.
1197 		 * (Because the source is wired down, the page will be in
1198 		 * memory.)
1199 		 */
1200 		VM_OBJECT_LOCK(src_object);
1201 		object = src_object;
1202 		pindex = 0;
1203 		while ((src_m = vm_page_lookup(object, pindex +
1204 		    OFF_TO_IDX(dst_offset + src_offset))) == NULL &&
1205 		    (src_entry->protection & VM_PROT_WRITE) == 0 &&
1206 		    (backing_object = object->backing_object) != NULL) {
1207 			/*
1208 			 * Allow fallback to backing objects if we are reading.
1209 			 */
1210 			VM_OBJECT_LOCK(backing_object);
1211 			pindex += OFF_TO_IDX(object->backing_object_offset);
1212 			VM_OBJECT_UNLOCK(object);
1213 			object = backing_object;
1214 		}
1215 		if (src_m == NULL)
1216 			panic("vm_fault_copy_wired: page missing");
1217 		pmap_copy_page(src_m, dst_m);
1218 		VM_OBJECT_UNLOCK(object);
1219 		dst_m->valid = VM_PAGE_BITS_ALL;
1220 		VM_OBJECT_UNLOCK(dst_object);
1221 
1222 		/*
1223 		 * Enter it in the pmap as a read and/or execute access.
1224 		 */
1225 		pmap_enter(dst_map->pmap, vaddr, prot & ~VM_PROT_WRITE, dst_m,
1226 		    prot, FALSE);
1227 
1228 		/*
1229 		 * Mark it no longer busy, and put it on the active list.
1230 		 */
1231 		VM_OBJECT_LOCK(dst_object);
1232 		vm_page_lock_queues();
1233 		vm_page_activate(dst_m);
1234 		vm_page_unlock_queues();
1235 		vm_page_wakeup(dst_m);
1236 	}
1237 	VM_OBJECT_UNLOCK(dst_object);
1238 }
1239 
1240 
1241 /*
1242  * This routine checks around the requested page for other pages that
1243  * might be able to be faulted in.  This routine brackets the viable
1244  * pages for the pages to be paged in.
1245  *
1246  * Inputs:
1247  *	m, rbehind, rahead
1248  *
1249  * Outputs:
1250  *  marray (array of vm_page_t), reqpage (index of requested page)
1251  *
1252  * Return value:
1253  *  number of pages in marray
1254  *
1255  * This routine can't block.
1256  */
1257 static int
1258 vm_fault_additional_pages(m, rbehind, rahead, marray, reqpage)
1259 	vm_page_t m;
1260 	int rbehind;
1261 	int rahead;
1262 	vm_page_t *marray;
1263 	int *reqpage;
1264 {
1265 	int i,j;
1266 	vm_object_t object;
1267 	vm_pindex_t pindex, startpindex, endpindex, tpindex;
1268 	vm_page_t rtm;
1269 	int cbehind, cahead;
1270 
1271 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1272 
1273 	object = m->object;
1274 	pindex = m->pindex;
1275 	cbehind = cahead = 0;
1276 
1277 	/*
1278 	 * if the requested page is not available, then give up now
1279 	 */
1280 	if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
1281 		return 0;
1282 	}
1283 
1284 	if ((cbehind == 0) && (cahead == 0)) {
1285 		*reqpage = 0;
1286 		marray[0] = m;
1287 		return 1;
1288 	}
1289 
1290 	if (rahead > cahead) {
1291 		rahead = cahead;
1292 	}
1293 
1294 	if (rbehind > cbehind) {
1295 		rbehind = cbehind;
1296 	}
1297 
1298 	/*
1299 	 * scan backward for the read behind pages -- in memory
1300 	 */
1301 	if (pindex > 0) {
1302 		if (rbehind > pindex) {
1303 			rbehind = pindex;
1304 			startpindex = 0;
1305 		} else {
1306 			startpindex = pindex - rbehind;
1307 		}
1308 
1309 		if ((rtm = TAILQ_PREV(m, pglist, listq)) != NULL &&
1310 		    rtm->pindex >= startpindex)
1311 			startpindex = rtm->pindex + 1;
1312 
1313 		/* tpindex is unsigned; beware of numeric underflow. */
1314 		for (i = 0, tpindex = pindex - 1; tpindex >= startpindex &&
1315 		    tpindex < pindex; i++, tpindex--) {
1316 
1317 			rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
1318 			    VM_ALLOC_IFNOTCACHED);
1319 			if (rtm == NULL) {
1320 				/*
1321 				 * Shift the allocated pages to the
1322 				 * beginning of the array.
1323 				 */
1324 				for (j = 0; j < i; j++) {
1325 					marray[j] = marray[j + tpindex + 1 -
1326 					    startpindex];
1327 				}
1328 				break;
1329 			}
1330 
1331 			marray[tpindex - startpindex] = rtm;
1332 		}
1333 	} else {
1334 		startpindex = 0;
1335 		i = 0;
1336 	}
1337 
1338 	marray[i] = m;
1339 	/* page offset of the required page */
1340 	*reqpage = i;
1341 
1342 	tpindex = pindex + 1;
1343 	i++;
1344 
1345 	/*
1346 	 * scan forward for the read ahead pages
1347 	 */
1348 	endpindex = tpindex + rahead;
1349 	if ((rtm = TAILQ_NEXT(m, listq)) != NULL && rtm->pindex < endpindex)
1350 		endpindex = rtm->pindex;
1351 	if (endpindex > object->size)
1352 		endpindex = object->size;
1353 
1354 	for (; tpindex < endpindex; i++, tpindex++) {
1355 
1356 		rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
1357 		    VM_ALLOC_IFNOTCACHED);
1358 		if (rtm == NULL) {
1359 			break;
1360 		}
1361 
1362 		marray[i] = rtm;
1363 	}
1364 
1365 	/* return number of pages */
1366 	return i;
1367 }
1368