1 /*- 2 * SPDX-License-Identifier: (BSD-4-Clause AND MIT-CMU) 3 * 4 * Copyright (c) 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * Copyright (c) 1994 John S. Dyson 7 * All rights reserved. 8 * Copyright (c) 1994 David Greenman 9 * All rights reserved. 10 * 11 * 12 * This code is derived from software contributed to Berkeley by 13 * The Mach Operating System project at Carnegie-Mellon University. 14 * 15 * Redistribution and use in source and binary forms, with or without 16 * modification, are permitted provided that the following conditions 17 * are met: 18 * 1. Redistributions of source code must retain the above copyright 19 * notice, this list of conditions and the following disclaimer. 20 * 2. Redistributions in binary form must reproduce the above copyright 21 * notice, this list of conditions and the following disclaimer in the 22 * documentation and/or other materials provided with the distribution. 23 * 3. All advertising materials mentioning features or use of this software 24 * must display the following acknowledgement: 25 * This product includes software developed by the University of 26 * California, Berkeley and its contributors. 27 * 4. Neither the name of the University nor the names of its contributors 28 * may be used to endorse or promote products derived from this software 29 * without specific prior written permission. 30 * 31 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 32 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 33 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 34 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 35 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 39 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 40 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 41 * SUCH DAMAGE. 42 * 43 * from: @(#)vm_fault.c 8.4 (Berkeley) 1/12/94 44 * 45 * 46 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 47 * All rights reserved. 48 * 49 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 50 * 51 * Permission to use, copy, modify and distribute this software and 52 * its documentation is hereby granted, provided that both the copyright 53 * notice and this permission notice appear in all copies of the 54 * software, derivative works or modified versions, and any portions 55 * thereof, and that both notices appear in supporting documentation. 56 * 57 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 58 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 59 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 60 * 61 * Carnegie Mellon requests users of this software to return to 62 * 63 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 64 * School of Computer Science 65 * Carnegie Mellon University 66 * Pittsburgh PA 15213-3890 67 * 68 * any improvements or extensions that they make and grant Carnegie the 69 * rights to redistribute these changes. 70 */ 71 72 /* 73 * Page fault handling module. 74 */ 75 76 #include <sys/cdefs.h> 77 __FBSDID("$FreeBSD$"); 78 79 #include "opt_ktrace.h" 80 #include "opt_vm.h" 81 82 #include <sys/param.h> 83 #include <sys/systm.h> 84 #include <sys/kernel.h> 85 #include <sys/lock.h> 86 #include <sys/mman.h> 87 #include <sys/mutex.h> 88 #include <sys/pctrie.h> 89 #include <sys/proc.h> 90 #include <sys/racct.h> 91 #include <sys/refcount.h> 92 #include <sys/resourcevar.h> 93 #include <sys/rwlock.h> 94 #include <sys/signalvar.h> 95 #include <sys/sysctl.h> 96 #include <sys/sysent.h> 97 #include <sys/vmmeter.h> 98 #include <sys/vnode.h> 99 #ifdef KTRACE 100 #include <sys/ktrace.h> 101 #endif 102 103 #include <vm/vm.h> 104 #include <vm/vm_param.h> 105 #include <vm/pmap.h> 106 #include <vm/vm_map.h> 107 #include <vm/vm_object.h> 108 #include <vm/vm_page.h> 109 #include <vm/vm_pageout.h> 110 #include <vm/vm_kern.h> 111 #include <vm/vm_pager.h> 112 #include <vm/vm_extern.h> 113 #include <vm/vm_reserv.h> 114 115 #define PFBAK 4 116 #define PFFOR 4 117 118 #define VM_FAULT_READ_DEFAULT (1 + VM_FAULT_READ_AHEAD_INIT) 119 120 #define VM_FAULT_DONTNEED_MIN 1048576 121 122 struct faultstate { 123 /* Fault parameters. */ 124 vm_offset_t vaddr; 125 vm_page_t *m_hold; 126 vm_prot_t fault_type; 127 vm_prot_t prot; 128 int fault_flags; 129 boolean_t wired; 130 131 /* Control state. */ 132 struct timeval oom_start_time; 133 bool oom_started; 134 int nera; 135 bool can_read_lock; 136 137 /* Page reference for cow. */ 138 vm_page_t m_cow; 139 140 /* Current object. */ 141 vm_object_t object; 142 vm_pindex_t pindex; 143 vm_page_t m; 144 145 /* Top-level map object. */ 146 vm_object_t first_object; 147 vm_pindex_t first_pindex; 148 vm_page_t first_m; 149 150 /* Map state. */ 151 vm_map_t map; 152 vm_map_entry_t entry; 153 int map_generation; 154 bool lookup_still_valid; 155 156 /* Vnode if locked. */ 157 struct vnode *vp; 158 }; 159 160 /* 161 * Return codes for internal fault routines. 162 */ 163 enum fault_status { 164 FAULT_SUCCESS = 10000, /* Return success to user. */ 165 FAULT_FAILURE, /* Return failure to user. */ 166 FAULT_CONTINUE, /* Continue faulting. */ 167 FAULT_RESTART, /* Restart fault. */ 168 FAULT_OUT_OF_BOUNDS, /* Invalid address for pager. */ 169 FAULT_HARD, /* Performed I/O. */ 170 FAULT_SOFT, /* Found valid page. */ 171 FAULT_PROTECTION_FAILURE, /* Invalid access. */ 172 }; 173 174 enum fault_next_status { 175 FAULT_NEXT_GOTOBJ = 1, 176 FAULT_NEXT_NOOBJ, 177 FAULT_NEXT_RESTART, 178 }; 179 180 static void vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, 181 int ahead); 182 static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra, 183 int backward, int forward, bool obj_locked); 184 185 static int vm_pfault_oom_attempts = 3; 186 SYSCTL_INT(_vm, OID_AUTO, pfault_oom_attempts, CTLFLAG_RWTUN, 187 &vm_pfault_oom_attempts, 0, 188 "Number of page allocation attempts in page fault handler before it " 189 "triggers OOM handling"); 190 191 static int vm_pfault_oom_wait = 10; 192 SYSCTL_INT(_vm, OID_AUTO, pfault_oom_wait, CTLFLAG_RWTUN, 193 &vm_pfault_oom_wait, 0, 194 "Number of seconds to wait for free pages before retrying " 195 "the page fault handler"); 196 197 static inline void 198 vm_fault_page_release(vm_page_t *mp) 199 { 200 vm_page_t m; 201 202 m = *mp; 203 if (m != NULL) { 204 /* 205 * We are likely to loop around again and attempt to busy 206 * this page. Deactivating it leaves it available for 207 * pageout while optimizing fault restarts. 208 */ 209 vm_page_deactivate(m); 210 vm_page_xunbusy(m); 211 *mp = NULL; 212 } 213 } 214 215 static inline void 216 vm_fault_page_free(vm_page_t *mp) 217 { 218 vm_page_t m; 219 220 m = *mp; 221 if (m != NULL) { 222 VM_OBJECT_ASSERT_WLOCKED(m->object); 223 if (!vm_page_wired(m)) 224 vm_page_free(m); 225 else 226 vm_page_xunbusy(m); 227 *mp = NULL; 228 } 229 } 230 231 /* 232 * Return true if a vm_pager_get_pages() call is needed in order to check 233 * whether the pager might have a particular page, false if it can be determined 234 * immediately that the pager can not have a copy. For swap objects, this can 235 * be checked quickly. 236 */ 237 static inline bool 238 vm_fault_object_needs_getpages(vm_object_t object) 239 { 240 VM_OBJECT_ASSERT_LOCKED(object); 241 242 return ((object->flags & OBJ_SWAP) == 0 || 243 !pctrie_is_empty(&object->un_pager.swp.swp_blks)); 244 } 245 246 static inline void 247 vm_fault_unlock_map(struct faultstate *fs) 248 { 249 250 if (fs->lookup_still_valid) { 251 vm_map_lookup_done(fs->map, fs->entry); 252 fs->lookup_still_valid = false; 253 } 254 } 255 256 static void 257 vm_fault_unlock_vp(struct faultstate *fs) 258 { 259 260 if (fs->vp != NULL) { 261 vput(fs->vp); 262 fs->vp = NULL; 263 } 264 } 265 266 static void 267 vm_fault_deallocate(struct faultstate *fs) 268 { 269 270 vm_fault_page_release(&fs->m_cow); 271 vm_fault_page_release(&fs->m); 272 vm_object_pip_wakeup(fs->object); 273 if (fs->object != fs->first_object) { 274 VM_OBJECT_WLOCK(fs->first_object); 275 vm_fault_page_free(&fs->first_m); 276 VM_OBJECT_WUNLOCK(fs->first_object); 277 vm_object_pip_wakeup(fs->first_object); 278 } 279 vm_object_deallocate(fs->first_object); 280 vm_fault_unlock_map(fs); 281 vm_fault_unlock_vp(fs); 282 } 283 284 static void 285 vm_fault_unlock_and_deallocate(struct faultstate *fs) 286 { 287 288 VM_OBJECT_UNLOCK(fs->object); 289 vm_fault_deallocate(fs); 290 } 291 292 static void 293 vm_fault_dirty(struct faultstate *fs, vm_page_t m) 294 { 295 bool need_dirty; 296 297 if (((fs->prot & VM_PROT_WRITE) == 0 && 298 (fs->fault_flags & VM_FAULT_DIRTY) == 0) || 299 (m->oflags & VPO_UNMANAGED) != 0) 300 return; 301 302 VM_PAGE_OBJECT_BUSY_ASSERT(m); 303 304 need_dirty = ((fs->fault_type & VM_PROT_WRITE) != 0 && 305 (fs->fault_flags & VM_FAULT_WIRE) == 0) || 306 (fs->fault_flags & VM_FAULT_DIRTY) != 0; 307 308 vm_object_set_writeable_dirty(m->object); 309 310 /* 311 * If the fault is a write, we know that this page is being 312 * written NOW so dirty it explicitly to save on 313 * pmap_is_modified() calls later. 314 * 315 * Also, since the page is now dirty, we can possibly tell 316 * the pager to release any swap backing the page. 317 */ 318 if (need_dirty && vm_page_set_dirty(m) == 0) { 319 /* 320 * If this is a NOSYNC mmap we do not want to set PGA_NOSYNC 321 * if the page is already dirty to prevent data written with 322 * the expectation of being synced from not being synced. 323 * Likewise if this entry does not request NOSYNC then make 324 * sure the page isn't marked NOSYNC. Applications sharing 325 * data should use the same flags to avoid ping ponging. 326 */ 327 if ((fs->entry->eflags & MAP_ENTRY_NOSYNC) != 0) 328 vm_page_aflag_set(m, PGA_NOSYNC); 329 else 330 vm_page_aflag_clear(m, PGA_NOSYNC); 331 } 332 333 } 334 335 /* 336 * Unlocks fs.first_object and fs.map on success. 337 */ 338 static enum fault_status 339 vm_fault_soft_fast(struct faultstate *fs) 340 { 341 vm_page_t m, m_map; 342 #if VM_NRESERVLEVEL > 0 343 vm_page_t m_super; 344 int flags; 345 #endif 346 int psind; 347 vm_offset_t vaddr; 348 349 MPASS(fs->vp == NULL); 350 351 /* 352 * If we fail, vast majority of the time it is because the page is not 353 * there to begin with. Opportunistically perform the lookup and 354 * subsequent checks without the object lock, revalidate later. 355 * 356 * Note: a busy page can be mapped for read|execute access. 357 */ 358 m = vm_page_lookup_unlocked(fs->first_object, fs->first_pindex); 359 if (m == NULL || !vm_page_all_valid(m) || 360 ((fs->prot & VM_PROT_WRITE) != 0 && vm_page_busied(m))) { 361 VM_OBJECT_WLOCK(fs->first_object); 362 return (FAULT_FAILURE); 363 } 364 365 vaddr = fs->vaddr; 366 367 VM_OBJECT_RLOCK(fs->first_object); 368 369 /* 370 * Now that we stabilized the state, revalidate the page is in the shape 371 * we encountered above. 372 */ 373 374 if (m->object != fs->first_object || m->pindex != fs->first_pindex) 375 goto fail; 376 377 vm_object_busy(fs->first_object); 378 379 if (!vm_page_all_valid(m) || 380 ((fs->prot & VM_PROT_WRITE) != 0 && vm_page_busied(m))) 381 goto fail_busy; 382 383 m_map = m; 384 psind = 0; 385 #if VM_NRESERVLEVEL > 0 386 if ((m->flags & PG_FICTITIOUS) == 0 && 387 (m_super = vm_reserv_to_superpage(m)) != NULL && 388 rounddown2(vaddr, pagesizes[m_super->psind]) >= fs->entry->start && 389 roundup2(vaddr + 1, pagesizes[m_super->psind]) <= fs->entry->end && 390 (vaddr & (pagesizes[m_super->psind] - 1)) == (VM_PAGE_TO_PHYS(m) & 391 (pagesizes[m_super->psind] - 1)) && !fs->wired && 392 pmap_ps_enabled(fs->map->pmap)) { 393 flags = PS_ALL_VALID; 394 if ((fs->prot & VM_PROT_WRITE) != 0) { 395 /* 396 * Create a superpage mapping allowing write access 397 * only if none of the constituent pages are busy and 398 * all of them are already dirty (except possibly for 399 * the page that was faulted on). 400 */ 401 flags |= PS_NONE_BUSY; 402 if ((fs->first_object->flags & OBJ_UNMANAGED) == 0) 403 flags |= PS_ALL_DIRTY; 404 } 405 if (vm_page_ps_test(m_super, flags, m)) { 406 m_map = m_super; 407 psind = m_super->psind; 408 vaddr = rounddown2(vaddr, pagesizes[psind]); 409 /* Preset the modified bit for dirty superpages. */ 410 if ((flags & PS_ALL_DIRTY) != 0) 411 fs->fault_type |= VM_PROT_WRITE; 412 } 413 } 414 #endif 415 if (pmap_enter(fs->map->pmap, vaddr, m_map, fs->prot, fs->fault_type | 416 PMAP_ENTER_NOSLEEP | (fs->wired ? PMAP_ENTER_WIRED : 0), psind) != 417 KERN_SUCCESS) 418 goto fail_busy; 419 if (fs->m_hold != NULL) { 420 (*fs->m_hold) = m; 421 vm_page_wire(m); 422 } 423 if (psind == 0 && !fs->wired) 424 vm_fault_prefault(fs, vaddr, PFBAK, PFFOR, true); 425 VM_OBJECT_RUNLOCK(fs->first_object); 426 vm_fault_dirty(fs, m); 427 vm_object_unbusy(fs->first_object); 428 vm_map_lookup_done(fs->map, fs->entry); 429 curthread->td_ru.ru_minflt++; 430 return (FAULT_SUCCESS); 431 fail_busy: 432 vm_object_unbusy(fs->first_object); 433 fail: 434 if (!VM_OBJECT_TRYUPGRADE(fs->first_object)) { 435 VM_OBJECT_RUNLOCK(fs->first_object); 436 VM_OBJECT_WLOCK(fs->first_object); 437 } 438 return (FAULT_FAILURE); 439 } 440 441 static void 442 vm_fault_restore_map_lock(struct faultstate *fs) 443 { 444 445 VM_OBJECT_ASSERT_WLOCKED(fs->first_object); 446 MPASS(blockcount_read(&fs->first_object->paging_in_progress) > 0); 447 448 if (!vm_map_trylock_read(fs->map)) { 449 VM_OBJECT_WUNLOCK(fs->first_object); 450 vm_map_lock_read(fs->map); 451 VM_OBJECT_WLOCK(fs->first_object); 452 } 453 fs->lookup_still_valid = true; 454 } 455 456 static void 457 vm_fault_populate_check_page(vm_page_t m) 458 { 459 460 /* 461 * Check each page to ensure that the pager is obeying the 462 * interface: the page must be installed in the object, fully 463 * valid, and exclusively busied. 464 */ 465 MPASS(m != NULL); 466 MPASS(vm_page_all_valid(m)); 467 MPASS(vm_page_xbusied(m)); 468 } 469 470 static void 471 vm_fault_populate_cleanup(vm_object_t object, vm_pindex_t first, 472 vm_pindex_t last) 473 { 474 vm_page_t m; 475 vm_pindex_t pidx; 476 477 VM_OBJECT_ASSERT_WLOCKED(object); 478 MPASS(first <= last); 479 for (pidx = first, m = vm_page_lookup(object, pidx); 480 pidx <= last; pidx++, m = vm_page_next(m)) { 481 vm_fault_populate_check_page(m); 482 vm_page_deactivate(m); 483 vm_page_xunbusy(m); 484 } 485 } 486 487 static enum fault_status 488 vm_fault_populate(struct faultstate *fs) 489 { 490 vm_offset_t vaddr; 491 vm_page_t m; 492 vm_pindex_t map_first, map_last, pager_first, pager_last, pidx; 493 int bdry_idx, i, npages, psind, rv; 494 enum fault_status res; 495 496 MPASS(fs->object == fs->first_object); 497 VM_OBJECT_ASSERT_WLOCKED(fs->first_object); 498 MPASS(blockcount_read(&fs->first_object->paging_in_progress) > 0); 499 MPASS(fs->first_object->backing_object == NULL); 500 MPASS(fs->lookup_still_valid); 501 502 pager_first = OFF_TO_IDX(fs->entry->offset); 503 pager_last = pager_first + atop(fs->entry->end - fs->entry->start) - 1; 504 vm_fault_unlock_map(fs); 505 vm_fault_unlock_vp(fs); 506 507 res = FAULT_SUCCESS; 508 509 /* 510 * Call the pager (driver) populate() method. 511 * 512 * There is no guarantee that the method will be called again 513 * if the current fault is for read, and a future fault is 514 * for write. Report the entry's maximum allowed protection 515 * to the driver. 516 */ 517 rv = vm_pager_populate(fs->first_object, fs->first_pindex, 518 fs->fault_type, fs->entry->max_protection, &pager_first, 519 &pager_last); 520 521 VM_OBJECT_ASSERT_WLOCKED(fs->first_object); 522 if (rv == VM_PAGER_BAD) { 523 /* 524 * VM_PAGER_BAD is the backdoor for a pager to request 525 * normal fault handling. 526 */ 527 vm_fault_restore_map_lock(fs); 528 if (fs->map->timestamp != fs->map_generation) 529 return (FAULT_RESTART); 530 return (FAULT_CONTINUE); 531 } 532 if (rv != VM_PAGER_OK) 533 return (FAULT_FAILURE); /* AKA SIGSEGV */ 534 535 /* Ensure that the driver is obeying the interface. */ 536 MPASS(pager_first <= pager_last); 537 MPASS(fs->first_pindex <= pager_last); 538 MPASS(fs->first_pindex >= pager_first); 539 MPASS(pager_last < fs->first_object->size); 540 541 vm_fault_restore_map_lock(fs); 542 bdry_idx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(fs->entry); 543 if (fs->map->timestamp != fs->map_generation) { 544 if (bdry_idx == 0) { 545 vm_fault_populate_cleanup(fs->first_object, pager_first, 546 pager_last); 547 } else { 548 m = vm_page_lookup(fs->first_object, pager_first); 549 if (m != fs->m) 550 vm_page_xunbusy(m); 551 } 552 return (FAULT_RESTART); 553 } 554 555 /* 556 * The map is unchanged after our last unlock. Process the fault. 557 * 558 * First, the special case of largepage mappings, where 559 * populate only busies the first page in superpage run. 560 */ 561 if (bdry_idx != 0) { 562 KASSERT(PMAP_HAS_LARGEPAGES, 563 ("missing pmap support for large pages")); 564 m = vm_page_lookup(fs->first_object, pager_first); 565 vm_fault_populate_check_page(m); 566 VM_OBJECT_WUNLOCK(fs->first_object); 567 vaddr = fs->entry->start + IDX_TO_OFF(pager_first) - 568 fs->entry->offset; 569 /* assert alignment for entry */ 570 KASSERT((vaddr & (pagesizes[bdry_idx] - 1)) == 0, 571 ("unaligned superpage start %#jx pager_first %#jx offset %#jx vaddr %#jx", 572 (uintmax_t)fs->entry->start, (uintmax_t)pager_first, 573 (uintmax_t)fs->entry->offset, (uintmax_t)vaddr)); 574 KASSERT((VM_PAGE_TO_PHYS(m) & (pagesizes[bdry_idx] - 1)) == 0, 575 ("unaligned superpage m %p %#jx", m, 576 (uintmax_t)VM_PAGE_TO_PHYS(m))); 577 rv = pmap_enter(fs->map->pmap, vaddr, m, fs->prot, 578 fs->fault_type | (fs->wired ? PMAP_ENTER_WIRED : 0) | 579 PMAP_ENTER_LARGEPAGE, bdry_idx); 580 VM_OBJECT_WLOCK(fs->first_object); 581 vm_page_xunbusy(m); 582 if (rv != KERN_SUCCESS) { 583 res = FAULT_FAILURE; 584 goto out; 585 } 586 if ((fs->fault_flags & VM_FAULT_WIRE) != 0) { 587 for (i = 0; i < atop(pagesizes[bdry_idx]); i++) 588 vm_page_wire(m + i); 589 } 590 if (fs->m_hold != NULL) { 591 *fs->m_hold = m + (fs->first_pindex - pager_first); 592 vm_page_wire(*fs->m_hold); 593 } 594 goto out; 595 } 596 597 /* 598 * The range [pager_first, pager_last] that is given to the 599 * pager is only a hint. The pager may populate any range 600 * within the object that includes the requested page index. 601 * In case the pager expanded the range, clip it to fit into 602 * the map entry. 603 */ 604 map_first = OFF_TO_IDX(fs->entry->offset); 605 if (map_first > pager_first) { 606 vm_fault_populate_cleanup(fs->first_object, pager_first, 607 map_first - 1); 608 pager_first = map_first; 609 } 610 map_last = map_first + atop(fs->entry->end - fs->entry->start) - 1; 611 if (map_last < pager_last) { 612 vm_fault_populate_cleanup(fs->first_object, map_last + 1, 613 pager_last); 614 pager_last = map_last; 615 } 616 for (pidx = pager_first, m = vm_page_lookup(fs->first_object, pidx); 617 pidx <= pager_last; 618 pidx += npages, m = vm_page_next(&m[npages - 1])) { 619 vaddr = fs->entry->start + IDX_TO_OFF(pidx) - fs->entry->offset; 620 621 psind = m->psind; 622 if (psind > 0 && ((vaddr & (pagesizes[psind] - 1)) != 0 || 623 pidx + OFF_TO_IDX(pagesizes[psind]) - 1 > pager_last || 624 !pmap_ps_enabled(fs->map->pmap) || fs->wired)) 625 psind = 0; 626 627 npages = atop(pagesizes[psind]); 628 for (i = 0; i < npages; i++) { 629 vm_fault_populate_check_page(&m[i]); 630 vm_fault_dirty(fs, &m[i]); 631 } 632 VM_OBJECT_WUNLOCK(fs->first_object); 633 rv = pmap_enter(fs->map->pmap, vaddr, m, fs->prot, fs->fault_type | 634 (fs->wired ? PMAP_ENTER_WIRED : 0), psind); 635 636 /* 637 * pmap_enter() may fail for a superpage mapping if additional 638 * protection policies prevent the full mapping. 639 * For example, this will happen on amd64 if the entire 640 * address range does not share the same userspace protection 641 * key. Revert to single-page mappings if this happens. 642 */ 643 MPASS(rv == KERN_SUCCESS || 644 (psind > 0 && rv == KERN_PROTECTION_FAILURE)); 645 if (__predict_false(psind > 0 && 646 rv == KERN_PROTECTION_FAILURE)) { 647 MPASS(!fs->wired); 648 for (i = 0; i < npages; i++) { 649 rv = pmap_enter(fs->map->pmap, vaddr + ptoa(i), 650 &m[i], fs->prot, fs->fault_type, 0); 651 MPASS(rv == KERN_SUCCESS); 652 } 653 } 654 655 VM_OBJECT_WLOCK(fs->first_object); 656 for (i = 0; i < npages; i++) { 657 if ((fs->fault_flags & VM_FAULT_WIRE) != 0 && 658 m[i].pindex == fs->first_pindex) 659 vm_page_wire(&m[i]); 660 else 661 vm_page_activate(&m[i]); 662 if (fs->m_hold != NULL && 663 m[i].pindex == fs->first_pindex) { 664 (*fs->m_hold) = &m[i]; 665 vm_page_wire(&m[i]); 666 } 667 vm_page_xunbusy(&m[i]); 668 } 669 } 670 out: 671 curthread->td_ru.ru_majflt++; 672 return (res); 673 } 674 675 static int prot_fault_translation; 676 SYSCTL_INT(_machdep, OID_AUTO, prot_fault_translation, CTLFLAG_RWTUN, 677 &prot_fault_translation, 0, 678 "Control signal to deliver on protection fault"); 679 680 /* compat definition to keep common code for signal translation */ 681 #define UCODE_PAGEFLT 12 682 #ifdef T_PAGEFLT 683 _Static_assert(UCODE_PAGEFLT == T_PAGEFLT, "T_PAGEFLT"); 684 #endif 685 686 /* 687 * vm_fault_trap: 688 * 689 * Handle a page fault occurring at the given address, 690 * requiring the given permissions, in the map specified. 691 * If successful, the page is inserted into the 692 * associated physical map. 693 * 694 * NOTE: the given address should be truncated to the 695 * proper page address. 696 * 697 * KERN_SUCCESS is returned if the page fault is handled; otherwise, 698 * a standard error specifying why the fault is fatal is returned. 699 * 700 * The map in question must be referenced, and remains so. 701 * Caller may hold no locks. 702 */ 703 int 704 vm_fault_trap(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, 705 int fault_flags, int *signo, int *ucode) 706 { 707 int result; 708 709 MPASS(signo == NULL || ucode != NULL); 710 #ifdef KTRACE 711 if (map != kernel_map && KTRPOINT(curthread, KTR_FAULT)) 712 ktrfault(vaddr, fault_type); 713 #endif 714 result = vm_fault(map, trunc_page(vaddr), fault_type, fault_flags, 715 NULL); 716 KASSERT(result == KERN_SUCCESS || result == KERN_FAILURE || 717 result == KERN_INVALID_ADDRESS || 718 result == KERN_RESOURCE_SHORTAGE || 719 result == KERN_PROTECTION_FAILURE || 720 result == KERN_OUT_OF_BOUNDS, 721 ("Unexpected Mach error %d from vm_fault()", result)); 722 #ifdef KTRACE 723 if (map != kernel_map && KTRPOINT(curthread, KTR_FAULTEND)) 724 ktrfaultend(result); 725 #endif 726 if (result != KERN_SUCCESS && signo != NULL) { 727 switch (result) { 728 case KERN_FAILURE: 729 case KERN_INVALID_ADDRESS: 730 *signo = SIGSEGV; 731 *ucode = SEGV_MAPERR; 732 break; 733 case KERN_RESOURCE_SHORTAGE: 734 *signo = SIGBUS; 735 *ucode = BUS_OOMERR; 736 break; 737 case KERN_OUT_OF_BOUNDS: 738 *signo = SIGBUS; 739 *ucode = BUS_OBJERR; 740 break; 741 case KERN_PROTECTION_FAILURE: 742 if (prot_fault_translation == 0) { 743 /* 744 * Autodetect. This check also covers 745 * the images without the ABI-tag ELF 746 * note. 747 */ 748 if (SV_CURPROC_ABI() == SV_ABI_FREEBSD && 749 curproc->p_osrel >= P_OSREL_SIGSEGV) { 750 *signo = SIGSEGV; 751 *ucode = SEGV_ACCERR; 752 } else { 753 *signo = SIGBUS; 754 *ucode = UCODE_PAGEFLT; 755 } 756 } else if (prot_fault_translation == 1) { 757 /* Always compat mode. */ 758 *signo = SIGBUS; 759 *ucode = UCODE_PAGEFLT; 760 } else { 761 /* Always SIGSEGV mode. */ 762 *signo = SIGSEGV; 763 *ucode = SEGV_ACCERR; 764 } 765 break; 766 default: 767 KASSERT(0, ("Unexpected Mach error %d from vm_fault()", 768 result)); 769 break; 770 } 771 } 772 return (result); 773 } 774 775 static bool 776 vm_fault_object_ensure_wlocked(struct faultstate *fs) 777 { 778 if (fs->object == fs->first_object) 779 VM_OBJECT_ASSERT_WLOCKED(fs->object); 780 781 if (!fs->can_read_lock) { 782 VM_OBJECT_ASSERT_WLOCKED(fs->object); 783 return (true); 784 } 785 786 if (VM_OBJECT_WOWNED(fs->object)) 787 return (true); 788 789 if (VM_OBJECT_TRYUPGRADE(fs->object)) 790 return (true); 791 792 return (false); 793 } 794 795 static enum fault_status 796 vm_fault_lock_vnode(struct faultstate *fs, bool objlocked) 797 { 798 struct vnode *vp; 799 int error, locked; 800 801 if (fs->object->type != OBJT_VNODE) 802 return (FAULT_CONTINUE); 803 vp = fs->object->handle; 804 if (vp == fs->vp) { 805 ASSERT_VOP_LOCKED(vp, "saved vnode is not locked"); 806 return (FAULT_CONTINUE); 807 } 808 809 /* 810 * Perform an unlock in case the desired vnode changed while 811 * the map was unlocked during a retry. 812 */ 813 vm_fault_unlock_vp(fs); 814 815 locked = VOP_ISLOCKED(vp); 816 if (locked != LK_EXCLUSIVE) 817 locked = LK_SHARED; 818 819 /* 820 * We must not sleep acquiring the vnode lock while we have 821 * the page exclusive busied or the object's 822 * paging-in-progress count incremented. Otherwise, we could 823 * deadlock. 824 */ 825 error = vget(vp, locked | LK_CANRECURSE | LK_NOWAIT); 826 if (error == 0) { 827 fs->vp = vp; 828 return (FAULT_CONTINUE); 829 } 830 831 vhold(vp); 832 if (objlocked) 833 vm_fault_unlock_and_deallocate(fs); 834 else 835 vm_fault_deallocate(fs); 836 error = vget(vp, locked | LK_RETRY | LK_CANRECURSE); 837 vdrop(vp); 838 fs->vp = vp; 839 KASSERT(error == 0, ("vm_fault: vget failed %d", error)); 840 return (FAULT_RESTART); 841 } 842 843 /* 844 * Calculate the desired readahead. Handle drop-behind. 845 * 846 * Returns the number of readahead blocks to pass to the pager. 847 */ 848 static int 849 vm_fault_readahead(struct faultstate *fs) 850 { 851 int era, nera; 852 u_char behavior; 853 854 KASSERT(fs->lookup_still_valid, ("map unlocked")); 855 era = fs->entry->read_ahead; 856 behavior = vm_map_entry_behavior(fs->entry); 857 if (behavior == MAP_ENTRY_BEHAV_RANDOM) { 858 nera = 0; 859 } else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) { 860 nera = VM_FAULT_READ_AHEAD_MAX; 861 if (fs->vaddr == fs->entry->next_read) 862 vm_fault_dontneed(fs, fs->vaddr, nera); 863 } else if (fs->vaddr == fs->entry->next_read) { 864 /* 865 * This is a sequential fault. Arithmetically 866 * increase the requested number of pages in 867 * the read-ahead window. The requested 868 * number of pages is "# of sequential faults 869 * x (read ahead min + 1) + read ahead min" 870 */ 871 nera = VM_FAULT_READ_AHEAD_MIN; 872 if (era > 0) { 873 nera += era + 1; 874 if (nera > VM_FAULT_READ_AHEAD_MAX) 875 nera = VM_FAULT_READ_AHEAD_MAX; 876 } 877 if (era == VM_FAULT_READ_AHEAD_MAX) 878 vm_fault_dontneed(fs, fs->vaddr, nera); 879 } else { 880 /* 881 * This is a non-sequential fault. 882 */ 883 nera = 0; 884 } 885 if (era != nera) { 886 /* 887 * A read lock on the map suffices to update 888 * the read ahead count safely. 889 */ 890 fs->entry->read_ahead = nera; 891 } 892 893 return (nera); 894 } 895 896 static int 897 vm_fault_lookup(struct faultstate *fs) 898 { 899 int result; 900 901 KASSERT(!fs->lookup_still_valid, 902 ("vm_fault_lookup: Map already locked.")); 903 result = vm_map_lookup(&fs->map, fs->vaddr, fs->fault_type | 904 VM_PROT_FAULT_LOOKUP, &fs->entry, &fs->first_object, 905 &fs->first_pindex, &fs->prot, &fs->wired); 906 if (result != KERN_SUCCESS) { 907 vm_fault_unlock_vp(fs); 908 return (result); 909 } 910 911 fs->map_generation = fs->map->timestamp; 912 913 if (fs->entry->eflags & MAP_ENTRY_NOFAULT) { 914 panic("%s: fault on nofault entry, addr: %#lx", 915 __func__, (u_long)fs->vaddr); 916 } 917 918 if (fs->entry->eflags & MAP_ENTRY_IN_TRANSITION && 919 fs->entry->wiring_thread != curthread) { 920 vm_map_unlock_read(fs->map); 921 vm_map_lock(fs->map); 922 if (vm_map_lookup_entry(fs->map, fs->vaddr, &fs->entry) && 923 (fs->entry->eflags & MAP_ENTRY_IN_TRANSITION)) { 924 vm_fault_unlock_vp(fs); 925 fs->entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 926 vm_map_unlock_and_wait(fs->map, 0); 927 } else 928 vm_map_unlock(fs->map); 929 return (KERN_RESOURCE_SHORTAGE); 930 } 931 932 MPASS((fs->entry->eflags & MAP_ENTRY_GUARD) == 0); 933 934 if (fs->wired) 935 fs->fault_type = fs->prot | (fs->fault_type & VM_PROT_COPY); 936 else 937 KASSERT((fs->fault_flags & VM_FAULT_WIRE) == 0, 938 ("!fs->wired && VM_FAULT_WIRE")); 939 fs->lookup_still_valid = true; 940 941 return (KERN_SUCCESS); 942 } 943 944 static int 945 vm_fault_relookup(struct faultstate *fs) 946 { 947 vm_object_t retry_object; 948 vm_pindex_t retry_pindex; 949 vm_prot_t retry_prot; 950 int result; 951 952 if (!vm_map_trylock_read(fs->map)) 953 return (KERN_RESTART); 954 955 fs->lookup_still_valid = true; 956 if (fs->map->timestamp == fs->map_generation) 957 return (KERN_SUCCESS); 958 959 result = vm_map_lookup_locked(&fs->map, fs->vaddr, fs->fault_type, 960 &fs->entry, &retry_object, &retry_pindex, &retry_prot, 961 &fs->wired); 962 if (result != KERN_SUCCESS) { 963 /* 964 * If retry of map lookup would have blocked then 965 * retry fault from start. 966 */ 967 if (result == KERN_FAILURE) 968 return (KERN_RESTART); 969 return (result); 970 } 971 if (retry_object != fs->first_object || 972 retry_pindex != fs->first_pindex) 973 return (KERN_RESTART); 974 975 /* 976 * Check whether the protection has changed or the object has 977 * been copied while we left the map unlocked. Changing from 978 * read to write permission is OK - we leave the page 979 * write-protected, and catch the write fault. Changing from 980 * write to read permission means that we can't mark the page 981 * write-enabled after all. 982 */ 983 fs->prot &= retry_prot; 984 fs->fault_type &= retry_prot; 985 if (fs->prot == 0) 986 return (KERN_RESTART); 987 988 /* Reassert because wired may have changed. */ 989 KASSERT(fs->wired || (fs->fault_flags & VM_FAULT_WIRE) == 0, 990 ("!wired && VM_FAULT_WIRE")); 991 992 return (KERN_SUCCESS); 993 } 994 995 static void 996 vm_fault_cow(struct faultstate *fs) 997 { 998 bool is_first_object_locked; 999 1000 KASSERT(fs->object != fs->first_object, 1001 ("source and target COW objects are identical")); 1002 1003 /* 1004 * This allows pages to be virtually copied from a backing_object 1005 * into the first_object, where the backing object has no other 1006 * refs to it, and cannot gain any more refs. Instead of a bcopy, 1007 * we just move the page from the backing object to the first 1008 * object. Note that we must mark the page dirty in the first 1009 * object so that it will go out to swap when needed. 1010 */ 1011 is_first_object_locked = false; 1012 if ( 1013 /* 1014 * Only one shadow object and no other refs. 1015 */ 1016 fs->object->shadow_count == 1 && fs->object->ref_count == 1 && 1017 /* 1018 * No other ways to look the object up 1019 */ 1020 fs->object->handle == NULL && (fs->object->flags & OBJ_ANON) != 0 && 1021 /* 1022 * We don't chase down the shadow chain and we can acquire locks. 1023 */ 1024 (is_first_object_locked = VM_OBJECT_TRYWLOCK(fs->first_object)) && 1025 fs->object == fs->first_object->backing_object && 1026 VM_OBJECT_TRYWLOCK(fs->object)) { 1027 /* 1028 * Remove but keep xbusy for replace. fs->m is moved into 1029 * fs->first_object and left busy while fs->first_m is 1030 * conditionally freed. 1031 */ 1032 vm_page_remove_xbusy(fs->m); 1033 vm_page_replace(fs->m, fs->first_object, fs->first_pindex, 1034 fs->first_m); 1035 vm_page_dirty(fs->m); 1036 #if VM_NRESERVLEVEL > 0 1037 /* 1038 * Rename the reservation. 1039 */ 1040 vm_reserv_rename(fs->m, fs->first_object, fs->object, 1041 OFF_TO_IDX(fs->first_object->backing_object_offset)); 1042 #endif 1043 VM_OBJECT_WUNLOCK(fs->object); 1044 VM_OBJECT_WUNLOCK(fs->first_object); 1045 fs->first_m = fs->m; 1046 fs->m = NULL; 1047 VM_CNT_INC(v_cow_optim); 1048 } else { 1049 if (is_first_object_locked) 1050 VM_OBJECT_WUNLOCK(fs->first_object); 1051 /* 1052 * Oh, well, lets copy it. 1053 */ 1054 pmap_copy_page(fs->m, fs->first_m); 1055 vm_page_valid(fs->first_m); 1056 if (fs->wired && (fs->fault_flags & VM_FAULT_WIRE) == 0) { 1057 vm_page_wire(fs->first_m); 1058 vm_page_unwire(fs->m, PQ_INACTIVE); 1059 } 1060 /* 1061 * Save the cow page to be released after 1062 * pmap_enter is complete. 1063 */ 1064 fs->m_cow = fs->m; 1065 fs->m = NULL; 1066 1067 /* 1068 * Typically, the shadow object is either private to this 1069 * address space (OBJ_ONEMAPPING) or its pages are read only. 1070 * In the highly unusual case where the pages of a shadow object 1071 * are read/write shared between this and other address spaces, 1072 * we need to ensure that any pmap-level mappings to the 1073 * original, copy-on-write page from the backing object are 1074 * removed from those other address spaces. 1075 * 1076 * The flag check is racy, but this is tolerable: if 1077 * OBJ_ONEMAPPING is cleared after the check, the busy state 1078 * ensures that new mappings of m_cow can't be created. 1079 * pmap_enter() will replace an existing mapping in the current 1080 * address space. If OBJ_ONEMAPPING is set after the check, 1081 * removing mappings will at worse trigger some unnecessary page 1082 * faults. 1083 */ 1084 vm_page_assert_xbusied(fs->m_cow); 1085 if ((fs->first_object->flags & OBJ_ONEMAPPING) == 0) 1086 pmap_remove_all(fs->m_cow); 1087 } 1088 1089 vm_object_pip_wakeup(fs->object); 1090 1091 /* 1092 * Only use the new page below... 1093 */ 1094 fs->object = fs->first_object; 1095 fs->pindex = fs->first_pindex; 1096 fs->m = fs->first_m; 1097 VM_CNT_INC(v_cow_faults); 1098 curthread->td_cow++; 1099 } 1100 1101 static enum fault_next_status 1102 vm_fault_next(struct faultstate *fs) 1103 { 1104 vm_object_t next_object; 1105 1106 if (fs->object == fs->first_object || !fs->can_read_lock) 1107 VM_OBJECT_ASSERT_WLOCKED(fs->object); 1108 else 1109 VM_OBJECT_ASSERT_LOCKED(fs->object); 1110 1111 /* 1112 * The requested page does not exist at this object/ 1113 * offset. Remove the invalid page from the object, 1114 * waking up anyone waiting for it, and continue on to 1115 * the next object. However, if this is the top-level 1116 * object, we must leave the busy page in place to 1117 * prevent another process from rushing past us, and 1118 * inserting the page in that object at the same time 1119 * that we are. 1120 */ 1121 if (fs->object == fs->first_object) { 1122 fs->first_m = fs->m; 1123 fs->m = NULL; 1124 } else if (fs->m != NULL) { 1125 if (!vm_fault_object_ensure_wlocked(fs)) { 1126 fs->can_read_lock = false; 1127 vm_fault_unlock_and_deallocate(fs); 1128 return (FAULT_NEXT_RESTART); 1129 } 1130 vm_fault_page_free(&fs->m); 1131 } 1132 1133 /* 1134 * Move on to the next object. Lock the next object before 1135 * unlocking the current one. 1136 */ 1137 next_object = fs->object->backing_object; 1138 if (next_object == NULL) 1139 return (FAULT_NEXT_NOOBJ); 1140 MPASS(fs->first_m != NULL); 1141 KASSERT(fs->object != next_object, ("object loop %p", next_object)); 1142 if (fs->can_read_lock) 1143 VM_OBJECT_RLOCK(next_object); 1144 else 1145 VM_OBJECT_WLOCK(next_object); 1146 vm_object_pip_add(next_object, 1); 1147 if (fs->object != fs->first_object) 1148 vm_object_pip_wakeup(fs->object); 1149 fs->pindex += OFF_TO_IDX(fs->object->backing_object_offset); 1150 VM_OBJECT_UNLOCK(fs->object); 1151 fs->object = next_object; 1152 1153 return (FAULT_NEXT_GOTOBJ); 1154 } 1155 1156 static void 1157 vm_fault_zerofill(struct faultstate *fs) 1158 { 1159 1160 /* 1161 * If there's no object left, fill the page in the top 1162 * object with zeros. 1163 */ 1164 if (fs->object != fs->first_object) { 1165 vm_object_pip_wakeup(fs->object); 1166 fs->object = fs->first_object; 1167 fs->pindex = fs->first_pindex; 1168 } 1169 MPASS(fs->first_m != NULL); 1170 MPASS(fs->m == NULL); 1171 fs->m = fs->first_m; 1172 fs->first_m = NULL; 1173 1174 /* 1175 * Zero the page if necessary and mark it valid. 1176 */ 1177 if ((fs->m->flags & PG_ZERO) == 0) { 1178 pmap_zero_page(fs->m); 1179 } else { 1180 VM_CNT_INC(v_ozfod); 1181 } 1182 VM_CNT_INC(v_zfod); 1183 vm_page_valid(fs->m); 1184 } 1185 1186 /* 1187 * Initiate page fault after timeout. Returns true if caller should 1188 * do vm_waitpfault() after the call. 1189 */ 1190 static bool 1191 vm_fault_allocate_oom(struct faultstate *fs) 1192 { 1193 struct timeval now; 1194 1195 vm_fault_unlock_and_deallocate(fs); 1196 if (vm_pfault_oom_attempts < 0) 1197 return (true); 1198 if (!fs->oom_started) { 1199 fs->oom_started = true; 1200 getmicrotime(&fs->oom_start_time); 1201 return (true); 1202 } 1203 1204 getmicrotime(&now); 1205 timevalsub(&now, &fs->oom_start_time); 1206 if (now.tv_sec < vm_pfault_oom_attempts * vm_pfault_oom_wait) 1207 return (true); 1208 1209 if (bootverbose) 1210 printf( 1211 "proc %d (%s) failed to alloc page on fault, starting OOM\n", 1212 curproc->p_pid, curproc->p_comm); 1213 vm_pageout_oom(VM_OOM_MEM_PF); 1214 fs->oom_started = false; 1215 return (false); 1216 } 1217 1218 /* 1219 * Allocate a page directly or via the object populate method. 1220 */ 1221 static enum fault_status 1222 vm_fault_allocate(struct faultstate *fs) 1223 { 1224 struct domainset *dset; 1225 enum fault_status res; 1226 1227 if ((fs->object->flags & OBJ_SIZEVNLOCK) != 0) { 1228 res = vm_fault_lock_vnode(fs, true); 1229 MPASS(res == FAULT_CONTINUE || res == FAULT_RESTART); 1230 if (res == FAULT_RESTART) 1231 return (res); 1232 } 1233 1234 if (fs->pindex >= fs->object->size) { 1235 vm_fault_unlock_and_deallocate(fs); 1236 return (FAULT_OUT_OF_BOUNDS); 1237 } 1238 1239 if (fs->object == fs->first_object && 1240 (fs->first_object->flags & OBJ_POPULATE) != 0 && 1241 fs->first_object->shadow_count == 0) { 1242 res = vm_fault_populate(fs); 1243 switch (res) { 1244 case FAULT_SUCCESS: 1245 case FAULT_FAILURE: 1246 case FAULT_RESTART: 1247 vm_fault_unlock_and_deallocate(fs); 1248 return (res); 1249 case FAULT_CONTINUE: 1250 /* 1251 * Pager's populate() method 1252 * returned VM_PAGER_BAD. 1253 */ 1254 break; 1255 default: 1256 panic("inconsistent return codes"); 1257 } 1258 } 1259 1260 /* 1261 * Allocate a new page for this object/offset pair. 1262 * 1263 * If the process has a fatal signal pending, prioritize the allocation 1264 * with the expectation that the process will exit shortly and free some 1265 * pages. In particular, the signal may have been posted by the page 1266 * daemon in an attempt to resolve an out-of-memory condition. 1267 * 1268 * The unlocked read of the p_flag is harmless. At worst, the P_KILLED 1269 * might be not observed here, and allocation fails, causing a restart 1270 * and new reading of the p_flag. 1271 */ 1272 dset = fs->object->domain.dr_policy; 1273 if (dset == NULL) 1274 dset = curthread->td_domain.dr_policy; 1275 if (!vm_page_count_severe_set(&dset->ds_mask) || P_KILLED(curproc)) { 1276 #if VM_NRESERVLEVEL > 0 1277 vm_object_color(fs->object, atop(fs->vaddr) - fs->pindex); 1278 #endif 1279 if (!vm_pager_can_alloc_page(fs->object, fs->pindex)) { 1280 vm_fault_unlock_and_deallocate(fs); 1281 return (FAULT_FAILURE); 1282 } 1283 fs->m = vm_page_alloc(fs->object, fs->pindex, 1284 P_KILLED(curproc) ? VM_ALLOC_SYSTEM : 0); 1285 } 1286 if (fs->m == NULL) { 1287 if (vm_fault_allocate_oom(fs)) 1288 vm_waitpfault(dset, vm_pfault_oom_wait * hz); 1289 return (FAULT_RESTART); 1290 } 1291 fs->oom_started = false; 1292 1293 return (FAULT_CONTINUE); 1294 } 1295 1296 /* 1297 * Call the pager to retrieve the page if there is a chance 1298 * that the pager has it, and potentially retrieve additional 1299 * pages at the same time. 1300 */ 1301 static enum fault_status 1302 vm_fault_getpages(struct faultstate *fs, int *behindp, int *aheadp) 1303 { 1304 vm_offset_t e_end, e_start; 1305 int ahead, behind, cluster_offset, rv; 1306 enum fault_status status; 1307 u_char behavior; 1308 1309 /* 1310 * Prepare for unlocking the map. Save the map 1311 * entry's start and end addresses, which are used to 1312 * optimize the size of the pager operation below. 1313 * Even if the map entry's addresses change after 1314 * unlocking the map, using the saved addresses is 1315 * safe. 1316 */ 1317 e_start = fs->entry->start; 1318 e_end = fs->entry->end; 1319 behavior = vm_map_entry_behavior(fs->entry); 1320 1321 /* 1322 * If the pager for the current object might have 1323 * the page, then determine the number of additional 1324 * pages to read and potentially reprioritize 1325 * previously read pages for earlier reclamation. 1326 * These operations should only be performed once per 1327 * page fault. Even if the current pager doesn't 1328 * have the page, the number of additional pages to 1329 * read will apply to subsequent objects in the 1330 * shadow chain. 1331 */ 1332 if (fs->nera == -1 && !P_KILLED(curproc)) 1333 fs->nera = vm_fault_readahead(fs); 1334 1335 /* 1336 * Release the map lock before locking the vnode or 1337 * sleeping in the pager. (If the current object has 1338 * a shadow, then an earlier iteration of this loop 1339 * may have already unlocked the map.) 1340 */ 1341 vm_fault_unlock_map(fs); 1342 1343 status = vm_fault_lock_vnode(fs, false); 1344 MPASS(status == FAULT_CONTINUE || status == FAULT_RESTART); 1345 if (status == FAULT_RESTART) 1346 return (status); 1347 KASSERT(fs->vp == NULL || !fs->map->system_map, 1348 ("vm_fault: vnode-backed object mapped by system map")); 1349 1350 /* 1351 * Page in the requested page and hint the pager, 1352 * that it may bring up surrounding pages. 1353 */ 1354 if (fs->nera == -1 || behavior == MAP_ENTRY_BEHAV_RANDOM || 1355 P_KILLED(curproc)) { 1356 behind = 0; 1357 ahead = 0; 1358 } else { 1359 /* Is this a sequential fault? */ 1360 if (fs->nera > 0) { 1361 behind = 0; 1362 ahead = fs->nera; 1363 } else { 1364 /* 1365 * Request a cluster of pages that is 1366 * aligned to a VM_FAULT_READ_DEFAULT 1367 * page offset boundary within the 1368 * object. Alignment to a page offset 1369 * boundary is more likely to coincide 1370 * with the underlying file system 1371 * block than alignment to a virtual 1372 * address boundary. 1373 */ 1374 cluster_offset = fs->pindex % VM_FAULT_READ_DEFAULT; 1375 behind = ulmin(cluster_offset, 1376 atop(fs->vaddr - e_start)); 1377 ahead = VM_FAULT_READ_DEFAULT - 1 - cluster_offset; 1378 } 1379 ahead = ulmin(ahead, atop(e_end - fs->vaddr) - 1); 1380 } 1381 *behindp = behind; 1382 *aheadp = ahead; 1383 rv = vm_pager_get_pages(fs->object, &fs->m, 1, behindp, aheadp); 1384 if (rv == VM_PAGER_OK) 1385 return (FAULT_HARD); 1386 if (rv == VM_PAGER_ERROR) 1387 printf("vm_fault: pager read error, pid %d (%s)\n", 1388 curproc->p_pid, curproc->p_comm); 1389 /* 1390 * If an I/O error occurred or the requested page was 1391 * outside the range of the pager, clean up and return 1392 * an error. 1393 */ 1394 if (rv == VM_PAGER_ERROR || rv == VM_PAGER_BAD) { 1395 VM_OBJECT_WLOCK(fs->object); 1396 vm_fault_page_free(&fs->m); 1397 vm_fault_unlock_and_deallocate(fs); 1398 return (FAULT_OUT_OF_BOUNDS); 1399 } 1400 KASSERT(rv == VM_PAGER_FAIL, 1401 ("%s: unexpected pager error %d", __func__, rv)); 1402 return (FAULT_CONTINUE); 1403 } 1404 1405 /* 1406 * Wait/Retry if the page is busy. We have to do this if the page is 1407 * either exclusive or shared busy because the vm_pager may be using 1408 * read busy for pageouts (and even pageins if it is the vnode pager), 1409 * and we could end up trying to pagein and pageout the same page 1410 * simultaneously. 1411 * 1412 * We can theoretically allow the busy case on a read fault if the page 1413 * is marked valid, but since such pages are typically already pmap'd, 1414 * putting that special case in might be more effort then it is worth. 1415 * We cannot under any circumstances mess around with a shared busied 1416 * page except, perhaps, to pmap it. 1417 */ 1418 static void 1419 vm_fault_busy_sleep(struct faultstate *fs) 1420 { 1421 /* 1422 * Reference the page before unlocking and 1423 * sleeping so that the page daemon is less 1424 * likely to reclaim it. 1425 */ 1426 vm_page_aflag_set(fs->m, PGA_REFERENCED); 1427 if (fs->object != fs->first_object) { 1428 vm_fault_page_release(&fs->first_m); 1429 vm_object_pip_wakeup(fs->first_object); 1430 } 1431 vm_object_pip_wakeup(fs->object); 1432 vm_fault_unlock_map(fs); 1433 if (fs->m != vm_page_lookup(fs->object, fs->pindex) || 1434 !vm_page_busy_sleep(fs->m, "vmpfw", 0)) 1435 VM_OBJECT_UNLOCK(fs->object); 1436 VM_CNT_INC(v_intrans); 1437 vm_object_deallocate(fs->first_object); 1438 } 1439 1440 /* 1441 * Handle page lookup, populate, allocate, page-in for the current 1442 * object. 1443 * 1444 * The object is locked on entry and will remain locked with a return 1445 * code of FAULT_CONTINUE so that fault may follow the shadow chain. 1446 * Otherwise, the object will be unlocked upon return. 1447 */ 1448 static enum fault_status 1449 vm_fault_object(struct faultstate *fs, int *behindp, int *aheadp) 1450 { 1451 enum fault_status res; 1452 bool dead; 1453 1454 if (fs->object == fs->first_object || !fs->can_read_lock) 1455 VM_OBJECT_ASSERT_WLOCKED(fs->object); 1456 else 1457 VM_OBJECT_ASSERT_LOCKED(fs->object); 1458 1459 /* 1460 * If the object is marked for imminent termination, we retry 1461 * here, since the collapse pass has raced with us. Otherwise, 1462 * if we see terminally dead object, return fail. 1463 */ 1464 if ((fs->object->flags & OBJ_DEAD) != 0) { 1465 dead = fs->object->type == OBJT_DEAD; 1466 vm_fault_unlock_and_deallocate(fs); 1467 if (dead) 1468 return (FAULT_PROTECTION_FAILURE); 1469 pause("vmf_de", 1); 1470 return (FAULT_RESTART); 1471 } 1472 1473 /* 1474 * See if the page is resident. 1475 */ 1476 fs->m = vm_page_lookup(fs->object, fs->pindex); 1477 if (fs->m != NULL) { 1478 if (!vm_page_tryxbusy(fs->m)) { 1479 vm_fault_busy_sleep(fs); 1480 return (FAULT_RESTART); 1481 } 1482 1483 /* 1484 * The page is marked busy for other processes and the 1485 * pagedaemon. If it is still completely valid we are 1486 * done. 1487 */ 1488 if (vm_page_all_valid(fs->m)) { 1489 VM_OBJECT_UNLOCK(fs->object); 1490 return (FAULT_SOFT); 1491 } 1492 } 1493 1494 /* 1495 * Page is not resident. If the pager might contain the page 1496 * or this is the beginning of the search, allocate a new 1497 * page. 1498 */ 1499 if (fs->m == NULL && (vm_fault_object_needs_getpages(fs->object) || 1500 fs->object == fs->first_object)) { 1501 if (!vm_fault_object_ensure_wlocked(fs)) { 1502 fs->can_read_lock = false; 1503 vm_fault_unlock_and_deallocate(fs); 1504 return (FAULT_RESTART); 1505 } 1506 res = vm_fault_allocate(fs); 1507 if (res != FAULT_CONTINUE) 1508 return (res); 1509 } 1510 1511 /* 1512 * Check to see if the pager can possibly satisfy this fault. 1513 * If not, skip to the next object without dropping the lock to 1514 * preserve atomicity of shadow faults. 1515 */ 1516 if (vm_fault_object_needs_getpages(fs->object)) { 1517 /* 1518 * At this point, we have either allocated a new page 1519 * or found an existing page that is only partially 1520 * valid. 1521 * 1522 * We hold a reference on the current object and the 1523 * page is exclusive busied. The exclusive busy 1524 * prevents simultaneous faults and collapses while 1525 * the object lock is dropped. 1526 */ 1527 VM_OBJECT_UNLOCK(fs->object); 1528 res = vm_fault_getpages(fs, behindp, aheadp); 1529 if (res == FAULT_CONTINUE) 1530 VM_OBJECT_WLOCK(fs->object); 1531 } else { 1532 res = FAULT_CONTINUE; 1533 } 1534 return (res); 1535 } 1536 1537 int 1538 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, 1539 int fault_flags, vm_page_t *m_hold) 1540 { 1541 struct faultstate fs; 1542 int ahead, behind, faultcount, rv; 1543 enum fault_status res; 1544 enum fault_next_status res_next; 1545 bool hardfault; 1546 1547 VM_CNT_INC(v_vm_faults); 1548 1549 if ((curthread->td_pflags & TDP_NOFAULTING) != 0) 1550 return (KERN_PROTECTION_FAILURE); 1551 1552 fs.vp = NULL; 1553 fs.vaddr = vaddr; 1554 fs.m_hold = m_hold; 1555 fs.fault_flags = fault_flags; 1556 fs.map = map; 1557 fs.lookup_still_valid = false; 1558 fs.oom_started = false; 1559 fs.nera = -1; 1560 fs.can_read_lock = true; 1561 faultcount = 0; 1562 hardfault = false; 1563 1564 RetryFault: 1565 fs.fault_type = fault_type; 1566 1567 /* 1568 * Find the backing store object and offset into it to begin the 1569 * search. 1570 */ 1571 rv = vm_fault_lookup(&fs); 1572 if (rv != KERN_SUCCESS) { 1573 if (rv == KERN_RESOURCE_SHORTAGE) 1574 goto RetryFault; 1575 return (rv); 1576 } 1577 1578 /* 1579 * Try to avoid lock contention on the top-level object through 1580 * special-case handling of some types of page faults, specifically, 1581 * those that are mapping an existing page from the top-level object. 1582 * Under this condition, a read lock on the object suffices, allowing 1583 * multiple page faults of a similar type to run in parallel. 1584 */ 1585 if (fs.vp == NULL /* avoid locked vnode leak */ && 1586 (fs.entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) == 0 && 1587 (fs.fault_flags & (VM_FAULT_WIRE | VM_FAULT_DIRTY)) == 0) { 1588 res = vm_fault_soft_fast(&fs); 1589 if (res == FAULT_SUCCESS) { 1590 VM_OBJECT_ASSERT_UNLOCKED(fs.first_object); 1591 return (KERN_SUCCESS); 1592 } 1593 VM_OBJECT_ASSERT_WLOCKED(fs.first_object); 1594 } else { 1595 VM_OBJECT_WLOCK(fs.first_object); 1596 } 1597 1598 /* 1599 * Make a reference to this object to prevent its disposal while we 1600 * are messing with it. Once we have the reference, the map is free 1601 * to be diddled. Since objects reference their shadows (and copies), 1602 * they will stay around as well. 1603 * 1604 * Bump the paging-in-progress count to prevent size changes (e.g. 1605 * truncation operations) during I/O. 1606 */ 1607 vm_object_reference_locked(fs.first_object); 1608 vm_object_pip_add(fs.first_object, 1); 1609 1610 fs.m_cow = fs.m = fs.first_m = NULL; 1611 1612 /* 1613 * Search for the page at object/offset. 1614 */ 1615 fs.object = fs.first_object; 1616 fs.pindex = fs.first_pindex; 1617 1618 if ((fs.entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) != 0) { 1619 res = vm_fault_allocate(&fs); 1620 switch (res) { 1621 case FAULT_RESTART: 1622 goto RetryFault; 1623 case FAULT_SUCCESS: 1624 return (KERN_SUCCESS); 1625 case FAULT_FAILURE: 1626 return (KERN_FAILURE); 1627 case FAULT_OUT_OF_BOUNDS: 1628 return (KERN_OUT_OF_BOUNDS); 1629 case FAULT_CONTINUE: 1630 break; 1631 default: 1632 panic("vm_fault: Unhandled status %d", res); 1633 } 1634 } 1635 1636 while (TRUE) { 1637 KASSERT(fs.m == NULL, 1638 ("page still set %p at loop start", fs.m)); 1639 1640 res = vm_fault_object(&fs, &behind, &ahead); 1641 switch (res) { 1642 case FAULT_SOFT: 1643 goto found; 1644 case FAULT_HARD: 1645 faultcount = behind + 1 + ahead; 1646 hardfault = true; 1647 goto found; 1648 case FAULT_RESTART: 1649 goto RetryFault; 1650 case FAULT_SUCCESS: 1651 return (KERN_SUCCESS); 1652 case FAULT_FAILURE: 1653 return (KERN_FAILURE); 1654 case FAULT_OUT_OF_BOUNDS: 1655 return (KERN_OUT_OF_BOUNDS); 1656 case FAULT_PROTECTION_FAILURE: 1657 return (KERN_PROTECTION_FAILURE); 1658 case FAULT_CONTINUE: 1659 break; 1660 default: 1661 panic("vm_fault: Unhandled status %d", res); 1662 } 1663 1664 /* 1665 * The page was not found in the current object. Try to 1666 * traverse into a backing object or zero fill if none is 1667 * found. 1668 */ 1669 res_next = vm_fault_next(&fs); 1670 if (res_next == FAULT_NEXT_RESTART) 1671 goto RetryFault; 1672 else if (res_next == FAULT_NEXT_GOTOBJ) 1673 continue; 1674 MPASS(res_next == FAULT_NEXT_NOOBJ); 1675 if ((fs.fault_flags & VM_FAULT_NOFILL) != 0) { 1676 if (fs.first_object == fs.object) 1677 vm_fault_page_free(&fs.first_m); 1678 vm_fault_unlock_and_deallocate(&fs); 1679 return (KERN_OUT_OF_BOUNDS); 1680 } 1681 VM_OBJECT_UNLOCK(fs.object); 1682 vm_fault_zerofill(&fs); 1683 /* Don't try to prefault neighboring pages. */ 1684 faultcount = 1; 1685 break; 1686 } 1687 1688 found: 1689 /* 1690 * A valid page has been found and exclusively busied. The 1691 * object lock must no longer be held. 1692 */ 1693 vm_page_assert_xbusied(fs.m); 1694 VM_OBJECT_ASSERT_UNLOCKED(fs.object); 1695 1696 /* 1697 * If the page is being written, but isn't already owned by the 1698 * top-level object, we have to copy it into a new page owned by the 1699 * top-level object. 1700 */ 1701 if (fs.object != fs.first_object) { 1702 /* 1703 * We only really need to copy if we want to write it. 1704 */ 1705 if ((fs.fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) { 1706 vm_fault_cow(&fs); 1707 /* 1708 * We only try to prefault read-only mappings to the 1709 * neighboring pages when this copy-on-write fault is 1710 * a hard fault. In other cases, trying to prefault 1711 * is typically wasted effort. 1712 */ 1713 if (faultcount == 0) 1714 faultcount = 1; 1715 1716 } else { 1717 fs.prot &= ~VM_PROT_WRITE; 1718 } 1719 } 1720 1721 /* 1722 * We must verify that the maps have not changed since our last 1723 * lookup. 1724 */ 1725 if (!fs.lookup_still_valid) { 1726 rv = vm_fault_relookup(&fs); 1727 if (rv != KERN_SUCCESS) { 1728 vm_fault_deallocate(&fs); 1729 if (rv == KERN_RESTART) 1730 goto RetryFault; 1731 return (rv); 1732 } 1733 } 1734 VM_OBJECT_ASSERT_UNLOCKED(fs.object); 1735 1736 /* 1737 * If the page was filled by a pager, save the virtual address that 1738 * should be faulted on next under a sequential access pattern to the 1739 * map entry. A read lock on the map suffices to update this address 1740 * safely. 1741 */ 1742 if (hardfault) 1743 fs.entry->next_read = vaddr + ptoa(ahead) + PAGE_SIZE; 1744 1745 /* 1746 * Page must be completely valid or it is not fit to 1747 * map into user space. vm_pager_get_pages() ensures this. 1748 */ 1749 vm_page_assert_xbusied(fs.m); 1750 KASSERT(vm_page_all_valid(fs.m), 1751 ("vm_fault: page %p partially invalid", fs.m)); 1752 1753 vm_fault_dirty(&fs, fs.m); 1754 1755 /* 1756 * Put this page into the physical map. We had to do the unlock above 1757 * because pmap_enter() may sleep. We don't put the page 1758 * back on the active queue until later so that the pageout daemon 1759 * won't find it (yet). 1760 */ 1761 pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot, 1762 fs.fault_type | (fs.wired ? PMAP_ENTER_WIRED : 0), 0); 1763 if (faultcount != 1 && (fs.fault_flags & VM_FAULT_WIRE) == 0 && 1764 fs.wired == 0) 1765 vm_fault_prefault(&fs, vaddr, 1766 faultcount > 0 ? behind : PFBAK, 1767 faultcount > 0 ? ahead : PFFOR, false); 1768 1769 /* 1770 * If the page is not wired down, then put it where the pageout daemon 1771 * can find it. 1772 */ 1773 if ((fs.fault_flags & VM_FAULT_WIRE) != 0) 1774 vm_page_wire(fs.m); 1775 else 1776 vm_page_activate(fs.m); 1777 if (fs.m_hold != NULL) { 1778 (*fs.m_hold) = fs.m; 1779 vm_page_wire(fs.m); 1780 } 1781 vm_page_xunbusy(fs.m); 1782 fs.m = NULL; 1783 1784 /* 1785 * Unlock everything, and return 1786 */ 1787 vm_fault_deallocate(&fs); 1788 if (hardfault) { 1789 VM_CNT_INC(v_io_faults); 1790 curthread->td_ru.ru_majflt++; 1791 #ifdef RACCT 1792 if (racct_enable && fs.object->type == OBJT_VNODE) { 1793 PROC_LOCK(curproc); 1794 if ((fs.fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) { 1795 racct_add_force(curproc, RACCT_WRITEBPS, 1796 PAGE_SIZE + behind * PAGE_SIZE); 1797 racct_add_force(curproc, RACCT_WRITEIOPS, 1); 1798 } else { 1799 racct_add_force(curproc, RACCT_READBPS, 1800 PAGE_SIZE + ahead * PAGE_SIZE); 1801 racct_add_force(curproc, RACCT_READIOPS, 1); 1802 } 1803 PROC_UNLOCK(curproc); 1804 } 1805 #endif 1806 } else 1807 curthread->td_ru.ru_minflt++; 1808 1809 return (KERN_SUCCESS); 1810 } 1811 1812 /* 1813 * Speed up the reclamation of pages that precede the faulting pindex within 1814 * the first object of the shadow chain. Essentially, perform the equivalent 1815 * to madvise(..., MADV_DONTNEED) on a large cluster of pages that precedes 1816 * the faulting pindex by the cluster size when the pages read by vm_fault() 1817 * cross a cluster-size boundary. The cluster size is the greater of the 1818 * smallest superpage size and VM_FAULT_DONTNEED_MIN. 1819 * 1820 * When "fs->first_object" is a shadow object, the pages in the backing object 1821 * that precede the faulting pindex are deactivated by vm_fault(). So, this 1822 * function must only be concerned with pages in the first object. 1823 */ 1824 static void 1825 vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, int ahead) 1826 { 1827 vm_map_entry_t entry; 1828 vm_object_t first_object; 1829 vm_offset_t end, start; 1830 vm_page_t m, m_next; 1831 vm_pindex_t pend, pstart; 1832 vm_size_t size; 1833 1834 VM_OBJECT_ASSERT_UNLOCKED(fs->object); 1835 first_object = fs->first_object; 1836 /* Neither fictitious nor unmanaged pages can be reclaimed. */ 1837 if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) { 1838 VM_OBJECT_RLOCK(first_object); 1839 size = VM_FAULT_DONTNEED_MIN; 1840 if (MAXPAGESIZES > 1 && size < pagesizes[1]) 1841 size = pagesizes[1]; 1842 end = rounddown2(vaddr, size); 1843 if (vaddr - end >= size - PAGE_SIZE - ptoa(ahead) && 1844 (entry = fs->entry)->start < end) { 1845 if (end - entry->start < size) 1846 start = entry->start; 1847 else 1848 start = end - size; 1849 pmap_advise(fs->map->pmap, start, end, MADV_DONTNEED); 1850 pstart = OFF_TO_IDX(entry->offset) + atop(start - 1851 entry->start); 1852 m_next = vm_page_find_least(first_object, pstart); 1853 pend = OFF_TO_IDX(entry->offset) + atop(end - 1854 entry->start); 1855 while ((m = m_next) != NULL && m->pindex < pend) { 1856 m_next = TAILQ_NEXT(m, listq); 1857 if (!vm_page_all_valid(m) || 1858 vm_page_busied(m)) 1859 continue; 1860 1861 /* 1862 * Don't clear PGA_REFERENCED, since it would 1863 * likely represent a reference by a different 1864 * process. 1865 * 1866 * Typically, at this point, prefetched pages 1867 * are still in the inactive queue. Only 1868 * pages that triggered page faults are in the 1869 * active queue. The test for whether the page 1870 * is in the inactive queue is racy; in the 1871 * worst case we will requeue the page 1872 * unnecessarily. 1873 */ 1874 if (!vm_page_inactive(m)) 1875 vm_page_deactivate(m); 1876 } 1877 } 1878 VM_OBJECT_RUNLOCK(first_object); 1879 } 1880 } 1881 1882 /* 1883 * vm_fault_prefault provides a quick way of clustering 1884 * pagefaults into a processes address space. It is a "cousin" 1885 * of vm_map_pmap_enter, except it runs at page fault time instead 1886 * of mmap time. 1887 */ 1888 static void 1889 vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra, 1890 int backward, int forward, bool obj_locked) 1891 { 1892 pmap_t pmap; 1893 vm_map_entry_t entry; 1894 vm_object_t backing_object, lobject; 1895 vm_offset_t addr, starta; 1896 vm_pindex_t pindex; 1897 vm_page_t m; 1898 int i; 1899 1900 pmap = fs->map->pmap; 1901 if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) 1902 return; 1903 1904 entry = fs->entry; 1905 1906 if (addra < backward * PAGE_SIZE) { 1907 starta = entry->start; 1908 } else { 1909 starta = addra - backward * PAGE_SIZE; 1910 if (starta < entry->start) 1911 starta = entry->start; 1912 } 1913 1914 /* 1915 * Generate the sequence of virtual addresses that are candidates for 1916 * prefaulting in an outward spiral from the faulting virtual address, 1917 * "addra". Specifically, the sequence is "addra - PAGE_SIZE", "addra 1918 * + PAGE_SIZE", "addra - 2 * PAGE_SIZE", "addra + 2 * PAGE_SIZE", ... 1919 * If the candidate address doesn't have a backing physical page, then 1920 * the loop immediately terminates. 1921 */ 1922 for (i = 0; i < 2 * imax(backward, forward); i++) { 1923 addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE : 1924 PAGE_SIZE); 1925 if (addr > addra + forward * PAGE_SIZE) 1926 addr = 0; 1927 1928 if (addr < starta || addr >= entry->end) 1929 continue; 1930 1931 if (!pmap_is_prefaultable(pmap, addr)) 1932 continue; 1933 1934 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT; 1935 lobject = entry->object.vm_object; 1936 if (!obj_locked) 1937 VM_OBJECT_RLOCK(lobject); 1938 while ((m = vm_page_lookup(lobject, pindex)) == NULL && 1939 !vm_fault_object_needs_getpages(lobject) && 1940 (backing_object = lobject->backing_object) != NULL) { 1941 KASSERT((lobject->backing_object_offset & PAGE_MASK) == 1942 0, ("vm_fault_prefault: unaligned object offset")); 1943 pindex += lobject->backing_object_offset >> PAGE_SHIFT; 1944 VM_OBJECT_RLOCK(backing_object); 1945 if (!obj_locked || lobject != entry->object.vm_object) 1946 VM_OBJECT_RUNLOCK(lobject); 1947 lobject = backing_object; 1948 } 1949 if (m == NULL) { 1950 if (!obj_locked || lobject != entry->object.vm_object) 1951 VM_OBJECT_RUNLOCK(lobject); 1952 break; 1953 } 1954 if (vm_page_all_valid(m) && 1955 (m->flags & PG_FICTITIOUS) == 0) 1956 pmap_enter_quick(pmap, addr, m, entry->protection); 1957 if (!obj_locked || lobject != entry->object.vm_object) 1958 VM_OBJECT_RUNLOCK(lobject); 1959 } 1960 } 1961 1962 /* 1963 * Hold each of the physical pages that are mapped by the specified range of 1964 * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid 1965 * and allow the specified types of access, "prot". If all of the implied 1966 * pages are successfully held, then the number of held pages is returned 1967 * together with pointers to those pages in the array "ma". However, if any 1968 * of the pages cannot be held, -1 is returned. 1969 */ 1970 int 1971 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len, 1972 vm_prot_t prot, vm_page_t *ma, int max_count) 1973 { 1974 vm_offset_t end, va; 1975 vm_page_t *mp; 1976 int count; 1977 boolean_t pmap_failed; 1978 1979 if (len == 0) 1980 return (0); 1981 end = round_page(addr + len); 1982 addr = trunc_page(addr); 1983 1984 if (!vm_map_range_valid(map, addr, end)) 1985 return (-1); 1986 1987 if (atop(end - addr) > max_count) 1988 panic("vm_fault_quick_hold_pages: count > max_count"); 1989 count = atop(end - addr); 1990 1991 /* 1992 * Most likely, the physical pages are resident in the pmap, so it is 1993 * faster to try pmap_extract_and_hold() first. 1994 */ 1995 pmap_failed = FALSE; 1996 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) { 1997 *mp = pmap_extract_and_hold(map->pmap, va, prot); 1998 if (*mp == NULL) 1999 pmap_failed = TRUE; 2000 else if ((prot & VM_PROT_WRITE) != 0 && 2001 (*mp)->dirty != VM_PAGE_BITS_ALL) { 2002 /* 2003 * Explicitly dirty the physical page. Otherwise, the 2004 * caller's changes may go unnoticed because they are 2005 * performed through an unmanaged mapping or by a DMA 2006 * operation. 2007 * 2008 * The object lock is not held here. 2009 * See vm_page_clear_dirty_mask(). 2010 */ 2011 vm_page_dirty(*mp); 2012 } 2013 } 2014 if (pmap_failed) { 2015 /* 2016 * One or more pages could not be held by the pmap. Either no 2017 * page was mapped at the specified virtual address or that 2018 * mapping had insufficient permissions. Attempt to fault in 2019 * and hold these pages. 2020 * 2021 * If vm_fault_disable_pagefaults() was called, 2022 * i.e., TDP_NOFAULTING is set, we must not sleep nor 2023 * acquire MD VM locks, which means we must not call 2024 * vm_fault(). Some (out of tree) callers mark 2025 * too wide a code area with vm_fault_disable_pagefaults() 2026 * already, use the VM_PROT_QUICK_NOFAULT flag to request 2027 * the proper behaviour explicitly. 2028 */ 2029 if ((prot & VM_PROT_QUICK_NOFAULT) != 0 && 2030 (curthread->td_pflags & TDP_NOFAULTING) != 0) 2031 goto error; 2032 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) 2033 if (*mp == NULL && vm_fault(map, va, prot, 2034 VM_FAULT_NORMAL, mp) != KERN_SUCCESS) 2035 goto error; 2036 } 2037 return (count); 2038 error: 2039 for (mp = ma; mp < ma + count; mp++) 2040 if (*mp != NULL) 2041 vm_page_unwire(*mp, PQ_INACTIVE); 2042 return (-1); 2043 } 2044 2045 /* 2046 * Routine: 2047 * vm_fault_copy_entry 2048 * Function: 2049 * Create new object backing dst_entry with private copy of all 2050 * underlying pages. When src_entry is equal to dst_entry, function 2051 * implements COW for wired-down map entry. Otherwise, it forks 2052 * wired entry into dst_map. 2053 * 2054 * In/out conditions: 2055 * The source and destination maps must be locked for write. 2056 * The source map entry must be wired down (or be a sharing map 2057 * entry corresponding to a main map entry that is wired down). 2058 */ 2059 void 2060 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map __unused, 2061 vm_map_entry_t dst_entry, vm_map_entry_t src_entry, 2062 vm_ooffset_t *fork_charge) 2063 { 2064 vm_object_t backing_object, dst_object, object, src_object; 2065 vm_pindex_t dst_pindex, pindex, src_pindex; 2066 vm_prot_t access, prot; 2067 vm_offset_t vaddr; 2068 vm_page_t dst_m; 2069 vm_page_t src_m; 2070 bool upgrade; 2071 2072 upgrade = src_entry == dst_entry; 2073 KASSERT(upgrade || dst_entry->object.vm_object == NULL, 2074 ("vm_fault_copy_entry: vm_object not NULL")); 2075 2076 /* 2077 * If not an upgrade, then enter the mappings in the pmap as 2078 * read and/or execute accesses. Otherwise, enter them as 2079 * write accesses. 2080 * 2081 * A writeable large page mapping is only created if all of 2082 * the constituent small page mappings are modified. Marking 2083 * PTEs as modified on inception allows promotion to happen 2084 * without taking potentially large number of soft faults. 2085 */ 2086 access = prot = dst_entry->protection; 2087 if (!upgrade) 2088 access &= ~VM_PROT_WRITE; 2089 2090 src_object = src_entry->object.vm_object; 2091 src_pindex = OFF_TO_IDX(src_entry->offset); 2092 2093 if (upgrade && (dst_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) { 2094 dst_object = src_object; 2095 vm_object_reference(dst_object); 2096 } else { 2097 /* 2098 * Create the top-level object for the destination entry. 2099 * Doesn't actually shadow anything - we copy the pages 2100 * directly. 2101 */ 2102 dst_object = vm_object_allocate_anon(atop(dst_entry->end - 2103 dst_entry->start), NULL, NULL, 0); 2104 #if VM_NRESERVLEVEL > 0 2105 dst_object->flags |= OBJ_COLORED; 2106 dst_object->pg_color = atop(dst_entry->start); 2107 #endif 2108 dst_object->domain = src_object->domain; 2109 dst_object->charge = dst_entry->end - dst_entry->start; 2110 2111 dst_entry->object.vm_object = dst_object; 2112 dst_entry->offset = 0; 2113 dst_entry->eflags &= ~MAP_ENTRY_VN_EXEC; 2114 } 2115 2116 VM_OBJECT_WLOCK(dst_object); 2117 if (fork_charge != NULL) { 2118 KASSERT(dst_entry->cred == NULL, 2119 ("vm_fault_copy_entry: leaked swp charge")); 2120 dst_object->cred = curthread->td_ucred; 2121 crhold(dst_object->cred); 2122 *fork_charge += dst_object->charge; 2123 } else if ((dst_object->flags & OBJ_SWAP) != 0 && 2124 dst_object->cred == NULL) { 2125 KASSERT(dst_entry->cred != NULL, ("no cred for entry %p", 2126 dst_entry)); 2127 dst_object->cred = dst_entry->cred; 2128 dst_entry->cred = NULL; 2129 } 2130 2131 /* 2132 * Loop through all of the virtual pages within the entry's 2133 * range, copying each page from the source object to the 2134 * destination object. Since the source is wired, those pages 2135 * must exist. In contrast, the destination is pageable. 2136 * Since the destination object doesn't share any backing storage 2137 * with the source object, all of its pages must be dirtied, 2138 * regardless of whether they can be written. 2139 */ 2140 for (vaddr = dst_entry->start, dst_pindex = 0; 2141 vaddr < dst_entry->end; 2142 vaddr += PAGE_SIZE, dst_pindex++) { 2143 again: 2144 /* 2145 * Find the page in the source object, and copy it in. 2146 * Because the source is wired down, the page will be 2147 * in memory. 2148 */ 2149 if (src_object != dst_object) 2150 VM_OBJECT_RLOCK(src_object); 2151 object = src_object; 2152 pindex = src_pindex + dst_pindex; 2153 while ((src_m = vm_page_lookup(object, pindex)) == NULL && 2154 (backing_object = object->backing_object) != NULL) { 2155 /* 2156 * Unless the source mapping is read-only or 2157 * it is presently being upgraded from 2158 * read-only, the first object in the shadow 2159 * chain should provide all of the pages. In 2160 * other words, this loop body should never be 2161 * executed when the source mapping is already 2162 * read/write. 2163 */ 2164 KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 || 2165 upgrade, 2166 ("vm_fault_copy_entry: main object missing page")); 2167 2168 VM_OBJECT_RLOCK(backing_object); 2169 pindex += OFF_TO_IDX(object->backing_object_offset); 2170 if (object != dst_object) 2171 VM_OBJECT_RUNLOCK(object); 2172 object = backing_object; 2173 } 2174 KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing")); 2175 2176 if (object != dst_object) { 2177 /* 2178 * Allocate a page in the destination object. 2179 */ 2180 dst_m = vm_page_alloc(dst_object, (src_object == 2181 dst_object ? src_pindex : 0) + dst_pindex, 2182 VM_ALLOC_NORMAL); 2183 if (dst_m == NULL) { 2184 VM_OBJECT_WUNLOCK(dst_object); 2185 VM_OBJECT_RUNLOCK(object); 2186 vm_wait(dst_object); 2187 VM_OBJECT_WLOCK(dst_object); 2188 goto again; 2189 } 2190 2191 /* 2192 * See the comment in vm_fault_cow(). 2193 */ 2194 if (src_object == dst_object && 2195 (object->flags & OBJ_ONEMAPPING) == 0) 2196 pmap_remove_all(src_m); 2197 pmap_copy_page(src_m, dst_m); 2198 2199 /* 2200 * The object lock does not guarantee that "src_m" will 2201 * transition from invalid to valid, but it does ensure 2202 * that "src_m" will not transition from valid to 2203 * invalid. 2204 */ 2205 dst_m->dirty = dst_m->valid = src_m->valid; 2206 VM_OBJECT_RUNLOCK(object); 2207 } else { 2208 dst_m = src_m; 2209 if (vm_page_busy_acquire(dst_m, VM_ALLOC_WAITFAIL) == 0) 2210 goto again; 2211 if (dst_m->pindex >= dst_object->size) { 2212 /* 2213 * We are upgrading. Index can occur 2214 * out of bounds if the object type is 2215 * vnode and the file was truncated. 2216 */ 2217 vm_page_xunbusy(dst_m); 2218 break; 2219 } 2220 } 2221 2222 /* 2223 * Enter it in the pmap. If a wired, copy-on-write 2224 * mapping is being replaced by a write-enabled 2225 * mapping, then wire that new mapping. 2226 * 2227 * The page can be invalid if the user called 2228 * msync(MS_INVALIDATE) or truncated the backing vnode 2229 * or shared memory object. In this case, do not 2230 * insert it into pmap, but still do the copy so that 2231 * all copies of the wired map entry have similar 2232 * backing pages. 2233 */ 2234 if (vm_page_all_valid(dst_m)) { 2235 VM_OBJECT_WUNLOCK(dst_object); 2236 pmap_enter(dst_map->pmap, vaddr, dst_m, prot, 2237 access | (upgrade ? PMAP_ENTER_WIRED : 0), 0); 2238 VM_OBJECT_WLOCK(dst_object); 2239 } 2240 2241 /* 2242 * Mark it no longer busy, and put it on the active list. 2243 */ 2244 if (upgrade) { 2245 if (src_m != dst_m) { 2246 vm_page_unwire(src_m, PQ_INACTIVE); 2247 vm_page_wire(dst_m); 2248 } else { 2249 KASSERT(vm_page_wired(dst_m), 2250 ("dst_m %p is not wired", dst_m)); 2251 } 2252 } else { 2253 vm_page_activate(dst_m); 2254 } 2255 vm_page_xunbusy(dst_m); 2256 } 2257 VM_OBJECT_WUNLOCK(dst_object); 2258 if (upgrade) { 2259 dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY); 2260 vm_object_deallocate(src_object); 2261 } 2262 } 2263 2264 /* 2265 * Block entry into the machine-independent layer's page fault handler by 2266 * the calling thread. Subsequent calls to vm_fault() by that thread will 2267 * return KERN_PROTECTION_FAILURE. Enable machine-dependent handling of 2268 * spurious page faults. 2269 */ 2270 int 2271 vm_fault_disable_pagefaults(void) 2272 { 2273 2274 return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR)); 2275 } 2276 2277 void 2278 vm_fault_enable_pagefaults(int save) 2279 { 2280 2281 curthread_pflags_restore(save); 2282 } 2283